Assoc. Prof. Dr. ROSHAN NAZIR | Electrochemistry | Chemical Environmental Award

Assoc. Prof. Dr. ROSHAN NAZIR | Electrochemistry | Chemical Environmental Award

Assoc. Prof. Dr. ROSHAN NAZIR | Associate Professor at Department of Chemistry, Poornima University, Jaipur, Rajasthan, India

Dr. Roshan Nazir is a distinguished researcher in nanomaterials, electrocatalysis, and coordination chemistry, currently serving as an Assistant Professor at Guru Nanak Institute of Technology, Hyderabad. He has previously worked as a DST-SERB National Postdoctoral Fellow at IIT Delhi, Research Associate at IIT Kharagpur, and Postdoctoral Fellow at Bilkent University (Turkey) and Qatar University. His Ph.D. from BITS Pilani focused on metal and metal oxide nanoparticles for electrocatalysis. His groundbreaking research includes hydrogen and oxygen evolution reactions, COβ‚‚ reduction, and photovoltaic applications. With several high-impact publications, he has significantly contributed to energy materials and catalysis. Dr. Nazir has also held key administrative roles, including IIC and R&D Coordinator, demonstrating leadership in academic research and innovation. His expertise, coupled with prestigious fellowships and awards, establishes him as a leading scientist in sustainable energy research.

Professional Profile :Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β 

Google Scholar

Orcid

ScopusΒ Β 

Summary of Suitability for Award:

Dr. Roshan Nazir is highly suitable for the “Chemical Environmental Award” due to his extensive research in nanomaterials, electrocatalysis, and sustainable energy applications. His work focuses on developing efficient and cost-effective catalysts for clean energy production, hydrogen evolution reactions (HER), oxygen evolution reactions (OER), and COβ‚‚ reduction, which align with the principles of green chemistry and environmental sustainability. His contributions to renewable energy solutions, pollution mitigation, and the reduction of harmful industrial emissions make him an excellent candidate for this award. Dr. Nazir’s research also includes MXene-based catalysts for hydrogen energy, electrodeposited Cuβ‚‚O/ZnO heterojunctions for solar applications, and the use of transition metal catalysts in electrochemical reactions, all aimed at minimizing environmental impact. His work bridges fundamental chemistry and industrial applications, ensuring a cleaner and more sustainable future. His international postdoctoral fellowships, leadership in research projects, and high-impact publications further highlight his commitment to advancing environmentally friendly chemical technologies.

πŸŽ“Education:

Dr. Roshan Nazir earned his Doctor of Philosophy (Ph.D.) in Chemistry from Birla Institute of Technology and Science (BITS), Pilani, India (2013–2019). His research focused on the synthesis and characterization of metal and metal oxide nanoparticles for electrocatalytic oxygen and hydrogen evolution reactions. His thesis was submitted on May 17, 2018, and awarded on February 28, 2019. Prior to this, he completed his Master of Science (M.Sc.) in Chemistry from Jamia Millia Islamia, India (2010–2012), where he gained expertise in advanced inorganic, organic, and physical chemistry. His academic journey laid a strong foundation in nanomaterials, catalysis, and electrochemistry, which he further explored during his postdoctoral research. His academic excellence and deep understanding of materials chemistry have been instrumental in his contributions to electrocatalysis, hydrogen production, and sustainable energy solutions.

🏒Work Experience:

Dr. Roshan Nazir is currently an Assistant Professor at Guru Nanak Institute of Technology, Hyderabad, India, since October 2023. He has extensive postdoctoral experience, having worked as a DST-SERB National Postdoctoral Fellow (NPDF) at the Indian Institute of Technology (IIT) Delhi from 2022 to 2023. Prior to this, he was a Research Associate at the Department of Metallurgical and Materials Engineering, IIT Kharagpur (2020–2021), where he worked on cutting-edge materials research. He also held prestigious international positions, including a Postdoctoral Fellowship (TÜBΔ°TAK) at Bilkent University, Ankara, Turkey (2019–2020) and a Postdoctoral Fellow (Industrial Project – Total) at Qatar University, Doha, Qatar (2018–2019). His vast experience spans nanomaterials, electrocatalysis, hydrogen energy, and renewable energy applications. His interdisciplinary expertise and research collaborations have significantly contributed to advancements in materials chemistry and sustainable energy.

πŸ…Awards:Β 

Dr. Roshan Nazir has received several prestigious fellowships and awards for his outstanding research contributions. He was awarded the DST-SERB National Postdoctoral Fellowship (NPDF), serving as the Principal Investigator (PI) of the project, which highlights his leadership in scientific research. He also received the TÜBİTAK Fellowship from Turkey, a highly competitive international postdoctoral fellowship, recognizing his expertise in materials chemistry and catalysis. During his Ph.D., he was a Junior Research Fellow (JRF) under a Department of Science and Technology (DST)-sponsored project, further demonstrating his early excellence in research. His work has been published in high-impact journals, and his contributions to electrocatalysis, hydrogen production, and nanomaterials synthesis have earned him international recognition. Additionally, his administrative roles, such as serving as the IIC and R&D Coordinator at Guru Nanak Institute of Technology, showcase his dedication to research and academic leadership.

πŸ”¬Research Focus:

Dr. Roshan Nazir’s research primarily focuses on the synthesis and characterization of metal and metal oxide nanoparticles for electrocatalysis, hydrogen evolution reactions (HER), and oxygen evolution reactions (OER). His work aims to develop highly efficient, cost-effective, and stable catalysts for sustainable energy applications. He has explored MXene-based catalysts for ecological hydrogen energy generation, investigated electrodeposited Cu2O/ZnO heterojunctions for photovoltaic applications, and studied gadolinium telluride for oxygen evolution and reduction reactions. His research extends to CO2 reduction, methanol oxidation, and nitro-compound reduction, contributing to green energy solutions. His expertise in galvanic exchange synthesis, electrocatalytic nitrogen reduction, and carbon nitride-supported catalysts has led to the development of innovative materials for energy conversion and storage. Through his work, he aims to bridge the gap between fundamental nanomaterials research and practical applications in renewable energy and sustainable chemistry.

Publication Top Notes:

Synthesis of Monometallic (Au and Pd) and Bimetallic (AuPd) Nanoparticles Using Carbon Nitride (C3N4) Quantum Dots via the Photochemical Route for …
Citations: 121
Ag2S/Ag Heterostructure: A Promising Electrocatalyst for the Hydrogen Evolution Reaction
Citations: 110
Construction of CuS/Au heterostructure through a simple photoreduction route for enhanced electrochemical hydrogen evolution and photocatalysis
Citations: 104
Decoration of MoS2 on g-C3N4 surface for efficient hydrogen evolution reaction
Citations: 88
Graphitic-carbon nitride support for the synthesis of shape-dependent ZnO and their application in visible light photocatalysts
Citations: 80
Decoration of carbon nitride surface with bimetallic nanoparticles (Ag/Pt, Ag/Pd, and Ag/Au) via galvanic exchange for hydrogen evolution reaction
Citations: 77
Decoration of Pd and Pt nanoparticles on a carbon nitride (C3N4) surface for nitro-compounds reduction and hydrogen evolution reaction
Citations: 55
Synthesis of one-dimensional RuO2 nanorod for hydrogen and oxygen evolution reaction: An efficient and stable electrocatalyst
Citations: 44
Development of CuAg/Cu2O nanoparticles on carbon nitride surface for methanol oxidation and selective conversion of carbon dioxide into formate
Citations: 37
Nanosheet Synthesis of Mixed Co3O4/CuO via Combustion Method for Methanol Oxidation and Carbon Dioxide Reduction
Citations: 29
Structural, optical and photocatalytic properties of PVC/CdS nanocomposites prepared by soft chemistry method
Citations: 27
Synthesis of hydroxide nanoparticles of Co/Cu on carbon nitride surface via galvanic exchange method for electrocatalytic CO2 reduction into formate
Citations: 20
Preparation of Sb:SnO2 thin films and its effect on optoelectrical properties
Citations: 18
Microwave‐Assisted Efficient Suzuki‐Miyaura Cross‐Coupling Reactions in Water Catalyzed by Nano‐Pd/gC3N4 Composite
Citations: 18
Preparation and properties of electrodeposited Ni-B-V2O5 composite coatings
Citations: 17

 

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R ,Inorganic Chemistry, GOVERNMENT POLYTECHNIC COLLEGE, EZHUKONE, KOLLAM, KERALA, India

Dr. Minitha R. is an Associate Professor with over 14 years of teaching and 15 years of research experience in chemistry. She holds an M.Sc., M.Phil., NET, UGC-JRF, and Ph.D. Her expertise spans organic, coordination, supramolecular, and inorganic chemistry. She has served in key academic roles, including NSS Programme Officer and Chief Superintendent of Examinations. A dedicated researcher, Dr. Minitha has guided students and undertaken projects like developing a chemosensor for metal ion detection. She has organized multiple national seminars and actively participates in international conferences and workshops.

Professional Profile :Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β 

Orcid

ScopusΒ Β 

Summary of Suitability for Award:

Dr. Minitha R., an accomplished Associate Professor with 15 years of research experience, has significantly contributed to the field of Inorganic Chemistry, particularly in Coordination Chemistry, Supramolecular Chemistry, and Organic Chemistry. With a strong publication record, she has authored several impactful research papers in highly reputed journals, covering diverse topics such as metal complexes, chemosensors, molecular structures, and spectroscopic studies. Dr. Minitha R. is an exceptional candidate for the “Best Researcher Award,” given her proven research excellence, scholarly contributions, and leadership in the scientific community. Her extensive work in metal-based coordination complexes, chemosensors, and supramolecular chemistry, along with her active role in mentoring and academic leadership, makes her a highly deserving nominee.

πŸŽ“Education:

Dr. Minitha R. holds a Ph.D. in Chemistry and has qualified for the NET and UGC-JRF. She completed her M.Sc. and M.Phil. in Chemistry, demonstrating academic excellence throughout. Her education provided her with a strong foundation in inorganic chemistry, particularly in complex synthesis, supramolecular interactions, and chemosensing applications. Her academic journey was driven by a passion for molecular recognition, ligand design, and structural chemistry. She has actively participated in seminars and workshops to enhance her knowledge and keep up with evolving research trends.

🏒Work Experience:

With 14 years of teaching and 15 years of research experience, Dr. Minitha R. has handled Organic, Inorganic, and Physical Chemistry courses. She has successfully guided research scholars, fostering innovations in supramolecular and coordination chemistry. Apart from teaching, she has played key roles as an NSS Programme Officer, Nature Club Coordinator, Chief Superintendent of Examinations, and Young Innovators Programme Facilitator. She has also organized national seminars and workshops on emerging trends in chemistry, enhancing academic collaboration and knowledge dissemination.

πŸ…Awards:Β 

Dr. Minitha R. has been recognized for her outstanding contributions to academia and research. She served as the NSS Programme Officer (2021-2022), demonstrating her commitment to student welfare and community service. As the Nature Club Coordinator (2019-2020), she played a crucial role in promoting environmental awareness. Her leadership extended to being the Chief Superintendent of Examinations (2020-2021), ensuring smooth academic assessments. Additionally, she facilitated the Young Innovators Programme (2019), fostering creativity and scientific curiosity among students. Her research endeavors were supported by a KSCSTE-funded M.Sc. student project, where she developed a chemosensor for metal ion detection. These roles reflect her dedication to education, research, and institutional development.

πŸ”¬Research Focus:

Dr. Minitha R. specializes in Inorganic Chemistry, with a keen interest in Organic Chemistry, Coordination Chemistry, and Supramolecular Chemistry. Her research explores the synthesis and characterization of novel metal complexes, particularly those with biological and chemosensory applications. She has contributed significantly to the development of pyrazolylhydrazone-based metal complexes, dioxo molybdenum(VI) compounds, and benzothiazolium salts. Her work also extends to fluorescent hydrazones and ruthenium(II) complexes, emphasizing their structural and functional properties. Additionally, her studies on five-coordinate Zn(II) complexes highlight their potential in nonlinear optical applications. Through her research, she aims to bridge the gap between fundamental chemistry and real-world applications, particularly in materials science, catalysis, and medicinal chemistry.

Publication Top Notes:

Formation of dicyano ruthenium(II) complex mediated by triethylamine via deprotonation of hydrazonochroman-2,4-dione
Synthesis, spectroscopic and biological studies of metal complexes of an ONO donor pyrazolylhydrazone – Crystal structure of ligand and Co(II) complex
Studies of some dioxo molybdenum(VI) complexes of a polydentate ligand
One pot synthesis of 1–(3–methyl–4H–benzo[1,4]thiazin–2–yl)-ethanone and its antimicrobial properties
Β Synthesis, spectral, and magnetic studies of benzothiazolium tetrachlorocuprate salts: crystal structure and semiconducting behavior of bis[2-(4-methoxyphenyl)benzothiazolium] tetrachlorocuprate(II)
Fluorescent coumarin-based hydrazone: Synthesis, crystal structure, and spectroscopic studies
FT-IR, FT-Raman and computational study of 1H-2,2-dimethyl-3H-phenothiazin-4[10H]-one
Synthesis, crystal structure, spectral analysis, and NLO studies of five-coordinate Zn(II) complexes of hydrazochromandione
Β Chemosensing study of 1,4-Benzothiazine generated from acetylacetone

 

Prof. Massimo Padalino | Medicinal Chemistry | Excellence in Innovation Award

Prof. Massimo Padalino | Medicinal Chemistry | Excellence in Innovation Award

Prof. Massimo Padalino | Medicinal Chemistry | Professore associato at University of Bari, Italy

Dr. Massimo Antonio Padalino obtained his M.D. from the University of Padova, Italy, in 1995. He completed his residency in Cardiovascular Surgery at the University of Padova Medical School (1995-1999), where he served as Chief Resident (1999-2000). He pursued advanced surgical training through prestigious fellowships, including a Surgical Clinical Fellowship in Cardiovascular Surgery at the Mayo Clinic, USA (2001-2002), and specialized training in Pediatric Cardiovascular Surgery at Boston Children’s Hospital, Harvard Medical School (2002), and Mott Children’s Hospital, University of Michigan (2003-2004). He earned a Ph.D. in Cardiovascular Sciences from the University of Padova (2005-2008) and further specialized with a Master’s degree in Cardiovascular Pathology (2011) and Pediatric Cardiology (2014). Additionally, he completed a research fellowship at the Cardiac Registry, Harvard Medical School, and a visiting fellowship at Johns Hopkins Hospital (2015), solidifying his expertise in congenital and pediatric cardiac surgery.

Professional Profile :Β 

Orcid

ScopusΒ 

Summary of Suitability for Award:

Dr. Massimo Antonio Padalino is an outstanding candidate for the “Excellence in Innovation Award” due to his pioneering contributions to pediatric and congenital cardiovascular surgery. His research has led to innovative surgical techniques for congenital heart disease, particularly in neonatal and single-ventricle repairs. His work on novel bioprosthetic materials, cardiac regeneration, and mechanical circulatory support (ECMO, VAD) has significantly improved patient outcomes. He has also played a key role in international registries (EUROFONTAN, EUROAAOCA) and multicenter studies, advancing global knowledge in congenital heart surgery. His collaboration with premier institutions like Harvard Medical School and Mayo Clinic further highlights his commitment to innovation. Dr. Padalino’s groundbreaking work in pediatric cardiac surgery, including innovative surgical strategies, regenerative medicine, and advanced circulatory support techniques, makes him highly suitable for the “Excellence in Innovation Award.” His contributions have transformed congenital heart disease treatment, making a lasting impact on the field.

πŸŽ“Education:

Dr. Massimo Antonio Padalino obtained his M.D. from the University of Padova inΒ  Italy.Β  He completed his residency in Cardiovascular Surgery at the University of Padova Medical School (1995-1999), where he served as Chief Resident (1999-2000). He pursued advanced surgical training through prestigious fellowships, including a Surgical Clinical Fellowship in Cardiovascular Surgery at the Mayo Clinic, USA (2001-2002), and specialized training in Pediatric Cardiovascular Surgery at Boston Children’s Hospital, Harvard Medical School (2002), and Mott Children’s Hospital, University of Michigan (2003-2004). He earned a Ph.D. in Cardiovascular Sciences from the University of Padova (2005-2008) and further specialized with a Master’s degree in Cardiovascular Pathology (2011) and Pediatric Cardiology (2014). Additionally, he completed a research fellowship at the Cardiac Registry, Harvard Medical School, and a visiting fellowship at Johns Hopkins Hospital (2015), solidifying his expertise in congenital and pediatric cardiac surgery.

🏒Work Experience:

Dr. Massimo Antonio Padalino has over two decades of experience in pediatric and congenital cardiovascular surgery. Since December 2023, he has served as Pediatric and Congenital Cardiac Surgeon in Chief at UOC Cardiochirurgia, University of Bari, Italy. Previously, he was a senior Pediatric and Congenital Cardiovascular Surgeon at the University of Padova Medical School (2004-2023), where he independently performed approximately 150 complex congenital heart surgeries annually, spanning neonates to adults. His expertise includes neonatal heart surgery, single-ventricle palliation, heart transplantation, and mechanical circulatory support (ECMO and VAD). His clinical training includes tenures at leading institutions such as Mayo Clinic, Boston Children’s Hospital, and the University of Michigan. He has also been actively involved in postoperative intensive care, clinical research, and multicenter studies, significantly contributing to advancements in pediatric cardiac surgery. His leadership extends to mentoring and training the next generation of cardiac surgeons.

πŸ…Awards:Β 

Dr. Massimo Antonio Padalino has received numerous accolades for his contributions to pediatric and congenital cardiovascular surgery. He is a Fellow of the European Society of Cardiology (FESC) and has been recognized for his expertise in congenital heart disease management. His work in innovative surgical strategies and regenerative medicine has earned him invitations to speak at leading international cardiology and cardiac surgery conferences. He has also received research grants for pioneering studies in cardiac regeneration, bioprosthetic materials, and surgical outcomes in congenital heart disease. His collaborations with renowned institutions, including Harvard Medical School and the Mayo Clinic, have strengthened his reputation as a leading figure in pediatric cardiac surgery. His research and clinical excellence are reflected in his numerous high-impact publications, which have significantly influenced advancements in congenital heart surgery and pediatric cardiology worldwide.

πŸ”¬Research Focus:

Dr. Massimo Antonio Padalino’s research focuses on congenital heart disease surgery, particularly early repair techniques and novel surgical strategies for single-ventricle physiology. He actively contributes to international registries, including the EUROFONTAN and EUROAAOCA, studying surgical outcomes in congenital heart defects. His work explores innovative approaches to preserving pulmonary valve function in Tetralogy of Fallot repair and alternative strategies for managing end-stage heart failure in children, including ECMO, VAD, and pulmonary artery banding. Additionally, he investigates heart transplantation in congenital heart disease, cardiac regeneration in infants with dilated cardiomyopathy, and bioprosthetic materials for cardiac tissue reconstruction. His research also addresses the neurological and pulmonary effects of cardiopulmonary bypass in pediatric patients, aiming to improve outcomes and long-term survival. Through clinical trials and multicenter studies, Dr. Padalino is dedicated to advancing pediatric cardiac surgery, refining surgical techniques, and enhancing postoperative care for children with complex congenital heart conditions.

Publication Top Notes:

Heart–Liver Interplay in Patients with Fontan Circulation

Authors: Not provided in the given data

Year: 2025

Citations: Data not available

DOI: 10.3390/jcm14041114

The Impact of Dominant Ventricle Morphology and Additional Ventricular Chamber Size on Clinical Outcomes in Patients with Fontan Circulation

Authors: Not provided in the given data

Year: 2025

Citations: Data not available

DOI: 10.1017/S1047951124026581

First Report from the European Registry for Anomalous Aortic Origin of Coronary Artery (EURO-AAOCA)

Authors: Not provided in the given data

Year: 2024

Citations: Data not available

DOI: 10.1093/icvts/ivae074

Current Understanding and Future Directions of Transcatheter Devices to Assist Failing Fontan

Authors: Not provided in the given data

Year: 2024

Citations: Data not available

DOI: 10.1016/j.jscai.2024.101334

Intracorporeal LVAD Implantation in Pediatric Patients: A Single-Center 10 Years’ Experience

Authors: Not provided in the given data

Year: 2024

Citations: Data not available

DOI: 10.1111/aor.14716

Late Gadolinium Enhancement and Anomalous Coronary Aortic Origin in a Large Paediatric Cohort

Authors: Not provided in the given data

Year: 2024

Citations: Data not available

DOI: 10.1093/eurheartj/ehae545

Percutaneous Approach to Residual Pulmonary Bifurcation Stenosis in Conotruncal Diseases

Authors: Not provided in the given data

Year: 2024

Citations: Data not available

DOI: 10.1017/s1047951123000999

Postoperative Outcomes of Fontan Operation in a Multicenter Italian Study. How Far Have We Gone? Early Outcomes After Fontan Operation

Authors: Not provided in the given data

Year: 2024

Citations: Data not available

DOI: 10.1007/s00246-024-03642-2

Successful Implantation of HeartMate3 in a Small Child After Multimodality Imaging Pathway to Assess Feasibility

Authors: Not provided in the given data

Year: 2024

Citations: Data not available

DOI: 10.1097/MAT.0000000000002069

Overshoot of the Respiratory Exchange Ratio during Recovery from Maximal Exercise Testing in Young Patients with Congenital Heart Disease

Authors: Not provided in the given data

Year: 2023

Citations: Data not available

DOI: 10.3390/children10030521

Three-Dimensional-Enabled Surgical Planning for the Correction of Right Partial Anomalous Pulmonary Venous Return

Authors: Not provided in the given data

Year: 2023

Citations: Data not available

DOI: 10.3390/jcm12020472

Chronic Heart Failure in Children: State of the Art and New Perspectives

Authors: Not provided in the given data

Year: 2023

Citations: Data not available

DOI: 10.3390/jcm12072611

Effect of Preoperative Pulmonary Hemodynamic and Cardiopulmonary Bypass on Lung Function in Children with Congenital Heart Disease

Authors: Not provided in the given data

Year: 2023

Citations: Data not available

DOI: 10.1007/s00431-023-04926-0

Hybrid Approach for End-Stage Heart Failure Treatment in a 6-Month-Old Baby

Authors: Not provided in the given data

Year: 2023

Citations: Data not available

DOI: 10.1017/S104795112300046X

Late Left Ventricular Myocardial Remodeling After Pulmonary Artery Banding for End-Stage Dilated Cardiomyopathy in Infants: An Imaging Study

Authors: Not provided in the given data

Year: 2023

Citations: Data not available

DOI: 10.1016/j.ijcard.2023.05.040

Ms. Apurva Singh | Organic Chemistry | Best Researcher Award

Ms. Apurva Singh | Organic Chemistry | Best Researcher Award

Ms. Apurva Singh | Organic Chemistry | PhD at Indian institute of technology Roorkee, India

Apurva Singh is an organic chemistryΒ  with a keen interest in technological advancements and artificial intelligence applications in chemistry. With five years of research experience in academic laboratories and two years as a tutor, she specializes in organic synthesis and catalysis. Currently pursuing her Ph.D. at IIT Roorkee under Prof. Naseem Ahmed, she is engaged in process chemistry, exploring new methodologies using homogeneous and heterogeneous catalysis. Apurva has a strong publication record in international journals, reflecting her expertise and dedication to scientific research. She is highly motivated, analytical, and committed to knowledge exchange. Her enthusiasm for teaching, research, and interdisciplinary collaboration makes her a dynamic professional in the field of chemistry.

Professional Profile :Β 

Orcid

ScopusΒ 

Summary of Suitability for Award:

Apurva Singh is a highly promising researcher in the field of organic synthesis and catalysis, demonstrating a strong commitment to scientific innovation. With five years of research experience at IIT Roorkee, she has contributed significantly to the development of novel catalytic methodologies, particularly in transition-metal catalysis, oxidation reactions, and organo catalysis. Her research has led to multiple publications in high-impact journals, including RSC, Synthesis (Thieme), and Organic & Biomolecular Chemistry, showcasing her ability to conduct impactful studies. Additionally, she has received prestigious poster awards at national and international conferences, underscoring her ability to effectively present and communicate her findings. Given her strong publication record, innovative research contributions, and recognition through awards, Apurva Singh is a highly suitable candidate for the “Best Researcher Award.” Her work in catalysis and organic synthesis, coupled with her dedication to advancing chemical sciences, makes her a deserving nominee for this prestigious recognition.

πŸŽ“Education:

Apurva Singh is currently pursuing her Ph.D. in Organic Synthesis and Catalysis at the Indian Institute of Technology (IIT) Roorkee under the mentorship of Prof. Naseem Ahmed. Her research focuses on developing innovative catalytic methodologies for organic transformations, with publications in reputed journals such as RSC and Synthesis (Thieme). Prior to her Ph.D., she completed her Master of Science (M.Sc.) in Chemistry from Chaudhary Charan Singh University (CCSU), Meerut, in 2017, securing a first-class distinction with 76%. During her postgraduate studies, she gained expertise in organic chemistry and reaction mechanisms, further strengthening her foundation in the subject. Additionally, she pursued a Bachelor of Education (B.Ed.) from CCSU, Meerut, from 2018 to 2020, achieving 80%. Her B.Ed. degree equipped her with essential teaching skills, enhancing her ability to mentor and guide students in the academic field. Apurva’s strong academic background demonstrates her dedication to both research and education.

🏒Work Experience:

Apurva Singh has over five years of research experience in organic chemistry, specializing in catalysis, and two years of teaching experience. She is currently a Ph.D. researcher at IIT Roorkee, working on process chemistry, where she investigates novel catalytic methodologies for organic synthesis. Her research involves designing transition-metal complexes for oxidation reactions and developing regio selective synthetic strategies. She has published multiple research articles in internationally recognized journals, highlighting her contributions to the field. Apart from research, she has two years of experience as an academic tutor, mentoring undergraduate and postgraduate students in organic chemistry. She has assisted in research activities, manuscript writing, and conference presentations. Her expertise extends to coding for computational chemistry applications, bridging experimental and theoretical approaches. Apurva’s proactive nature and strong communication skills enable her to collaborate effectively, making significant contributions to both research and academic training.

πŸ…Awards:Β 

Apurva Singh has received multiple accolades for her outstanding research contributions. In 2024, she was awarded the Poster Award at the Indian Academy of Sciences Meeting and Lecture Workshop held at IIT Roorkee, recognizing her innovative work in catalysis and organic synthesis. In the same year, she won another Poster Award at the 2nd International Conference on Molecules to Materials at NIT Hamirpur, further establishing her expertise in the field. These awards highlight her ability to present complex scientific findings effectively and her dedication to advancing research. Her work has been widely appreciated for its significance in developing new catalytic methodologies, and she continues to be an active participant in scientific conferences and symposiums. Apurva’s achievements reflect her commitment to excellence in research and academia, positioning her as a promising scientist in the field of organic chemistry.

πŸ”¬Research Focus:

Apurva Singh’s research focuses on organic synthesis and catalysis, with a strong emphasis on developing novel transition-metal complexes for oxidation reactions. She explores homogeneous and heterogeneous catalysis to improve reaction efficiency and selectivity, mimicking enzymatic processes for sustainable chemistry. Her work includes the design of ΞΌ-chlorido-bridged dimanganese(II) complexes to replicate galactose oxidase enzyme activity, offering applications in oxidation and aldol reactions. She is also engaged in Fenton free radical reactions for regio selective synthesis of complex molecules. Her recent studies on organocatalytic synthesis of bioactive pyrazoline and pyrimidine derivatives contribute to medicinal chemistry by targeting bacterial enzymes like thymidine kinase in Staphylococcus aureus. Apurva is particularly interested in the intersection of chemistry and artificial intelligence, leveraging computational tools to predict reaction mechanisms and optimize catalyst design. Her multidisciplinary approach bridges fundamental chemistry with emerging technologies, driving innovation in organic synthesis and process chemistry.

Publication Top Notes:

1. Nickel(II)-hydrazineylpyridine catalyzed regioselective synthesis of Ξ±-benzyl substituted Ξ²-hydroxy ketones via a Fenton free radical reaction

Authors: Not provided in the given data

Year: 2025

Journal: Organic & Biomolecular Chemistry

2. Oxidative Cyclization Reactions Catalyzed by Designed Transition-Metal Complexes: A New Strategy for the Synthesis of Flavone, Quinolone, and Benzofuran Derivatives

Authors: Not provided in the given data

Year: 2023

Journal: Synthesis

3. Designed ΞΌ-Chlorido-bridged dimanganese(II) complexes to mimic the activity of galactose oxidase enzyme: Application in the dehydrogenative oxidation of alcohol and aldol reaction

Authors: Not provided in the given data

4. Organocatalytic synthesis of novel pyrazoline and pyrimidine derivatives as potent thymidine kinase inhibitors targeting Staphylococcus aureus

Authors: M.I. Issa Alahmdi

Year: 2025

 

 

Dr. samira abozeid | Inorganic Chemistry Award | Best Researcher Award

Dr. samira abozeid | Inorganic Chemistry Award | Best Researcher Award

Dr. samira abozeid,mansoura university,Egypt

Dr. Samira Abozeid is a dedicated Lecturer and Assistant Professor in the Chemistry Department at Mansoura University, Egypt. With a strong academic background, she earned her Ph.D. in Chemistry from the State University of New York at Buffalo, complemented by an MSc and BSc from Mansoura University. Dr. Abozeid specializes in synthesizing metal complexes for applications in MRI contrast agents and drug delivery systems using innovative nanotechnology. Her commitment to academic excellence is evident through her extensive research contributions, collaborative efforts, and participation in various national and international projects. Additionally, she has been recognized with several awards for her outstanding research and teaching, showcasing her dedication to advancing the field of chemistry and contributing to educational initiatives.

Professional Profile:

Google Scholar

Scopus

Orcid

Summary of Suitability for Award:

Dr. Samira Mohammed Abozeid exemplifies the qualities and achievements that make her a suitable candidate for the “Best Researcher Award.” With a Ph.D. in Chemistry from the State University of New York at Buffalo, she has made significant contributions to the field, particularly in synthesizing metal complexes for MRI contrast agents and drug delivery systems. Her publication record, which includes 18 articles in high-impact journals, underscores her prolific research output and the relevance of her work in advancing medical applications of chemistry.

πŸŽ“Education:

Dr. Samira Abozeid holds an impressive academic portfolio. She completed her Bachelor’s and Master’s degrees in Chemistry at Mansoura University, Egypt, where she developed a solid foundation in chemical sciences. Dr. Abozeid then pursued her Ph.D. at the State University of New York at Buffalo, specializing in the synthesis of metal complexes and their applications in medical imaging and drug delivery. Her doctoral research significantly contributed to the understanding of MRI contrast agents, showcasing her capability to conduct high-level research. Throughout her academic journey, she has maintained a focus on integrating theoretical knowledge with practical applications, which has enriched her teaching methodologies and research approach. Dr. Abozeid’s education has equipped her with the skills to excel in both academia and research, fostering a commitment to innovation in chemistry.

🏒Work Experience:

Dr. Samira Abozeid has garnered extensive experience in academia and research throughout her career. Currently serving as a Lecturer and Assistant Professor at both Mansoura University and New Mansoura University, she plays a pivotal role in educating and mentoring students in chemistry. Dr. Abozeid has completed three significant research projects focused on the synthesis and characterization of metal complexes for MRI applications and drug delivery systems. With 18 published articles in esteemed journals and a citation index reflecting her impactful research contributions, she has established herself as a leading figure in her field. Furthermore, she has engaged in consultancy projects related to chemistry and has participated in multiple collaborative research efforts, both nationally and internationally, which have enriched her research perspective and facilitated knowledge exchange. Dr. Abozeid’s commitment to research excellence is complemented by her active involvement in professional memberships and initiatives aimed at bridging academic research with industry applications.

πŸ…Awards:

Dr. Samira Abozeid has received several prestigious awards and recognitions throughout her academic career. Among her notable accolades is the Egyptian Government Scholarship, which allowed her to pursue her studies at the State University of New York at Buffalo from 2016 to 2018. Additionally, she was honored with the James T. Grey, Jr. Fellowship in Summer 2020, which acknowledges outstanding research contributions. Dr. Abozeid also received the Mattern-Tyler Teaching Award and the Speyer Fellowship in Fall 2020, reflecting her excellence in both teaching and research. In 2023, she was awarded a competitively funded research project at Mansoura University, highlighting her commitment to advancing scientific knowledge. Furthermore, she has been recognized for delivering the Best Specialized Lecture at multiple conferences, showcasing her ability to communicate complex scientific ideas effectively. These honors underline her significant contributions to the field of chemistry and her dedication to academic excellence.

πŸ”¬Research Focus:

Dr. Samira Abozeid’s research focuses primarily on the synthesis and application of metal complexes, particularly in the development of MRI contrast agents and drug delivery systems. Her innovative approach involves utilizing nanoparticles and liposomes to enhance the effectiveness and biocompatibility of these complexes. Dr. Abozeid’s work emphasizes the importance of transition metal complexes in medical applications, providing novel insights into their structural properties and potential therapeutic uses. Her ongoing projects include the development of more effective and safer MRI probes, which can significantly improve diagnostic imaging capabilities. Additionally, she collaborates with national and international research groups to explore energy-related applications of metal complexes. Through her research, Dr. Abozeid aims to bridge the gap between chemistry and medicine, contributing to advancements in nanotechnology and its practical implications for healthcare. Her commitment to innovation and excellence continues to shape her contributions to the scientific community.

Publication Top Notes:

  • Two New Inner-Sphere Pt(II) Thiosemicarbazone Schiff Base Complexes Immobilized into Magnetic Nanoparticles: Synthesis, Characterization, and Biological Investigations
  • A Novel Fluorescent Probe Based Imprinted Polymer-Coated Magnetite for the Detection of Imatinib Leukemia Anti-Cancer Drug Traces in Human Plasma Samples
  • Fe(III) T1 MRI Probes Containing Phenolate or Hydroxypyridine-Appended Triamine Chelates and a Coordination Site for Bound Water
    • Citations: 5 citations.
  • Co(II) Complexes of Tetraazamacrocycles Appended with Amide or Hydroxypropyl Groups as ParaCEST Agents
    • Citations: 3 citations.
  • Comparison of Phosphonate, Hydroxypropyl and Carboxylate Pendants in Fe(III) Macrocyclic Complexes as MRI Contrast Agents
    • Citations: 18 citations.

 

 

 

 

Kazuaki Iahihara | Chemistry and Materials Science | Best Researcher Award Nagoya University

Prof Dr Kazuaki Iahihara | Chemistry and Materials Science | Best Researcher Award

Β Graduate School of Engineering of Nagoya University, Japan

πŸŽ“ Prof. Dr. Kazuaki Ishihara was born on April 26, 1963, in Aichi Prefecture, Japan. He completed his Bachelor’s, Master’s, and Doctorate in Engineering at Nagoya University under the supervision of Professor Hisashi Yamamoto. 🌏 He was a visiting scholar at the University of California, Berkeley, in 1987, and a postdoctoral fellow at Harvard University under Professor E. J. Corey from 1991 to 1992. Since 2002, he has been a full professor at Nagoya University’s Department of Biotechnology. πŸ… Prof. Ishihara’s work has earned him numerous accolades, including the JSPS Prize, the IBM Science Prize, and the Chemistry Leader Award 2023. His research focuses on developing catalytic organic reactions for green chemistry, with significant contributions in designing chiral BrΓΈnsted acid–Lewis acid combined catalysts, superacids, and hypervalent iodine catalysts. πŸ§ͺ He has published 289 original papers, 139 review articles, and holds 87 patents. Additionally, Prof. Ishihara is actively involved in editorial roles for several scientific journals, including the Asian Journal of Organic Chemistry.

Professional Profile:

Education

πŸŽ“ Prof. Dr. Kazuaki Ishihara completed his entire higher education at Nagoya University in Japan. He earned his Bachelor of Engineering degree (1982-1986), followed by a Master of Engineering (1986-1988), and finally a Doctor of Engineering (1988-1991), all under the supervision of Professor Hisashi Yamamoto. 🌏 During his doctoral studies, he was a visiting scholar for three months in 1987 at the University of California, Berkeley, under Professor Clayton H. Heathcock. His doctoral thesis was titled “Studies on Stereoselective Reactions of Acetals.”

 

Professional Experience

 

🏒 Prof. Dr. Kazuaki Ishihara began his professional career as a Postdoctoral Fellow at Harvard University under Professor E. J. Corey from 1991 to 1992. He then returned to Nagoya University, where he served as an Assistant Professor in the Department of Applied Chemistry (1992-1994) and later in the Department of Biotechnology (1994-1997). πŸ§ͺ He was promoted to Associate Professor at the Research Center of Waste and Emission Management (1997-2001) and subsequently in the Department of Biotechnology (2001-2002). Since 2002, he has held the position of Full Professor in the Department of Biotechnology, Graduate School of Engineering at Nagoya University. Throughout his career, Prof. Ishihara has made significant contributions to the field of green chemistry and the design of innovative catalysts.

Research Interest

πŸ”¬ Prof. Dr. Kazuaki Ishihara has dedicated his research to the advancement of catalytic organic reactions and processes with a strong emphasis on green chemistry. His work spans several key areas, including the design of chiral BrΓΈnsted acid–Lewis acid combined catalysts, superacids, and hypervalent iodine catalysts. πŸ§ͺ He has also focused on developing dehydrative condensation catalysts, artificial cyclases for synthesizing optically active polycyclic terpenoids, and recoverable and reusable catalysts. 🧬 Since 2009, his research has extended to supramolecular acid–base combined catalysts. Prof. Ishihara’s innovative contributions aim to create environmentally benign synthetic methods, enhancing the sustainability and efficiency of chemical processes.

Award and Honor

πŸ† Prof. Dr. Kazuaki Ishihara has received numerous prestigious awards and honors throughout his illustrious career. Early in his career, he was awarded the JSPS Fellowship for Japanese Junior Scientists (1988-1991) and the Yamada Science Foundation Fellowship for Studying Abroad (1991-1992). πŸ₯‡ His groundbreaking research earned him the 10th Inoue Research Award for Young Scientists (1994) and the 45th Young Chemist Award from the Chemical Society of Japan (1996). He has also been honored with the 21st Japan IBM Science Prize (2007), the 27th Inoue Prize for Science (2011), and the Chemistry Leader Award 2023. πŸ“œ Other notable accolades include multiple Asian Core Program Lectureship Awards, the SSOCJ Daiichi-Sankyo Award for Medicinal Organic Chemistry (2012), the Yazaki Academic Award (2013), and the CSJ Award (2017). 🌟 Prof. Ishihara’s commitment to green chemistry and innovative catalyst design has cemented his reputation as a leading figure in his field, earning him fellowships and awards from esteemed organizations worldwide.

 

Research Skills

 

πŸ§‘β€πŸ”¬ 🧬 Prof. Dr. Kazuaki Ishihara is renowned for his exceptional research skills in the field of organic chemistry, particularly in developing innovative catalytic processes. He excels in the design and synthesis of chiral BrΓΈnsted acid–Lewis acid combined catalysts, superacids, and hypervalent iodine catalysts. πŸ§ͺ His expertise extends to creating dehydrative condensation catalysts and artificial cyclases for the synthesis of optically active polycyclic terpenoids. 🧬 Prof. Ishihara is adept at designing recoverable and reusable catalysts, as well as supramolecular acid–base combined catalysts. His comprehensive approach to research, which emphasizes environmental sustainability, has led to significant advancements in green chemistry and the development of efficient, eco-friendly synthetic methods.

Publications

  • Asymmetric direct aldol reaction assisted by water and a proline‐derived tetrazole catalyst
    πŸ§‘β€πŸ”¬ H Torii, M Nakadai, K Ishihara, S Saito, H Yamamoto
    πŸ“° Angewandte Chemie International Edition 43 (15), 1983-1986
    πŸ“… 2004
    πŸ”’ 674 citations
  • 3, 4, 5-Trifluorobenzeneboronic acid as an extremely active amidation catalyst
    πŸ§‘β€πŸ”¬ K Ishihara, S Ohara, H Yamamoto
    πŸ“° The Journal of Organic Chemistry 61 (13), 4196-4197
    πŸ“… 1996
    πŸ”’ 584 citations
  • Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides
    πŸ§‘β€πŸ”¬ K Ishihara, M Kubota, H Kurihara, H Yamamoto
    πŸ“° The Journal of Organic Chemistry 61 (14), 4560-4567
    πŸ“… 1996
    πŸ”’ 539 citations
  • Enantioselective Kita oxidative spirolactonization catalyzed by in situ generated chiral hypervalent iodine (III) species
    πŸ§‘β€πŸ”¬ M Uyanik, T Yasui, K Ishihara
    πŸ“° Angewandte Chemie International Edition 12 (49), 2175-2177
    πŸ“… 2010
    πŸ”’ 487 citations
  • Quaternary ammonium (hypo) iodite catalysis for enantioselective oxidative cycloetherification
    πŸ§‘β€πŸ”¬ M Uyanik, H Okamoto, T Yasui, K Ishihara
    πŸ“° Science 328 (5984), 1376-1379
    πŸ“… 2010
    πŸ”’ 448 citations
  • Enantioselective halocyclization of polyprenoids induced by nucleophilic phosphoramidites
    πŸ§‘β€πŸ”¬ A Sakakura, A Ukai, K Ishihara
    πŸ“° Nature 445 (7130), 900-903
    πŸ“… 2007
    πŸ”’ 404 citations
  • Direct condensation of carboxylic acids with alcohols catalyzed by hafnium (IV) salts
    πŸ§‘β€πŸ”¬ K Ishihara, S Ohara, H Yamamoto
    πŸ“° Science 290 (5494), 1140-1142
    πŸ“… 2000
    πŸ”’ 395 citations
  • 2-Iodoxybenzenesulfonic acid as an extremely active catalyst for the selective oxidation of alcohols to aldehydes, ketones, carboxylic acids, and enones with oxone
    πŸ§‘β€πŸ”¬ M Uyanik, M Akakura, K Ishihara
    πŸ“° Journal of the American Chemical Society 131 (1), 251-262
    πŸ“… 2009
    πŸ”’ 370 citations
  • In situ generated (hypo) iodite catalysts for the direct α‐oxyacylation of carbonyl compounds with carboxylic acids
    πŸ§‘β€πŸ”¬ M Uyanik, D Suzuki, T Yasui, K Ishihara
    πŸ“° Angewandte Chemie International Edition 23 (50), 5331-5334
    πŸ“… 2011
    πŸ”’ 369 citations
  • Highly enantioselective catalytic Diels-Alder addition promoted by a chiral bis (oxazoline)-magnesium complex
    πŸ§‘β€πŸ”¬ EJ Corey, K Ishihara
    πŸ“° Tetrahedron Letters 33 (45), 6807-6810
    πŸ“… 1992
    πŸ”’ 368 citations
  • Scandium trifluoromethanesulfonate as an extremely active acylation catalyst
    πŸ§‘β€πŸ”¬ K Ishihara, M Kubota, H Kurihara, H Yamamoto
    πŸ“° Journal of the American Chemical Society 117 (15), 4413-4414
    πŸ“… 1995
    πŸ”’ 329 citations
  • Hypervalent iodine-mediated oxidation of alcohols
    πŸ§‘β€πŸ”¬ M Uyanik, K Ishihara
    πŸ“° Chemical Communications, 2086-2099
    πŸ“… 2009
    πŸ”’ 307 citations
  • A new chiral BLA promoter for asymmetric aza Diels-Alder and Aldol-type reactions of imines
    πŸ§‘β€πŸ”¬ K Ishihara, M Miyata, K Hattori, T Tada, H Yamamoto
    πŸ“° Journal of the American Chemical Society 116 (23), 10520-10524
    πŸ“… 1994
    πŸ”’ 283 citations
  • Widely useful DMAP-catalyzed esterification under auxiliary base-and solvent-free conditions
    πŸ§‘β€πŸ”¬ A Sakakura, K Kawajiri, T Ohkubo, Y Kosugi, K Ishihara
    πŸ“° Journal of the American Chemical Society 129 (47), 14775-14779
    πŸ“… 2007
    πŸ”’ 281 citations
  • Catalysis with in situ‐generated (hypo) iodite ions for oxidative coupling reactions
    πŸ§‘β€πŸ”¬ M Uyanik, K Ishihara
    πŸ“° ChemCatChem 4 (2), 177-185
    πŸ“… 2012
    πŸ”’ 270 citations