Dr. Ji-Wei Ren | Organic Chemistry | Best Researcher Award

Dr. Ji-Wei Ren | Organic Chemistry | Best Researcher Award

Dr. Ji-Wei Ren, Organic Chemistry, Taishan University , China 

Dr. Ji-Wei Ren is a Lecturer in the College of Chemistry and Chemical Engineering at Taishan University, China. He earned his Ph.D. in Chemical Engineering and Technology from Central South University, where he developed expertise in visible light catalysis, organo catalysis, and green synthesis. Dr. Ren has previously served as a Research Associate at Ningbo University’s Institute of Drug Discovery Technology, engaging in interdisciplinary research on biomimetic reducing agents and chiral resolution. With a strong foundation in heterocyclic construction and peptide synthesis, his work integrates sustainable and biomimetic chemistry with modern synthetic methodologies. Dr. Ren has published multiple high-impact research articles in leading journals such as Org. Lett., J. Org. Chem., and Org. Chem. Front.. His research is characterized by innovation, precision, and relevance to both pharmaceutical and materials chemistry. He actively contributes to academic platforms like ORCID and collaborates with renowned scientists across China.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Ji-Wei Ren exemplifies the qualities of an outstanding researcher through his pioneering work in the field of organic synthesis, particularly in visible light catalysis, organocatalysis, and green chemistry. He has published over 11 peer-reviewed articles in top-tier journals such as Organic Chemistry Frontiers, Journal of Organic Chemistry, Organic Letters, and Chemistry – A European Journal. Several of his works have been highlighted by Synfacts, showcasing their novelty and scientific impact. His innovative contributions include the development of racemization-free synthesis protocols, the application of biomimetic reducing agents, and the design of sustainable methodologies for heterocycle and peptide construction. He brings a fresh perspective to traditional synthetic methods by incorporating visible light and bio-inspired techniques, addressing both the efficiency and environmental responsibility in chemical synthesis. Dr. Ji-Wei Ren is highly suitable for the “Best Researcher Award”. His significant scientific output, innovation in research, recognition by the international community, and dedication to sustainable chemistry clearly distinguish him as a leading researcher in his field. His commitment to impactful and environmentally conscious science makes him not only an excellent candidate but also a role model for emerging researchers. This award would be a deserving recognition of his ongoing contributions to the scientific world.

🎓Education:

Dr. Ji-Wei Ren completed both his undergraduate and doctoral studies at Central South University. He earned his Bachelor of Engineering in Pharmaceutical Engineering in June 2013, where he gained foundational knowledge in pharmaceutical chemistry, drug design, and synthesis. Subsequently, he pursued a Doctorate in Chemical Engineering and Technology (2013–2019) at the same university. His Ph.D. research focused on innovative synthetic strategies using organo catalysis and visible-light-driven methodologies for the construction of functional molecules, especially in the development of peptide and heterocyclic compounds. Under the mentorship of distinguished faculty, he honed his skills in reaction design, stereoselective synthesis, and catalysis. His academic training also included a deep understanding of biomimetic reactions, green synthesis, and photochemical transformations. This robust educational background laid the groundwork for his interdisciplinary research efforts, enabling him to contribute significantly to the fields of sustainable and asymmetric synthesis.

🏢Work Experience:

Dr. Ji-Wei Ren began his academic career as a Research Associate (2019–2022) at the Institute of Drug Discovery Technology, Ningbo University, where he focused on peptide synthesis and the development of bio-inspired reducing agents. His role involved collaborative projects in pharmaceutical chemistry and catalysis, contributing to the advancement of efficient and eco-friendly synthetic methods. In August 2022, he joined Taishan University as a Lecturer in the College of Chemistry and Chemical Engineering. At Taishan University, Dr. Ren continues his research in visible light catalysis and organocatalytic transformations, guiding students in advanced organic chemistry techniques and experimental methodologies. He has also contributed to curriculum development and interdisciplinary research programs. His teaching and research philosophy is rooted in innovation, sustainability, and student engagement. With over a decade of academic training and research, Dr. Ren combines a strong theoretical foundation with hands-on experience in both industrial and academic labs.

🏅Awards: 

Dr. Ji-Wei Ren has been consistently recognized for his impactful contributions to organic chemistry and green synthesis methodologies. His 2021 publication in Organic Letters was highlighted by Synfacts in 2022 for its innovative racemization-free synthesis approach, underlining the originality and practical importance of his work. Additionally, his earlier work in The Journal of Organic Chemistry (2017) was also spotlighted in Synfacts, reflecting his ongoing excellence in visible light-mediated and organocatalytic transformations. During his doctoral studies at Central South University, he was honored with multiple academic excellence awards for his outstanding research and scholarly dedication. His publications in top-tier journals like Organic Chemistry Frontiers, Organic & Biomolecular Chemistry, and Chemistry – A European Journal have further established him as a rising expert in his field. These recognitions underscore both the scientific value and the practical applicability of his research in modern organic synthesis.

🔬Research Focus:

Dr. Ji-Wei Ren’s research is centered on the development of innovative, environmentally friendly methodologies in organic synthesis. His primary interests lie in visible light catalysis, where he designs photochemical processes to enable mild and selective transformations. He is also deeply involved in chiral resolution and organocatalysis, with a particular emphasis on enantioselective reactions that are crucial for pharmaceutical synthesis. A significant part of his work involves constructing complex heterocyclic compounds, often using biomimetic and green synthesis strategies to reduce environmental impact. Dr. Ren has pioneered the use of L-amino acid esters as biomimetic reducing agents and introduced new deoxygenation and amidation protocols that avoid racemization—critical for peptide and amide bond formation. His interdisciplinary approach blends traditional organic chemistry with sustainability, aiming to create scalable, efficient, and selective processes suitable for industrial application. His contributions significantly enhance both academic understanding and practical implementation in organic synthesis.

Publication Top Notes:

“A visible light-mediated deoxygenation protocol for the synthesis of dipeptides, amides and esters without racemization”

“L-Amino acid ester as a biomimetic reducing agent for the reduction of unsaturated C=C bonds”

“Umpolung Strategy for the One-Pot Synthesis of Highly Steric Bispirooxindoles via the L-Amino Acid Ester-Promoted In Situ Reduction/Nucleophilic Addition/Cyclization Cascade Reaction”

“A visible light-induced deoxygenative amidation protocol for the synthesis of dipeptides and amides”

“An organocatalytic enantioselective ring-reorganization domino sequence of methyleneindolinones with 2-aminomalonates”

“Straightforward Synthesis of 3-Selenocyanato-Substituted Chromones through Electrophilic Selenocyanation of Enaminones under Grinding Conditions”

“Organocatalytic, Enantioselective, Polarity-Matched Ring-Reorganization Domino Sequence Based on the 3-Oxindole Scaffold”

“A One‐Pot Ring‐Opening/Ring‐Closure Sequence for the Synthesis of Polycyclic Spirooxindoles”

“L-Pyroglutamic Sulphonamide as Hydrogen-Bonding Organocatalyst: Enantioselective Diels–Alder Cyclization to Construct Carbazolespirooxindoles”

“Acid-Relayed Organocatalytic exo-Diels-Alder Cycloaddition of Cyclic Enones with 2-Vinyl-1H-indoles”

 

Prof. Behrooz Zargar | Analytical Chemistry | Best Researcher Award

Prof. Behrooz Zargar | Analytical Chemistry | Best Researcher Award

Prof. Behrooz Zargar | Analytical Chemistry | Full Professor in Analytical Chemistry/Researcher/Lecturer at Shahid Chamran University of Ahvaz, Iran 

Prof. Behrooz Zargar is a distinguished Full Professor of Analytical Chemistry at Shahid Chamran University of Ahvaz, Iran, with over two decades of academic and research excellence. His expertise spans electrochemistry, nano-chemistry, solar cells, and environmental remediation. He has published over 60 high-impact research papers and actively collaborates with organizations such as ISO and the Iranian Safety and Environment Committee. As the Founder and Head of the Central Laboratory at Shahid Chamran University, he has played a pivotal role in advancing analytical techniques. His research has contributed significantly to pesticide analysis, mycotoxin detection, and nanomaterial-based pollutant degradation. His commitment to academia is reflected in his editorial appointments, research collaborations, and mentorship of numerous students. With an impressive citation index of 2143, Prof. Zargar’s groundbreaking work has influenced various industrial and environmental sectors, making him a leading figure in analytical and environmental chemistry.

Professional Profile :         

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Behrooz Zargar, a distinguished Professor of Analytical Chemistry at Shahid Chamran University of Ahvaz, has made remarkable contributions to analytical chemistry, particularly in nanotechnology, electrochemistry, and environmental chemistry. With over 60 publications in high-impact journals (SCI, Scopus indexed), a citation index of 2143, and extensive research in solar cells, solid-phase extraction, and photo-degradation, his scientific impact is substantial. His research collaborations, including work with ISO Organization and national standardization committees, demonstrate his leadership in applied scientific advancements. Additionally, his industry projects on food safety and environmental toxin analysis highlight his contributions to public health and sustainability. With a proven track record of pioneering research, industry collaborations, and leadership in analytical chemistry, Prof. Zargar stands as a highly deserving candidate for the “Best Researcher Award.” His groundbreaking research in nano-chemistry and solar cell technology continues to drive innovation, making him an excellent choice for this prestigious recognition.

🎓Education:

Prof. Behrooz Zargar holds a Ph.D. in Analytical Chemistry (2001) from Shahid Chamran University of Ahvaz. He earned his Master’s degree in Analytical Chemistry (1996) from the same institution, building a strong foundation in instrumental analysis and environmental monitoring. His Bachelor’s degree in Applied Chemistry (1992) from Isfahan University of Technology laid the groundwork for his interest in chemical applications for industrial and environmental solutions. Prior to university education, he completed a Diploma in Experimental Sciences, fostering his analytical skills early on. His academic journey reflects a commitment to precision, innovation, and interdisciplinary research. Over the years, he has integrated electrochemical, spectroscopic, and chromatographic techniques into his research, making significant contributions to chemical science. His education has been instrumental in shaping his expertise in nano-chemistry, separation sciences, and environmental remediation, areas where he continues to make impactful discoveries.

🏢Work Experience:

Prof. Zargar’s academic career spans over two decades at Shahid Chamran University of Ahvaz, where he has held various positions. He served as an Assistant Professor (2002-2009), progressing to Associate Professor (2009-2017), and was promoted to Full Professor in 2017. With a Grade 32 ranking, he has contributed extensively to teaching, research, and institutional leadership. He has collaborated with ISO, developed national safety and environmental standards, and played a key role in nanotechnology advancements. His consultancy work has influenced industries by assessing toxic residues in food, environmental contaminants, and industrial pollutants. As the Founder and Head of the Central Laboratory at Shahid Chamran University, he has enhanced research infrastructure, fostering innovation. His experience extends to mentoring Ph.D. and Master’s students, shaping the next generation of chemists. His expertise in solar cells, electroless plating, corrosion, and electrochemical preconcentration has made him a respected figure in analytical and industrial chemistry.

🏅Awards: 

Prof. Behrooz Zargar’s contributions to analytical chemistry and environmental sciences have earned him numerous accolades. He was recognized for 10 years of excellent service to ISO/TC 17/SC 1/ WG 74 in 2025 for his contributions to steel chemical composition analysis. His work in nanotechnology and environmental monitoring has been acknowledged by national and international scientific committees. As a key member of the Iranian Safety and Environment Committee, he has shaped national policies on chemical safety and environmental sustainability. His editorial appointments in high-impact journals further highlight his scholarly influence. His innovative work in photo-degradation, nano-based solid-phase extraction, and pesticide residue analysis has led to several research grants and industrial collaborations. His role in the development of national analytical standards in Khuzestan, Iran, reflects his commitment to advancing chemical safety regulations. Prof. Zargar’s outstanding research contributions and institutional leadership make him a highly esteemed scientist.

🔬Research Focus:

Prof. Zargar’s research spans analytical, environmental, and industrial chemistry, with a strong emphasis on nanotechnology applications. His work in electrochemical preconcentration and separation techniques has improved trace-level detection of contaminants in food and water. His nano-chemistry expertise has advanced solar cell technology, particularly FeS₂/TiO₂-based solar cells. He has pioneered printed-based voltammetric selective electrodes for precise electrochemical analysis. His work in photo-degradation of cyanide ions using nanomaterials has significant environmental implications. He has developed aerogel-based solid-phase extraction methods for efficient pollutant removal. His industrial research includes toxic residue detection in grains, milk, and bread. His collaboration with ISO and the Iranian Nanotechnology Committee has led to the establishment of new safety and environmental guidelines. His research continues to bridge analytical chemistry with environmental sustainability, contributing to the development of safer chemical practices and advanced material applications.

Publication Top Notes:

A nano curcumin–multi-walled carbon nanotube composite as a fluorescence chemosensor for trace determination of celecoxib in serum samples

An effervescence-assisted dispersive liquid–liquid micro-extraction of captopril based on hydrophobic deep eutectic solvent

Citations: 8

Determination of Tetracycline Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Followed by HPLC–UV System​​

Over-oxidized carbon paste electrode modified with pretreated carbon nanofiber for the simultaneous detection of epinephrine and uric acid in the presence of ascorbic acid​​

Dendrimer-modified magnetic nanoparticles as a sorbent in dispersive micro-solid phase extraction for preconcentration of metribuzin in a water sample​​

Synthesis and dye adsorption studies of the {dibromo(1,1′-(1,2-ethanediyl)bis(3-methyl-imidazole-2-thione)dicopper(i)}n polymer and its conversion to CuO nanospheres for photocatalytic and antibacterial applications​​

Adsorption and removal of ametryn using graphene oxide nano-sheets from farm waste water and optimization using response surface methodology​​

Application of vortex-assisted solid-phase extraction for the simultaneous preconcentration of Cd(ii) and Pb(ii) by nano clinoptilolite modified with 5(p-dimethylaminobenzylidene) rhodanine​​

Metal oxide/TiO₂ nanocomposites as efficient adsorbents for relatively high temperature H₂S removal​​

Novel magnetic hollow zein nanoparticles for preconcentration of chlorpyrifos from water and soil samples prior to analysis via high-performance liquid chromatography (HPLC)

**Synthesis of an ion-imprinted sorbent by surface imprinting of magnetized carbon nanotubes for determination

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | SCIENTIFIC OFFICER/H at NATIONAL CENTER FOR COMPOSITIONAL CHARACTERISATION OF MATERIALS,  India

Shekhar Raparthi is a Scientific Officer / H at the National Centre for Compositional Characterisation of Materials (NCCCM), BARC, Hyderabad. With over three decades of expertise in analytical chemistry, he specializes in trace and ultra-trace characterization of metals, alloys, and high-purity materials. His pioneering work in glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry has significantly advanced compositional analysis. Holding a Ph.D. in Chemistry from JNTU, Hyderabad (2008), he has published extensively in reputed international journals and served as a peer reviewer. Currently leading the ultra-trace analysis section at NCCCM since 2023, he is an esteemed member of India Society for Mass Spectrometry (ISMAS) and Indian Society of Analytical Science (ISAS). His contributions to spectrometric techniques have practical applications in industrial and nuclear material characterization, making him a respected figure in analytical and green chemistry research.

Professional Profile :         

Scopus  

Summary of Suitability for Award:

Dr. Shekhar Raparthi is a highly accomplished researcher specializing in trace and ultra-trace characterization of materials using mass and spectrometric techniques. With over 32 publications in high-impact journals, an h-index of 14, and 631 citations, he has made significant contributions to analytical chemistry. His pioneering research includes the development of infrared spectroscopic methods, glow discharge quadrupole mass spectrometry (GD-QMS), and novel electrolyte cathode discharge atomic emission spectrometric sources. These innovations have advanced material characterization techniques, benefiting the scientific community and industries dealing with high-purity materials, metals, and alloys. Dr. Raparthi’s extensive research contributions, innovative methodologies, and commitment to advancing analytical chemistry make him an ideal candidate for the “Best Researcher Award.” His work has been recognized through numerous international publications, and his role as the head of the ultra-trace analysis section at NCCCM, BARC, further solidifies his impact in the field.

🎓Education:

Shekhar Raparthi pursued his M.Sc. in Chemistry from the University of Hyderabad in 1993, where he developed a strong foundation in analytical chemistry. Following this, he underwent a one-year orientation program at BARC in 1994, gaining specialized training in advanced compositional characterization techniques. His academic journey culminated in a Ph.D. in Chemistry from Jawaharlal Nehru Technological University (JNTU), Hyderabad, in 2008. His doctoral research focused on the development of advanced mass spectrometric methodologies for the ultra-trace analysis of metals and high-purity materials. Over the years, he has continuously expanded his expertise through research, peer-reviewed publications, and participation in international analytical chemistry conferences. His educational background has been instrumental in his ability to innovate in trace and ultra-trace analysis techniques, making significant contributions to the field of analytical chemistry.

🏢Work Experience:

Shekhar Raparthi began his professional career in 1994 as a Scientific Officer/C at NCCCM, BARC, Hyderabad, specializing in the compositional characterization of various materials. Over the past 30 years, he has developed novel analytical methodologies for metals, alloys, and high-purity materials using mass spectrometric and spectroscopic techniques. His expertise includes glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry, contributing to advancements in trace and ultra-trace analysis. His work has been widely recognized, leading to 32 publications in reputed international journals. Since 2023, he has been heading the ultra-trace analysis section at NCCCM, overseeing critical research in compositional characterization. He is also an active peer reviewer for international journals. With extensive experience in spectrometric techniques, Shekhar Raparthi plays a key role in material characterization for nuclear, industrial, and high-tech applications.

🏅Awards: 

Shekhar Raparthi has received several accolades for his significant contributions to analytical chemistry and mass spectrometry. His infrared spectroscopic method for oxygen quantification in TiCl₄ was widely appreciated in the titanium industry, earning him recognition in the field. His research on glow discharge quadrupole mass spectrometry and matrix volatilization methodologies for ultra-trace characterization of high-purity germanium has been published in top international journals, including Analytical Chemistry. His expertise in trace element analysis has made him a valuable asset to BARC and the Indian scientific community. As a distinguished member of ISMAS and ISAS, he actively contributes to the advancement of analytical sciences in India. While he has not listed specific awards, his impactful research, numerous peer-reviewed publications, and leadership in ultra-trace analysis solidify his reputation as a leading scientist in compositional characterization.

🔬Research Focus:

Shekhar Raparthi’s research revolves around trace and ultra-trace characterization of materials using advanced mass spectrometric and spectroscopic techniques. His work plays a crucial role in ensuring the purity and compositional accuracy of metals, alloys, and high-purity materials. He has pioneered glow discharge quadrupole mass spectrometry (GD-QMS) for detecting impurities at ultra-trace levels. Additionally, his development of matrix volatilization methodologies has enhanced the characterization of high-purity germanium, a material critical in semiconductor and radiation detection applications. His innovations in electrolyte cathode discharge atomic emission spectrometry (ECD-AES) have improved the sensitivity and precision of trace element analysis. His research significantly contributes to nuclear, industrial, and advanced material applications, ensuring high accuracy in material compositional studies. As the head of the ultra-trace analysis section at NCCCM, his expertise in **

Publication Top Notes:

In-situ Ti–Ir and ammonium thiocyanate modifiers for improvement of sensitivity of Sc to sub parts per billion levels and its accurate quantification in coal fly ash and red mud by GFAAS

Hydrophobicity induced graphene oxide based dispersive micro solid phase extraction of strontium from seawater and groundwater prior to GFAAS determination

Direct determination of ultra-trace sodium in reactor secondary coolant waters and other waters by electrolyte cathode discharge atomic emission spectrometry

Citation Count: 1

 

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R ,Inorganic Chemistry, GOVERNMENT POLYTECHNIC COLLEGE, EZHUKONE, KOLLAM, KERALA, India

Dr. Minitha R. is an Associate Professor with over 14 years of teaching and 15 years of research experience in chemistry. She holds an M.Sc., M.Phil., NET, UGC-JRF, and Ph.D. Her expertise spans organic, coordination, supramolecular, and inorganic chemistry. She has served in key academic roles, including NSS Programme Officer and Chief Superintendent of Examinations. A dedicated researcher, Dr. Minitha has guided students and undertaken projects like developing a chemosensor for metal ion detection. She has organized multiple national seminars and actively participates in international conferences and workshops.

Professional Profile :                       

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Minitha R., an accomplished Associate Professor with 15 years of research experience, has significantly contributed to the field of Inorganic Chemistry, particularly in Coordination Chemistry, Supramolecular Chemistry, and Organic Chemistry. With a strong publication record, she has authored several impactful research papers in highly reputed journals, covering diverse topics such as metal complexes, chemosensors, molecular structures, and spectroscopic studies. Dr. Minitha R. is an exceptional candidate for the “Best Researcher Award,” given her proven research excellence, scholarly contributions, and leadership in the scientific community. Her extensive work in metal-based coordination complexes, chemosensors, and supramolecular chemistry, along with her active role in mentoring and academic leadership, makes her a highly deserving nominee.

🎓Education:

Dr. Minitha R. holds a Ph.D. in Chemistry and has qualified for the NET and UGC-JRF. She completed her M.Sc. and M.Phil. in Chemistry, demonstrating academic excellence throughout. Her education provided her with a strong foundation in inorganic chemistry, particularly in complex synthesis, supramolecular interactions, and chemosensing applications. Her academic journey was driven by a passion for molecular recognition, ligand design, and structural chemistry. She has actively participated in seminars and workshops to enhance her knowledge and keep up with evolving research trends.

🏢Work Experience:

With 14 years of teaching and 15 years of research experience, Dr. Minitha R. has handled Organic, Inorganic, and Physical Chemistry courses. She has successfully guided research scholars, fostering innovations in supramolecular and coordination chemistry. Apart from teaching, she has played key roles as an NSS Programme Officer, Nature Club Coordinator, Chief Superintendent of Examinations, and Young Innovators Programme Facilitator. She has also organized national seminars and workshops on emerging trends in chemistry, enhancing academic collaboration and knowledge dissemination.

🏅Awards: 

Dr. Minitha R. has been recognized for her outstanding contributions to academia and research. She served as the NSS Programme Officer (2021-2022), demonstrating her commitment to student welfare and community service. As the Nature Club Coordinator (2019-2020), she played a crucial role in promoting environmental awareness. Her leadership extended to being the Chief Superintendent of Examinations (2020-2021), ensuring smooth academic assessments. Additionally, she facilitated the Young Innovators Programme (2019), fostering creativity and scientific curiosity among students. Her research endeavors were supported by a KSCSTE-funded M.Sc. student project, where she developed a chemosensor for metal ion detection. These roles reflect her dedication to education, research, and institutional development.

🔬Research Focus:

Dr. Minitha R. specializes in Inorganic Chemistry, with a keen interest in Organic Chemistry, Coordination Chemistry, and Supramolecular Chemistry. Her research explores the synthesis and characterization of novel metal complexes, particularly those with biological and chemosensory applications. She has contributed significantly to the development of pyrazolylhydrazone-based metal complexes, dioxo molybdenum(VI) compounds, and benzothiazolium salts. Her work also extends to fluorescent hydrazones and ruthenium(II) complexes, emphasizing their structural and functional properties. Additionally, her studies on five-coordinate Zn(II) complexes highlight their potential in nonlinear optical applications. Through her research, she aims to bridge the gap between fundamental chemistry and real-world applications, particularly in materials science, catalysis, and medicinal chemistry.

Publication Top Notes:

Formation of dicyano ruthenium(II) complex mediated by triethylamine via deprotonation of hydrazonochroman-2,4-dione
Synthesis, spectroscopic and biological studies of metal complexes of an ONO donor pyrazolylhydrazone – Crystal structure of ligand and Co(II) complex
Studies of some dioxo molybdenum(VI) complexes of a polydentate ligand
One pot synthesis of 1–(3–methyl–4H–benzo[1,4]thiazin–2–yl)-ethanone and its antimicrobial properties
 Synthesis, spectral, and magnetic studies of benzothiazolium tetrachlorocuprate salts: crystal structure and semiconducting behavior of bis[2-(4-methoxyphenyl)benzothiazolium] tetrachlorocuprate(II)
Fluorescent coumarin-based hydrazone: Synthesis, crystal structure, and spectroscopic studies
FT-IR, FT-Raman and computational study of 1H-2,2-dimethyl-3H-phenothiazin-4[10H]-one
Synthesis, crystal structure, spectral analysis, and NLO studies of five-coordinate Zn(II) complexes of hydrazochromandione
 Chemosensing study of 1,4-Benzothiazine generated from acetylacetone

 

Mr. Lei Mou | Analytical Chemistry Award | Young Scientist Award

Mr. Lei Mou | Analytical Chemistry Award | Young Scientist Award

Mr. Lei Mou ,Guangzhou Medical University, China

Lei Mou is a Research Associate at the Terasaki Institute for Biomedical Innovation, Los Angeles, specializing in biosensors, wearable devices, and organ-on-a-chip technology. With a robust background in biomedical engineering and materials science, Lei completed a Ph.D. from the National Center for Nanoscience and Technology (NCNST) under Prof. Xingyu Jiang. His work integrates advanced microfluidic and biosensor platforms aimed at enhancing clinical diagnostics and wearable health monitoring. With extensive research and technical skills, he has contributed to innovative approaches in immunoassay technology, HPV detection, and biosignal computing. Lei’s contributions to nanobiotechnology are also reflected in his numerous patents, high-impact publications, and presentations at international conferences.

Professional Profile:

Google Scholar

Summary of Suitability for Award:

Lei Mou demonstrates strong potential for the “Young Scientist Award,” with impressive accomplishments in biomedical engineering, especially in clinical biosensors, wearable devices, and organs-on-a-chip technology. His academic foundation is rooted in a Ph.D. from the Chinese Academy of Sciences, where he specialized in biomaterials and point-of-care diagnostic platforms, laying a solid groundwork for his current innovative research.

🎓Education:

Lei Mou earned his Ph.D. in Biomedical Engineering from the National Center for Nanoscience and Technology, Chinese Academy of Sciences (2016-2020), where he researched biosensors and microfluidic devices under Prof. Xingyu Jiang’s mentorship. His undergraduate studies in Materials Science and Engineering were completed at the University of Science and Technology Beijing (USTB) in 2016, as part of the Excellent Engineer Training Program. Here, he laid the foundation for his expertise in nanomaterials and engineering design, achieving numerous accolades for academic excellence. Lei’s educational path has emphasized interdisciplinary research, equipping him with a skill set to bridge materials science, biomedical engineering, and clinical applications effectively.

🏢Work Experience:

Lei Mou is currently a Research Associate at the Terasaki Institute for Biomedical Innovation (TIBI), where he focuses on the development of organ-on-a-chip systems and advanced biosensors. Prior to this, he was a Researcher at the Third Affiliated Hospital of Guangzhou Medical University, where he specialized in clinical biosensors and wearable device technology. Lei’s professional experience has enabled him to develop high-sensitivity immunoassay platforms and contribute to significant projects in health-related microfluidic applications. His work bridges clinical settings and advanced engineering, bringing laboratory innovations closer to real-world applications.

🏅Awards:

Lei Mou has earned numerous awards for his academic and research excellence, including the Director’s Scholarship at NCNST and the First Class Scholarship for Master’s Students, recognizing him as a top 3% student. During his undergraduate studies, he received the prestigious 86 Alumni Scholarship, the National Scholarship from China’s Ministry of Education, and the Beijing Outstanding Graduates Award. His achievements reflect his commitment to excellence and innovation in his field, with honors that highlight his performance and contributions to biomedical engineering and materials science.

🔬Research Focus:

Lei Mou’s research focuses on microfluidic immunoassays, wearable biosensors, and organs-on-a-chip technologies. He specializes in integrating nanotechnology with biomedical engineering to develop advanced diagnostic tools for healthcare. His work includes creating chemiluminescence immunoassay platforms that amplify biomarker signals using gold nanoparticles, as well as developing portable devices for detecting high-risk HPV strains. His research has significant implications for personalized medicine and remote diagnostics, aiming to improve accessibility and precision in clinical diagnostics and healthcare monitoring.

Publication Top Notes:

  • Surface chemistry of gold nanoparticles for health-related applications
    • Citations: 277
  • Microfluidics‐based biomaterials and biodevices
    • Citations: 183
  • Materials for microfluidic immunoassays: a review
    • Citations: 154
  • Printable metal-polymer conductors for highly stretchable bio-devices
    • Citations: 130
  • Highly stretchable and biocompatible liquid metal‐elastomer conductors for self‐healing electronics
    • Citations: 109

 

 

 

 

Bienvenu Mbanga | Chemistry | Environmental Chemistry Award

Dr. Bienvenu Mbanga | Chemistry | Environmental Chemistry Award

Doctorate at Nelson Mandela university, South Africa

Bienvenu Mbanga is a dynamic and driven professional with a PhD in Chemistry from the University of Johannesburg. He is recognized for his expertise in nanomaterial development, water analysis, and environmental chemistry. His career spans research, teaching, and mentorship roles, showcasing his commitment to advancing scientific knowledge and fostering collaborations within academia and beyond. His interdisciplinary approach underscores his dedication to addressing environmental challenges through innovative research and practical solutions.

Author Metrics

Scopus Profile

ORCID Profile

Google Scholar Profile

Citations: Since 2019, Bienvenu Mbanga’s work has been cited 222 times in scholarly literature, reflecting the impact and reach of his research within the academic community.

h-index: As of 2019 and continuing into the present, Bienvenu Mbanga has an h-index of 7. This metric indicates that he has published at least 7 papers that have each received at least 7 citations.

i10-index: Bienvenu Mbanga’s i10-index, which counts the number of publications with at least 10 citations, remains at 4 since 2019. This metric gives insight into the impact of his research in terms of highly cited publications.

Education

Bienvenu Mbanga’s educational journey is anchored by degrees from the University of Johannesburg, including a PhD in Chemistry (2021), a Masters (2016), a BSc Honours (2014), and a Bachelors in Science (2013) from the University of South Africa. His academic foundation in chemistry and mathematics has been pivotal in deepening his expertise through specialized research and academic pursuits, shaping his career in environmental science and analytical chemistry.

Research Focus

Bienvenu Mbanga’s research is centered on pioneering solutions in environmental sustainability, focusing on the development of nanomaterials for water treatment, analysis of water quality and environmental pollutants, and the application of advanced analytical techniques to environmental samples. His research underscores a commitment to addressing critical environmental challenges through rigorous scientific inquiry and practical applications in pollution control and resource management.

Professional Journey

Bienvenu Mbanga’s professional journey encompasses roles such as a Postdoctoral Fellow at Nelson Mandela University (since 2022), where he conducts innovative research in agricultural waste and wastewater treatment. His prior experiences include teaching and facilitating chemistry at high schools and contributing to research projects as a Research Assistant and Lecturer at the University of Johannesburg. These roles highlight his versatility and dedication to research, education, and community engagement.

Honors & Awards

Bienvenu Mbanga has garnered recognition for his contributions to science and education, including serving as a judge for prestigious scientific competitions, being selected among the 100 Brightest Minds in Africa, and participating in mentorship programs and international seminars. These accolades underscore his influence and impact in the scientific community, reflecting his leadership and commitment to professional development in science and education.

Publications Noted & Contributions

Bienvenu Mbanga’s scholarly contributions are extensive, encompassing significant research findings published in reputable journals and presented at international conferences. His publications focus on nanomaterial synthesis, water chemistry, and environmental sciences, contributing to advancements in scientific knowledge and addressing environmental challenges through innovative methodologies and practical applications.

Estimation of energy demand and carbon emissions for the road transport sector: A case study of Douala, Cameroon

Authors: FD Bissai, BGF Mbanga, CA Mezoue, S Nguiya

Published in: Hybrid Advances, Volume 6, 100187, 2024

Application of Metallic Oxide Coated Carbon Nanoparticles in Adsorption of heavy metals and Reusability for Latent Fingerprint Detection: A Review

Authors: BG Fouda-Mbanga, OP Onotu, CI Olushuyi, YB Nthwane, B Nyoni, …

Published in: Hybrid Advances, 100248, 2024

A comprehensive review of heavy metals (Pb2+, Cd2+, Ni2+) removal from wastewater using low-cost adsorbents and possible revalorisation of spent adsorbents

Authors: YB Nthwane, BG Fouda-Mbanga, M Thwala, K Pillay

Published in: Environmental Technology, 1-17, 2024

The Potential of Agricultural Waste Chars as Low-Cost Adsorbents for Heavy Metal Removal From Water

Authors: B Nyoni, BG Fouda-Mbanga, BM Hlabano-Moyo, YB Nthwane, B Yalala, …

Published in: Biosorption Processes for Heavy Metal Removal, 244-270, 2024

Analysis Driving Factors of Energy Consumption in the Road Transport Sector of the City in Douala, Cameroon

Authors: FD Bissai, BGF Mbanga, CA Mezoue, S Nguiya

Published in: Preprints, 2023

These publications highlight Bienvenu Mbanga’s research interests and contributions, focusing on topics such as energy demand and carbon emissions in road transport, applications of nanomaterials in heavy metal adsorption, and the use of agricultural waste for environmental remediation. His work demonstrates a commitment to addressing environmental challenges and advancing scientific knowledge in these critical areas.

Research Timeline

Bienvenu Mbanga’s research trajectory illustrates a progressive engagement in scientific inquiry, from early roles as a research assistant focusing on soil and plant analysis to his current position as a postdoctoral fellow specializing in agricultural and wastewater treatment. His career path reflects a commitment to excellence in research and an interdisciplinary approach to tackling pressing environmental issues through collaborative and innovative research projects.

Collaborations and Projects

Bienvenu Mbanga has actively collaborated on projects aimed at developing sustainable solutions in water treatment and pollution control, partnering with academic institutions and industry stakeholders. His projects emphasize the application of nanotechnology and advanced analytical techniques to address environmental challenges, contributing significantly to global efforts in environmental sustainability and resource management.

Impact and Innovation

Bienvenu Mbanga’s research has made a profound impact on environmental science and sustainability by innovating in nanomaterial development and water treatment technologies. His work not only addresses current environmental challenges but also lays the groundwork for future innovations in pollution control and sustainable resource management, contributing to global efforts towards a more sustainable and environmentally conscious future.

Mentorship

Bienvenu Mbanga is dedicated to mentoring the next generation of scientists, actively guiding undergraduate and postgraduate students in research methodologies, academic writing, and professional development. His mentorship extends to participation in educational programs aimed at nurturing young talent and fostering a passion for science and environmental stewardship, reflecting his commitment to shaping future leaders in the fields of chemistry and environmental science.

Aayasha Negi | Chemistry | Women Researcher Award

Dr. Aayasha Negi | Chemistry | Women Researcher Award

 Doctorate at IFTM university, India

Dr. Aayasha Negi is currently an Assistant Professor of Chemistry at IFTM University in Moradabad, Uttar Pradesh, India. She holds a Ph.D. in Chemistry from Hemwati Nandan Bahuguna Garhwal University, Uttarakhand, specializing in Nanosciences. Her research primarily focuses on synthesizing nanoparticles using green methods derived from medicinal plants. Dr. Negi is dedicated to advancing the fields of nanotechnology and environmental engineering through her extensive research and academic contributions.

Author Metrics:

Google Scholar Profile

Dr. Aayasha Negi has established a strong presence in the academic community with numerous publications in reputed journals and contributions to book chapters. Her research papers are indexed in well-known databases such as SCI (Science Citation Index), Scopus, and UGC-CARE, showcasing her scholarly impact and recognition in the field of chemistry and nanotechnology.

  • Citations (Since 2019): Dr. Aayasha Negi has accumulated 44 citations since 2019, indicating the number of times her published works have been referenced by other researchers during this period.
  • h-index (Since 2019): The h-index is 4, which means Dr. Negi has published at least 4 papers that have each been cited at least 4 times.
  • i10-index (Since 2019): The i10-index is 0, suggesting that none of her papers since 2019 have received 10 or more citations.

Education:

Dr. Negi completed her education with distinction, starting with a strong academic foundation in Uttarakhand. She earned a Ph.D. in Chemistry from HNB Garhwal University, Uttarakhand, in 2022. Prior to her doctoral studies, she completed her B.Sc. in Physical Sciences and M.Sc. in Chemistry from SGRR PG College and MKP PG College in Dehradun, respectively.

Research Focus:

Dr. Aayasha Negi’s research focuses on the synthesis and application of nanoparticles, particularly using green chemistry approaches involving medicinal plants. Her work includes the evaluation of nanoparticles for antibacterial, antifungal, and photocatalytic properties, as well as their potential in environmental remediation and biomedical applications. She utilizes advanced characterization techniques such as XRD, UV-Visible spectroscopy, SEM, TEM, and DLS to study nanomaterial properties in depth.

Professional Journey:

Dr. Negi’s professional journey began as an Assistant Professor at IFTM University, Moradabad, where she currently teaches and conducts research. Her career is marked by a commitment to teaching and mentoring students while simultaneously contributing significantly to scientific research. She actively participates in international conferences, presenting her work and collaborating with peers to advance knowledge in nanoscience and chemistry.

Honors & Awards:

Throughout her career, Dr. Aayasha Negi has received recognition for her research contributions. Notably, she has won Best Paper Awards at international conferences focused on green chemistry and material characterization. These accolades underscore her impact and leadership in her field.

Publications Noted & Contributions:

Dr. Negi has authored and co-authored numerous research papers published in esteemed journals such as Springer, Elsevier, and Scientific Reports: Nature. Her contributions span various aspects of nanoscience, including nanoparticle synthesis, biomedical applications, environmental remediation, and materials science. Additionally, she has contributed chapters to prestigious books on green materials and nanobiotechnology.

Citrus medica mediated Ag-doped MgO nanocomposites as green adsorbent and its catalytic performance in the rapid treatment of water contaminants

Authors: S Ringwal, A Negi, AS Bartwal, SC Sati

Journal: Nanotechnology for Environmental Engineering

Pages: 1-8

Year: 2024

Zinc Sulphide Nanoparticles as a Bacteriostatic and Invigorated Catalytic Tool for Multiple Dye Degradation: An Approach Towards Environment Remediation

Authors: A Negi, R Gangwar, DS Negi

Book Chapter: Nano-biotechnology for Waste Water Treatment: Theory and Practices

Pages: 303-314

Year: 2022

Development and characterization of fly ash enriched epoxy coatings for corrosion protection in deep sea water

Authors: M Pandey, S Mehtab, MGH Zaidi, A Negi, P Joshi, M Aziz, M Pandey

Journal: Surface and Coatings Technology

Volume: 485

Pages: 130882

Year: 2024

Plant-mediated Z-scheme ZnO/TiO2-NCs for antibacterial potential and dye degradation: experimental and DFT study

Authors: A Negi, S Ringwal, M Pandey, M Taha Yassin

Journal: Scientific Reports

Volume: 14 (1)

Pages: 7955

Year: 2024

Visible light-induced dye degradation potential of green synthesized nanoparticles: an approach toward polluted water treatment

Authors: A Negi, RK Vishwakarma, DS Negi

Book Chapter: Green Approaches in Medicinal Chemistry for Sustainable Drug Design

Pages: 223-231

Year: 2024

Research Timeline:

Over the years, Dr. Negi’s research has evolved from fundamental studies in nanomaterial synthesis to applied research in environmental and biomedical applications. Her timeline includes significant milestones such as attending and presenting at international conferences, publishing impactful research papers, and securing funding for collaborative projects.

Collaborations and Projects:

Dr. Aayasha Negi actively collaborates with researchers nationally and internationally on interdisciplinary projects. Her collaborations focus on integrating nanotechnology with biotechnology and environmental science to develop sustainable solutions. She participates in projects aimed at advancing the understanding and applications of nanoparticles in diverse fields, from water treatment to biomedical therapeutics.

This structured breakdown provides a comprehensive overview of Dr. Aayasha Negi’s academic journey, research contributions, professional achievements, and collaborative endeavors in the field of chemistry and nanotechnology.

Shafiq Ur Rehman | Computational Chemistry | Best Researcher Award

Dr. Shafiq Ur Rehman | Computational Chemistry | Best Researcher Award

Doctorate at School of Science, RMIT University, 124 La Trobe Street, 3001 Melbourne, Victoria, Australia. China

Shafiq Ur Rehman is a dedicated researcher and academic in the field of condensed matter physics and materials science. His extensive education and professional journey have equipped him with a robust knowledge base and a diverse skill set, enabling him to make significant contributions to his field. He has received numerous awards for his academic excellence and research impact and has published extensively in high-impact journals.

Author Metrics

Google Scholar Profile

Shafiq has published numerous research papers, contributing to his impressive citation record and h-index. His work is widely recognized and cited in the scientific community, reflecting the importance and relevance of his research.

Citations: 730

h-index: 14

i10-index: 18

Education

2007.01-2009.01 B.Sc. Physics and Mathematics, University of Peshawar, Pakistan

Shafiq completed his Bachelor of Science in Physics and Mathematics at the University of Peshawar, laying a strong foundation in these core scientific disciplines.

2009.09-2011.04 M.Sc. Physics, Hazara University, Pakistan

He pursued a Master of Science in Physics at Hazara University, excelling in his studies and earning a Gold Medal for his outstanding performance.

2011.09-2014.01 M.Phil. Physics, Hazara University, Pakistan

Continuing at Hazara University, Shafiq completed his M.Phil. in Physics, engaging in focused research and further developing his expertise.

2014.09-2018.11 Ph.D. Condensed Matter Physics, University of Science and Technology of China (USTC)

Shafiq earned his Ph.D. in Condensed Matter Physics from USTC, where he conducted significant research on advanced functional materials.

Professional Education

Shafiq also holds a Bachelor in Education from Northern University, Pakistan, and completed a Chinese language course at Anhui Normal University, enhancing his teaching skills and language proficiency.

Research Focus

Shafiq’s research interests include the first-principles study of advanced functional materials, the development of new computational methods, the use of machine learning tools to predict new functional materials, and finite element analysis in COMSOL to study device performance and efficiency.

Professional Journey

2018.12-2020.12 Postdoc, Shenzhen University, Shenzhen, China

Shafiq began his professional career as a postdoctoral researcher at Shenzhen University, expanding his research portfolio.

2020.12-2021.12 Research Associate, Southern University of Science and Technology, Shenzhen, China

He then worked as a Research Associate, contributing to various research projects.

2021.12-2022.07 Self-employed, Sypotoelectronic LTD, UK

Shafiq gained industry experience by working as a self-employed researcher with Sypotoelectronic LTD in the UK.

2022.08-Now Scientific Researcher, YDRI-UESTC, Zhejiang, China

Currently, Shafiq is a scientific researcher at the Young Doctor Research Institute of UESTC, where he continues his advanced research in computational materials science and condensed matter physics.

Honors & Awards

Shafiq has received several prestigious awards, including the Chinese Government Scholarship Award, Gold Medal in M.Sc. Physics, Position Holder at the 7th Physical Academic Forum of USTC, Organizing Committee Member Award from Physics USA Leadership Committee, Best Reviewer Award from IOP Society, Best Presenter Award at UK-Canada Joint Symposium, and Research Associate Title Award from Zhejiang Province.

Publications Noted & Contributions

Shafiq has published extensively in high-impact journals. His notable publications include studies on photocatalytic potential, in-plane heterostructures, computational insight of anode materials, and enhanced optoelectronic properties. His work has significantly contributed to the understanding and development of advanced functional materials and computational methods.

The Structural Stabilities and Band Gap Engineering of Core-Shell Nanowires

Authors: L. Zhu, S.U. Rehman, L. Zhang, S. Wu, Y. Xie, X. Wang

Source: IOP Conference Series: Materials Science and Engineering, Vol. 490, Issue 2, 022021, 2019

Citations: 1

In-plane Heterostructures of Transition Metal Dichalcogenide Monolayers with Enhanced Charge Separation and Effective Overall Water Splitting

Author: S.U. Rehman

Source: International Journal of Hydrogen Energy, Vol. 80, pp. 280–288, 2024

High-throughput First Principles Screening of Transition Metal Dichalcogenides Monolayers for Overall Water Splitting and Photo-corrosion Inhibition

Authors: S.U. Rehman, J.W. Wang, N. Mahmood, J. Xian

Year: 2023

Ultralight FeSiAl Micro-flake Flying with Propylene to Favor Fast Growth of Carbon Nanotube Arrays at 99% High-efficient Conversion

Authors: X. Fu, D. Zou, G. Chen, X. He, S.U. Rehman, N. Wang, Y. Liu, X. Jian

Source: Journal of Alloys and Compounds, Vol. 960, 171057, 2023

Core/Shell Nanowires

Authors: S.U. Rehman, Z.Y. Li, H.M. Li, Z.J. Ding

Source: Physica B: Physics of Condensed Matter, 2017

Multi-Junction Photocatalyst of TiO2@C@G-C3N4 for the Degradation of Formaldehyde and Methyl Orange

Authors: X. Jian, S.U. Rehman, R. Jonathan, F. Cao, X. Ma, J. Wang, Y. Liu

Research Timeline

Shafiq’s research timeline highlights his consistent contributions to the field of condensed matter physics and materials science, from his early academic pursuits to his current role as a scientific researcher. His work has evolved from foundational studies to advanced computational research, reflecting his growth and expertise in the field.

Collaborations and Projects

Shafiq has actively collaborated with various academic and research institutions, contributing to numerous projects in condensed matter physics and materials science. His collaborative efforts have resulted in significant advancements in his field and have fostered a productive exchange of knowledge and expertise.

Teaching Interest

Shafiq is passionate about teaching and has a strong interest in subjects such as Computational Material Science, Solid State Physics, Quantum Physics, Introduction to First Principles Methods, and Introduction to Python and Machine Learning. He is dedicated to sharing his knowledge and inspiring the next generation of scientists.