Assoc. Prof. Dr. Dongmei Wang | Inorganic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Dongmei Wang | Inorganic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Dongmei Wang , Inorganic Chemistry , Associate professor at Zhejiang Normal University, China 

Dr. Dongmei Wang is an accomplished researcher and academic in the field of materials chemistry. She earned her Ph.D. from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry, Jilin University in 2016. Following her graduation, she joined the College of Chemistry and Materials Sciences at Zhejiang Normal University. In recognition of her academic contributions, she was promoted to Associate Professor and Master Supervisor in 2020. Dr. Wang has led several funded research projects, including those supported by the National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang Province. Her scholarly output includes over 30 papers published in SCI-indexed journals. Her primary research interests lie in the synthesis and assembly of porous metal-organic frameworks (MOFs), particularly for applications in gas adsorption and separation. With a growing reputation in her field, Dr. Wang continues to contribute meaningfully to both fundamental research and applied science.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Dongmei Wang is a highly qualified and emerging researcher in the field of inorganic chemistry and materials chemistry, with a focused specialization in metal-organic frameworks (MOFs) and their application in gas adsorption and separation. Her academic journey began with a Ph.D. from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry, Jilin University, a nationally recognized center of excellence. Since joining Zhejiang Normal University in 2016, she has demonstrated rapid academic growth, attaining the position of Associate Professor and Master’s Supervisor by 2020. In conclusion, Dr. Dongmei Wang possesses the essential qualifications, research accomplishments, and societal relevance to be considered a strong candidate for the “Best Researcher Award.” Her early-career recognition through competitive grants, publication record, and rapid academic promotion all point to a dynamic and impactful scientific career. She is particularly suitable for this award in the emerging researcher or mid-career scientist category, and her contributions to environmentally significant applications further enhance her case.

🎓Education:

Dr. Dongmei Wang received her doctoral degree in 2016 from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry at Jilin University, one of China’s premier research institutions in the chemical sciences. Her Ph.D. work focused on the synthesis, design, and functionality of advanced inorganic and coordination materials. During her doctoral studies, she received rigorous training in the field of inorganic chemistry, especially in the design of metal-organic frameworks (MOFs) with controlled porosity and tailored functionalities. Her academic journey laid a solid foundation for her current research on porous materials and their environmental applications. Prior to her doctoral studies, she completed her undergraduate and possibly master’s studies (not specified) in related disciplines, which cultivated her passion for materials science. The comprehensive academic training she received equipped her with the theoretical knowledge and experimental skills necessary for her current research and teaching roles.

🏢Work Experience:

Dr. Dongmei Wang began her professional academic career in 2016 when she joined the College of Chemistry and Materials Sciences at Zhejiang Normal University as a faculty member. Within just four years, in 2020, she was promoted to the position of Associate Professor and Master Supervisor, acknowledging her contributions to both research and mentorship. At Zhejiang Normal University, she is actively involved in teaching undergraduate and postgraduate courses, supervising graduate students, and conducting independent research in materials chemistry. She has taken a leading role in managing research projects funded by both national and provincial foundations. Her expertise in metal-organic frameworks (MOFs) has positioned her as a recognized scientist in the field of porous materials. Throughout her career, Dr. Wang has demonstrated a commitment to academic excellence, fostering innovation, and mentoring the next generation of scientists. Her academic journey showcases a steady and impactful progression in both research and teaching.

🏅Awards: 

Dr. Dongmei Wang has received several accolades and research grants that underscore her excellence in scientific research and academic leadership. Notably, she has been the principal investigator for a Youth Project of the National Natural Science Foundation of China (NSFC)—a prestigious funding scheme supporting promising early-career scientists. She has also successfully led a project supported by the Natural Science Foundation of Zhejiang Province, highlighting regional recognition of her work. These competitive grants are awarded based on scientific merit and innovation potential, affirming the quality and relevance of her research. While specific honorary titles or awards are not detailed, her rapid promotion to Associate Professor and her role as a Master’s Supervisor by 2020 speak volumes about her scholarly reputation. Her publications in SCI-indexed journals further support her status as an influential researcher in porous materials and MOF chemistry.

🔬Research Focus:

Dr. Dongmei Wang’s research is centered on the design, synthesis, and functionalization of porous metal-organic frameworks (MOFs). These materials, known for their high surface areas, tunable porosity, and chemical versatility, are investigated for various applications under her supervision. A key area of interest in her lab is the application of MOFs in gas adsorption and separation, addressing urgent environmental and industrial challenges such as CO₂ capture, hydrogen storage, and selective gas separation. Her approach involves rational ligand and metal-node design to tailor the structural and adsorption properties of the frameworks. Additionally, Dr. Wang is exploring hybrid materials that combine MOFs with polymers or nanoparticles to improve stability and performance under real-world conditions. Her interdisciplinary research draws upon principles of inorganic chemistry, materials science, and environmental engineering, and aims to contribute to the development of sustainable and high-efficiency gas capture technologies.

Publication Top Notes:

1. Precipitation Conversion Induced Enhancement of Enzyme-Like Activity of Diatomite Supported Ag₂S Nanoparticles for Selective Hg(II) Detection via Colorimetric Signal Amplification

2. In Situ Production of Single-Cell Protein in Microbial Electrochemical Systems via Controlling the Operation and CO₂ Addition

3. Progress of MOFs Composites in the Field of Microwave Absorption

4. Reticular Chemistry Guided Function Customization: A Case Study of Constructing Low-Polarity Channels for Efficient C₃H₆/C₂H₄ Separation

5. Metal-Organic Framework with Polar Pore Surface Designed for Purification of Both Natural Gas and Ethylene

6. Revealing the Iceberg Beneath: A Merge-Net Approach for Designing Multicomponent Reticular Solids

7. Biomimetic Mineralization Synthesis of Tricobalt Tetraoxide/Nitrogen Doped Carbon Skeleton for Enhanced Capacitive Deionization

8. Assembly of Solvent-Incorporated Rod Secondary Building Units to Ultramicroporous Metal-Organic Frameworks for Acetylene Purification

 

 

Prof. Reine NEHME | Analytical Chemistry | Best Researcher Award

Prof. Reine NEHME | Analytical Chemistry | Best Researcher Award

Prof. Reine NEHME, Analytical Chemistry , Head of analytical team at University of Orléans, ICOA UMR7311, France

Prof. Reine Nehmé is a renowned French scientist and Professor of Analytical Sciences at the University of Orléans, where she leads the “Analytical Strategies, Affinities and Bioactives” team at ICOA. With over 15 years of academic and research experience, she specializes in advanced separation techniques, bioanalysis, and microfluidics. She is deeply involved in both teaching and scientific governance—serving on multiple university and national scientific committees. Prof. Nehmé also contributes to scientific advancement as a supervisor of numerous Ph.D. and post-doctoral researchers and by coordinating key national research projects funded by ANR and regional bodies. Her prolific contributions to analytical chemistry are reflected in her numerous publications, particularly in the areas of enzymatic assays, capillary electrophoresis, and bioactive compound analysis. With a strong leadership role in Afsep and her involvement in high-level academic administration, she is recognized as a leading figure in analytical chemistry in France and Europe.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Nehmé holds a Ph.D. in Analytical Chemistry from the University of Montpellier (2008) and an HDR (Accreditation toSupervise Research) from the University of Orléans (2016). Her academic background demonstrates deep expertise and a commitment to high-level scientific scholarship. As a professor and group leader at ICOA, University of Orléans, she leads the “Analytical Strategies, Affinities and Bioactives” team, driving impactful research in analytical sciences, especially in bioanalysis, separative techniques, capillary electrophoresis, microfluidics, and mass spectrometry. Prof. Nehmé is deputy treasurer and a management committee member of the Capillary Electrophoresis Group of Afsep. She holds leadership roles at her university and is actively engaged in curriculum design, evaluation panels, and scientific committees. Prof. Reine Nehmé exemplifies the ideal profile for a “Best Researcher Award”: a high-impact scientist, strategic research leader, dedicated educator, and committed scientific community member. Her strong publication record, funded projects, mentoring, and institutional service collectively highlight her as a trailblazer in analytical chemistry. She fully deserves recognition through such a prestigious award.

🎓Education:

Prof. Reine Nehmé earned her Ph.D. in Analytical Chemistry from the University of Montpellier in 2008, following her Master’s degree (Master 2) in the same field from the same institution in 2005. Demonstrating her continued academic excellence and expertise, she received her Habilitation to Supervise Research (HDR) from the University of Orléans in 2016. This qualification represents the highest academic degree in France and reflects her capacity to independently lead doctoral research and large-scale scientific projects. Her academic training laid a robust foundation in analytical methodologies, chromatographic techniques, and advanced spectroscopy. These qualifications have enabled her to contribute extensively to the development of innovative analytical tools and methods in environmental, biological, and pharmaceutical research. Her educational background not only established her scientific depth but also positioned her to take on leadership and mentoring roles across both academic and research platforms.

🏢Work Experience:

Prof. Nehmé began her academic journey at the University of Orléans in 2008 as a Temporary Teaching and Research Assistant (ATER). She advanced to Associate Professor in 2009 and was promoted to Professor in 2019. Over the years, she has held multiple leadership roles, including Head of the Analytical Chemistry Department and Coordinator of the Professional License program in Chemistry at IUT Chimie d’Orléans. She has been a member of the laboratory’s scientific council since 2017, and also serves on the Commission of Disciplinary Experts. As an active educator, she teaches a range of courses in analytical sciences including electrochemistry, chromatography, mass spectrometry, and microfluidics. In research, she has successfully supervised 6 Ph.D. students (2 ongoing) and multiple post-doctoral and master’s interns. Her contributions extend to national committees such as Afsep’s CE group, where she has served as Deputy Treasurer since 2021.

🏅Awards: 

While specific awards are not explicitly listed, Prof. Reine Nehmé’s honors are evidenced by her numerous leadership and elected roles. She received the Habilitation to Supervise Research (HDR), a distinguished recognition in France for scholarly excellence. Her long-standing position on the scientific council of the ICOA laboratory and as a Commission Expert in disciplinary affairs at the University of Orléans speaks to her academic credibility. She was elected to the Management Committee of the CE group of Afsep in 2017 and appointed as Deputy Treasurer in 2021, underlining national recognition by her peers. She has consistently been entrusted with leadership in nationally funded research programs by ANR and regional agencies, confirming her scientific standing and project leadership ability. Her active role in supervising doctoral candidates and international collaborations further affirms her status as a respected figure in analytical sciences.

🔬Research Focus:

Prof. Nehmé’s research centers on analytical sciences, particularly in capillary electrophoresis, mass spectrometry, and microscale thermophoresis for studying molecular interactions. Her projects frequently explore bioanalysis, enzyme kinetics, and natural product evaluation. She leads or participates in numerous ANR-funded projects, including stapled peptide design, bioremediation via micromycetes, and enzyme behavior in crowded synthetic environments. A significant part of her work involves developing lab-on-a-chip (LoC) platforms for investigating target-ligand interactions at the single-cell level. She has also contributed to the miniaturization of enzymatic assays, passive sampling techniques for water analysis, and electrochemical sensors for environmental monitoring. Prof. Nehmé integrates separation sciences with biology and materials chemistry, bridging analytical method development with real-world biological and environmental challenges. Her interdisciplinary research fosters innovations in diagnostics, therapeutic monitoring, and ecological risk assessment, marking her as a pioneer in translating analytical chemistry into functional tools for bioactive discovery and environmental stewardship.

Publication Top Notes:

1. Using CE to Confirm the Activity of Fluorescent miRFP670-LIMK1 Protein Produced for MST Assays Directly in Cell Lysate

2. The Antimicrobial Activity of ETD151 Defensin is Dictated by the Presence of Glycosphingolipids in the Targeted Organisms

3. Glycolipid and Lipopeptide Biosurfactants: Structural Classes and Characterization—Rhamnolipids as a Model

4. Nutraceutical and Cosmetic Applications of Bioactive Compounds of Saffron (Crocus Sativus L.) Stigmas and Its By-products

5. Antioxidant and Anti-lipase Capacities from the Extracts Obtained from Two Invasive Plants: Ambrosia artemisiifolia and Solidago canadensis

6. Nutraceutical Capacities of Extracts from the Invasive Plants Ambrosia artemisiifolia and Solidago canadensis

7. Screening and Evaluation of Dermo-Cosmetic Activities of the Invasive Plant Species Polygonum cuspidatum

8. Biosurfactant-Producing Mucor Strains: Selection, Screening, and Chemical Characterization

9. Capillary Electrophoresis for Enzyme-Based Studies: Applications to Lipases and Kinases

10. Correction to: Reproducibility and Accuracy of Microscale Thermophoresis in the NanoTemper Monolith: A Multi Laboratory Benchmark Study

11. Design, Synthesis and SAR in 2,4,7-Trisubstituted Pyrido[3,2-d]Pyrimidine Series as Novel PI3K/mTOR Inhibitors

 

 

Prof. Dr. Zhou Xu | Analytical Chemistry | Best Researcher Award

Prof. Dr. Zhou Xu | Analytical Chemistry | Best Researcher Award

Prof. Dr. Zhou Xu , Analytical Chemistry , Assistant Dean at Changsha University of Science & Technology, China

Dr. Zhou Xu is a distinguished Professor and Assistant Dean at the School of Food Science and Bioengineering, Changsha University of Science and Technology. He earned his Ph.D. in Physical Chemistry from Jiangnan University Specializing in food safety, bio sensing, and nanomaterials, Dr. Xu has led numerous national research projects focused on food quality monitoring and rapid detection technologies. With a proven record of innovative research, he has published extensively in top-tier journals like ACS Sensors, Analytical Chemistry, and Chemical Engineering Journal. His pioneering work in biosensors, nanozymes, and magnetic relaxation sensors has earned him multiple research grants and provincial awards. Dr. Xu is recognized for integrating interdisciplinary approaches involving chemistry, biology, and materials science to address critical food safety challenges. His leadership in scientific research and education continues to influence advancements in food science, public health, and nanotechnology applications.

Professional Profile : 

Orcid

Scopus  

Summary of Suitability for Award:

Prof. Zhou Xu is highly suitable for nomination for the “Best Researcher Award.” He holds a Ph.D. in Physical Chemistry (2013) from Jiangnan University and currently serves as a Professor and Assistant Dean at the School of Food Science and Bioengineering, Changsha University of Science and Technology. His academic trajectory—from Lecturer to Professor—demonstrates steady and significant advancement based on merit. His research focus on biosensors, food safety detection, magnetic relaxation sensors, and nanozyme-based immunoassays has led to high-impact publications in prestigious journals like ACS Sensors, Analyst, Analytical Chemistry, and Journal of Agricultural and Food Chemistry. Notably, many of his papers are published as first or corresponding author, reflecting his leadership in research projects. He has secured multiple national and provincial research grants totaling millions of RMB, notably presiding over projects under China’s National Key Research and Development Program. His ability to independently lead large-scale, cutting-edge research initiatives and translate them into real-world food safety applications highlights his excellence in innovation, scientific contribution, and societal impact.

🎓Education:

Dr. Zhou Xu began his academic journey with a Bachelor of Science (B.S.) degree in Biotechnology from Central South University of Forestry and Technology (2001–2005). He then pursued a Master of Science (M.S.) in Processing and Storage of Agricultural Products from the same university, graduating in 2009. Building on this strong foundation, Dr. Xu earned his Ph.D. in Food Nutrition and Safety (Physical Chemistry) from Jiangnan University in March 2013. His doctoral research focused on advanced methodologies for food quality assurance and safety analysis. Throughout his education, Dr. Xu consistently demonstrated excellence, laying the groundwork for a successful academic and research career. His interdisciplinary background spanning biotechnology, food science, and physical chemistry uniquely positions him to address complex issues at the intersection of food safety, nanotechnology, and biosensor development. His education equipped him with diverse skills crucial for his innovative contributions to food science research and technology.

🏢Work Experience:

Dr. Zhou Xu’s academic career began in January 2014 as a Lecturer at Changsha University of Science and Technology. His dedication and research achievements led to his promotion to Associate Professor in August 2018, and then to full Professor in January 2022. Currently, he also serves as the Assistant Dean of the School of Food Science and Bioengineering. Over the years, he has successfully led multiple major research projects funded by national and provincial agencies, focusing on intelligent food safety monitoring, rapid detection technologies, and biosensors. Dr. Xu’s professional journey reflects his strong leadership, mentorship of young researchers, and innovative project management. His deep expertise in bio sensing and nanomaterials has significantly advanced the field of food safety detection. Under his leadership, the university’s research capacity in biosensor technology has expanded greatly. He actively collaborates across disciplines to drive technological innovations addressing real-world food safety challenges.

🏅Awards: 

Dr. Zhou Xu has garnered numerous accolades throughout his illustrious career. He has been the recipient of the prestigious Fund for Excellent Youth of Hunan Province, recognizing his outstanding contributions to biosensor development for food safety (2022–2025). His projects have also secured significant funding from major national agencies, including the National Natural Science Foundation of China and the Natural Science Foundation of Hunan Province. Dr. Xu’s innovative work in food quality detection technologies has been praised for its practical impact and scientific excellence. His consistent success in obtaining competitive research grants highlights his reputation as a leading researcher in his field. Moreover, his work has earned him recognition in academic and government circles as a key contributor to the advancement of intelligent food safety monitoring systems. These awards and honors underline Dr. Xu’s exceptional dedication to scientific innovation, research excellence, and societal impact in the field of food science.

🔬Research Focus:

Dr. Zhou Xu’s research centers on the development of innovative biosensors and nanotechnology-based solutions for food safety detection. His work integrates magnetic relaxation switch sensors, nanozyme-based immunoassays, and metal-organic frameworks (MOFs) to enhance sensitivity and speed in detecting contaminants like aflatoxin B1, cadmium ions, and bisphenol A. By designing intelligent detection platforms based on the Internet of Things (IoT) and advanced materials, Dr. Xu aims to revolutionize food quality supervision and rapid analysis. His studies focus heavily on improving catalytic mechanisms, developing dual-mode immunosensors (fluorescence and magnetic sensing), and constructing biomimetic materials for enhanced assay performance. Through interdisciplinary collaborations, Dr. Xu bridges chemistry, biology, and material science to address major food safety challenges. His research not only advances academic knowledge but also directly impacts industrial practices and public health regulations. Dr. Xu is committed to pioneering practical, scalable technologies for real-time food safety monitoring.

Publication Top Notes:

1.Title: Alanine Substitution to Determine the Effect of LR5 and YR6 Rice Peptide Structure on Antioxidant and Anti-Inflammatory Activity

2.Title: Formation and Characterization of Self-Assembled Rice Protein Hydrolysate Nanoparticles as Soy Isoflavone Delivery Systems

3.Title: Target-modulated UCNPs-AChE assembly equipped with microenvironment-responsive immunosensor
Authors: Zhou Xu et al.

4.Title: Peroxidase-mimetic activity of a nanozyme with uniformly dispersed Fe₃O₄ NPs supported by mesoporous graphitized carbon for determination of glucose

5.Title: Three-dimensional assembly and disassembly of Fe₃O₄-decorated porous carbon nanocomposite with enhanced transversal relaxation for magnetic resonance sensing of bisphenol A

6.Title: Assembly of USPIO/MOF nanoparticles with high proton relaxation rates for ultrasensitive magnetic resonance sensing

7.Title: Metal Organic Frame-Upconverting Nanoparticle Assemblies for the FRET Based Sensor Detection of Bisphenol A in High-Salt Foods

8.Title: Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method

9.Title: A nanozyme-linked immunosorbent assay based on metal-organic frameworks (MOFs) for sensitive detection of aflatoxin B₁

10.Title: Aptamer-enhanced fluorescence determination of bisphenol A after magnetic solid-phase extraction using Fe₃O₄@SiO₂@aptamer

11.Title: Recent Advances in Porphyrin-Based Materials for Metal Ions Detection

12.Title: Metal-Organic Frameworks of MIL-100(Fe, Cr) and MIL-101(Cr) for Aromatic Amines Adsorption from Aqueous Solutions

Dr. Siyao Chen | Materials Chemistry | Best Researcher Award

Dr. Siyao Chen | Materials Chemistry | Best Researcher Award

Dr. Siyao Chen , Materials Chemistry , Senior research assistant at City University of Hong Kong , Hong Kong

Dr. Siyao Chen is a Senior Research Assistant at the City University of Hong Kong, specializing in additive manufacturing and polymer-derived ceramics. With an impressive track record in advanced material research, Dr. Chen has published 11 SCI-indexed papers, including two ESI highly cited works, amassing over 610 citations. He serves as an invited editor for Frontiers in Electronics and actively contributes as a peer reviewer for prestigious journals such as Aerospace Science and Technology and the Journal of the European Ceramic Society. His research has made significant strides in 3D/4D ceramic printing, smart sensors, and semiconductor applications. In addition to academic achievements, Dr. Chen has worked on two major research projects, collaborated on four industry consultancies, and is listed as an inventor on three patents. A rising figure in materials science, Dr. Chen’s work integrates cutting-edge technology with real-world applications, contributing meaningfully to the development of intelligent ceramic systems.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Chen has published 11 SCI-indexed papers, including 2 ESI highly cited works, demonstrating high-impact contributions. One of these papers has gathered over 610 citations, a remarkable achievement for an early-career researcher. His work in additive manufacturing, polymer-derived ceramics, and intelligent electronics is not only innovative but also addresses complex, high-tech engineering challenges. These fields are critical in both academic and industrial applications. He serves as an invited editor for Frontiers in Electronics and is a reviewer for top-tier journals like Aerospace Science and Technology and Journal of the European Ceramic Society, indicating recognition by peers in his domain. With 3 patents, 4 consultancy projects, and 2 ongoing research projects, Dr. Chen demonstrates both academic excellence and practical application, bridging the gap between theory and industry. Dr. Siyao Chen’s research excellence, demonstrated by high-impact publications, innovation through patents, editorial and peer-review contributions, and cross-disciplinary industrial collaborations, clearly qualify him as an exceptional candidate for the “Best Researcher Award.” His academic rigor and applied innovation mark him as a rising leader in materials science and engineering research.

🎓Education:

Dr. Siyao Chen earned his doctoral degree from City University of Hong Kong, where he laid the foundation for his expertise in additive manufacturing and ceramic. His academic training emphasized interdisciplinary knowledge at the intersection of materials engineering, mechanical design, and electronic systems. During his time at CityU, Dr. Chen developed critical skills in vat photopolymerization, polymer-derived ceramic processing, and microstructural design of smart ceramics. His graduate research focused on fabricating high-performance ceramic sensors and coatings using 3D/4D printing methods. Throughout his education, he was actively involved in publishing high-impact articles and contributing to collaborative research teams. His studies not only strengthened his theoretical foundation but also fostered practical lab experience, laying the groundwork for his continued academic and industrial research. The combination of rigorous education and hands-on innovation shaped Dr. Chen’s academic identity and enabled him to push boundaries in the field of intelligent ceramic-based electronics.

🏢Work Experience:

Dr. Siyao Chen currently works as a Senior Research Assistant at the City University of Hong Kong, where he leads multiple research efforts in the field of additive manufacturing and ceramic electronics. Over the years, he has contributed to both academic and industrial projects, participating in four consultancy collaborations and leading two significant research endeavors. He has also acted as a project coordinator for the development of smart ceramic sensors, coating systems, and semiconductor devices. His work includes guiding junior researchers, managing experimental workflows, and contributing to grant applications. Dr. Chen serves as a peer reviewer for several SCI-indexed journals and as an invited editor for Frontiers in Electronics, showcasing his academic authority. His multi-disciplinary experience, spanning ceramics, polymer chemistry, and semiconductor devices, equips him to work across diverse research environments. His consistent performance and hands-on innovation have made him a valuable member of the advanced materials research community.

🏅Awards: 

Although early in his career, Dr. Siyao Chen has achieved notable recognition in his field. He is the recipient of multiple citations in high-impact journals, including two ESI Highly Cited Papers — a significant mark of influence and excellence in scholarly research. His publication in Materials Science and Engineering: R: Reports alone has gathered over 550 citations. Additionally, he was invited to join the editorial board of Frontiers in Electronics, a testament to his research integrity and subject matter expertise. His role as a reviewer for high-tier journals such as the Journal of the European Ceramic Society and Aerospace Science and Technology also highlights his academic credibility. Dr. Chen’s patent contributions and collaboration in industrial projects demonstrate the practical impact of his work. With a growing reputation in the materials science community, he is an emerging leader in ceramic additive manufacturing and intelligent electronics.

🔬Research Focus:

Dr. Chen’s primary research interests lie in additive manufacturing, polymer-derived ceramics, and semiconductor applications. He focuses on the design and processing of smart ceramic materials using 3D/4D printing technologies. His work bridges traditional ceramics with modern electronics, enabling innovations in reconfigurable structures, temperature sensors, and electromagnetic devices. A key area of interest is the development of lightweight, high-performance ceramics with tunable properties, particularly for sensing, actuation, and aerospace applications. His recent projects explore vat photopolymerization for SiCN and SiBCN-based ceramics, real-time material behavior modeling, and coating technologies for extreme environments. He is also involved in stimuli-responsive material systems, contributing to the advancement of intelligent electronics. His interdisciplinary research integrates materials engineering, electronic design, and digital fabrication, offering scalable and programmable material solutions for future smart systems. By combining structural innovation with electronic functionality, Dr. Chen aims to reshape how materials are conceived and manufactured.

Publication Top Notes:

Title: Additive manufacturing of structural materials
Citations: 572

Title: Lightweight and geometrically complex ceramics derived from 4D printed shape memory precursor with reconfigurability and programmability for sensing and actuation applications
Citations: 43

Title: Fabrication of polymer-derived SiBCN ceramic temperature sensor with excellent sensing performance
Citations: 17

Title: Fabrication of electrical semi-conductive SiCN ceramics by vat photopolymerization
Citations: 8

Title: 3D/4D additive–subtractive manufacturing of heterogeneous ceramics
Citations: 5

Title: Temperature and frequency dependent conductive behavior study on polymer-derived SiBCN ceramics
Citations: 3

Title: Novel anti-oxidation coating prepared by polymer-derived ceramic for harsh environments up to 1200°C
Citations: 2

Title: Real-time Bayesian model calibration method for C/SiC mechanical behavior considering model bias
Citations: 1

Title: Recent advances in stimuli-responsive materials for intelligent electronics

Title: Oxidation behavior of TiB2 from 600–1400°C considering microstructure evolution, oxidation kinetics, and mechanisms

Title: Evolution of dielectric properties of SiBCN ceramics and its derived wireless passive temperature sensor application

Assoc. Prof. Dr. Ningbo Li | Medicinal Chemistry | Best Researcher Award

Assoc. Prof. Dr. Ningbo Li | Medicinal Chemistry | Best Researcher Award

Assoc. Prof. Dr. Ningbo Li , Medicinal Chemistry , Shanxi Medical University, China

Dr. Ningbo Li is an accomplished Associate Professor at the School of Basic Medical Sciences, Shanxi Medical University, with a strong academic foundation and a passion for cancer research. With a doctorate in Organic Chemistry from Hunan University, Dr. Li has built a reputable career in green synthesis, targeted nano-drug delivery systems, and near-infrared fluorescent probes molecule for cancer diagnostics and therapy. He has led over 10 national and provincial research projects, published 46 SCI-indexed papers, and holds 5 authorized patents. Dr. Li also contributes to academia through textbooks and serves as a Young Editorial Board Member of Journal of Xiangtan University. His collaborations span leading institutions like Hunan University and Nankai University. With 863 citations and rising influence, Dr. Li is committed to pioneering innovative, low-toxicity cancer therapeutics and translating lab findings into clinical advances.

Professional Profile : 

Orcid   

Scopus 

Summary of Suitability for Award:

Dr. Ningbo Li, Associate Professor at Shanxi Medical University, has demonstrated exceptional research productivity and innovation in the fields of organic chemistry, nanomedicine, and cancer therapeutics. With over 50 SCI-indexed publications, 5 authorized patents, and leadership on more than 10 national and provincial-level research projects, Dr. Li has made significant contributions to targeted cancer treatment and green synthesis of anti-tumor agents. His pioneering work on magnetic nano-drug delivery systems and near-infrared fluorescent probes molecule showcases translational potential for clinical applications in oncology. Furthermore, his involvement in academic book publications, editorial duties, and inter-institutional collaborations reflects both leadership and scholarly impact. With a citation index of 863 and consistent innovation through funded research, Dr. Li exemplifies the qualities of a top-tier researcher. Dr. Ningbo Li is highly suitable for the “Best Researcher Award”, as he meets and exceeds the criteria in terms of research excellence, innovation, scientific impact, and societal relevance. His dedication to advancing cancer research through interdisciplinary chemistry and his strong track record in publications, patents, and funded projects make him a deserving and outstanding candidate for this prestigious recognition

🎓Education:

Dr. Ningbo Li’s academic journey began with a Bachelor’s degree in Chemistry from Shanxi Datong University (2005–2009). He pursued his postgraduate studies at Hunan University, earning a Master’s degree (2009–2012) and subsequently a Ph.D. in Organic Chemistry (2012–2015). His academic training emphasized organometallic chemistry, chiral complex synthesis, and catalysis, laying the groundwork for his future research in drug development and nanomedicine. During his doctoral studies, Dr. Li specialized in chiral Lewis acids, exploring their role in asymmetric synthesis—an area critical to pharmaceutical innovation. His graduate work was pivotal in shaping his later focus on bio-compatible metal complexes and tumor-targeted drug delivery platforms. The integration of organic synthesis with biomedical applications became a hallmark of his educational path, culminating in a multidisciplinary approach that bridges chemistry, nanotechnology, and medical science.

🏢Work Experience:

Dr. Ningbo Li began his academic career as a Lecturer (2015–2018) at the School of Basic Medical Sciences, Shanxi Medical University, where he conducted interdisciplinary research and mentored students. In December 2018, he was promoted to Associate Professor, reflecting his growing contributions to research and teaching. With over a decade in academia, he has supervised numerous graduate projects and continues to develop innovative strategies for targeted cancer therapy using nanomaterials and fluorescent probes. Dr. Li has consistently received competitive research funding from the National Natural Science Foundation of China and the Shanxi Provincial Science Foundations. He also actively contributes to national teaching excellence through authorship in leading organic chemistry textbooks. His dedication to both scientific advancement and student development underscores a career that blends high-impact research with academic leadership in medical and chemical sciences.

🏅Awards: 

While specific named awards are not detailed, Dr. Ningbo Li’s academic honors are evident through his prestigious research grants, editorial board appointment, and book contributions. He is the Principal Investigator for multiple national-level research projects, including NSFC Young Scholar Awards, which are highly competitive and indicative of early-career excellence. His appointment as a Young Editorial Board Member of the Journal of Xiangtan University (Natural Science Edition) further reflects his scientific influence and peer recognition. Dr. Li’s patents on chiral zirconium and titanium complexes also highlight his innovative contributions to chemical synthesis. Moreover, his extensive publishing record and the high citation index (863) attest to the impact of his research in organic and medicinal chemistry. Through his involvement in writing authoritative textbooks used in higher education, Dr. Li has contributed significantly to the academic development of students and educators in China.

🔬Research Focus:

Dr. Ningbo Li’s research is centered on the interdisciplinary interface of organic chemistry, nanotechnology, and cancer therapeutics, with a strong emphasis on green and sustainable chemistry. His primary focus lies in the design and synthesis of functionalized magnetic nanocomposites and near-infrared fluorescent probe molecules for the precise diagnosis and targeted treatment of malignant tumors. By engineering magnetic-targeted nano-drug delivery systems, his team aims to achieve site-specific drug accumulation, minimizing systemic toxicity and enhancing therapeutic efficacy. Another key area involves the green synthesis of novel bioactive compounds, particularly chiral organometallic complexes, which exhibit promising anti-tumor properties. His group also explores chiral Lewis acids as catalysts in asymmetric reactions, crucial for the development of structurally complex pharmaceuticals. Dr. Li’s research is highly translational, striving to bridge the gap between bench and bedside by accelerating the clinical application of biocompatible, efficient, and low-toxicity cancer therapeutics rooted in advanced chemical innovation.

Publication Top Notes:

1. g-C₃N₄-Based Heterogeneous Photocatalyzed Synthesis and Evaluation of Antitumor Activities of Fluoroalkylated 4H-Pyrido[1,2-a]pyrimidin-4-ones

2. Magnetic Nanocarriers for pH/GSH/NIR Triple-Responsive Drug Release and Synergistic Therapy in Tumor Cells

3. GSH-Responsive Magnetic Mesoporous Silica Nanoparticles for Efficient Controlled Drug Delivery in Tumor Cells

 

Prof. Zhilong Cao | Green Chemistry | Best Researcher Award

Prof. Zhilong Cao | Green Chemistry | Best Researcher Award

Prof. Zhilong Cao , Green Chemistry , Deputy Director at Beijing University of Technology, China

Dr. Zhilong Cao is a Professor and Ph.D. Supervisor at Beijing University of Technology, specializing in advanced materials and technologies for sustainable asphalt pavements. With a Ph.D. in Materials Science and Engineering from Wuhan University of Technology, he focuses on the development of low-carbon, green, and smart functional materials aimed at extending pavement life and promoting high-quality recycling. Since joining Beijing University of Technology in 2022, he has led several national and industrial research projects, particularly in asphalt modification and regeneration. His contributions have earned him prestigious recognitions, including the Outstanding Talent Award. Dr. Cao is driven by innovation and sustainability, exploring smart infrastructure solutions that align with global environmental goals. His research has practical implications in urban infrastructure development, especially in road and airport pavement systems. Dedicated to fostering future talent, he also mentors Master’s and Ph.D. students while actively collaborating with industry stakeholders to bridge academic research with real-world applications.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Zhilong Cao is a highly suitable candidate for the “Best Researcher Award”, given his impactful contributions in the field of sustainable pavement engineering. With a strong academic background in Materials Science and Engineering, and holding a Ph.D. from Wuhan University of Technology, he has shown exemplary leadership in the development of low-carbon, smart, and green construction materials. As a Professor and Ph.D. Supervisor at Beijing University of Technology, he has spearheaded nationally funded research projects, including grants from the NSFC and China Postdoctoral Science Foundation, focusing on advanced asphalt regeneration and modification technologies. His research not only addresses academic challenges but also meets urgent industrial and environmental needs. His honors, such as the Outstanding Talent Award and Best Ph.D. Thesis Award, further reflect his merit and potential. He actively mentors future researchers and collaborates with industry, making his work both impactful and translational.

🎓Education:

Dr. Zhilong Cao completed both his Ph.D. (2018–2021) and M.S. (2015–2018) in Materials Science and Engineering from Wuhan University of Technology, one of China’s premier institutions for engineering and material innovation. During his graduate years, he conducted cutting-edge research on asphalt materials, focusing on functional modifications and sustainability. His doctoral work received wide acclaim, earning him the Outstanding Ph.D. Graduate and Thesis Award. His academic training emphasized a strong integration of theoretical knowledge and experimental practices in materials science, particularly with applications in transportation engineering. He developed specialized expertise in pavement materials, polymer modification, and asphalt regeneration technologies. His strong academic foundation and passion for materials innovation led him to a faculty position at Beijing University of Technology, where he now mentors graduate students and leads significant research initiatives. Dr. Cao’s educational path reflects both academic excellence and a clear vision toward sustainable infrastructure development.

🏢Work Experience:

Dr. Zhilong Cao began his academic career as a graduate student at Wuhan University of Technology, where he earned his M.S. and Ph.D. in Materials Science and Engineering. Following the completion of his doctorate in 2021, he joined Beijing University of Technology in January 2022 as a Professor and Ph.D. Supervisor in the Department of Road and Rail Engineering. In this role, he leads research projects on green pavement materials and mentors Master’s and Doctoral students. His academic responsibilities include developing new course materials, overseeing lab-based research, and fostering collaborations with industry to apply advanced materials in real-world contexts. He has secured multiple prestigious research grants, including from the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. Dr. Cao’s professional experience demonstrates a strong trajectory from promising researcher to established academic leader, with a focus on sustainable infrastructure technologies and innovative material development.

🏅Awards: 

Dr. Zhilong Cao has received several prestigious awards in recognition of his outstanding contributions to research and academic excellence. In 2023, he was honored with the Outstanding Talent Award by Beijing University of Technology for his innovative work in the field of sustainable pavement engineering. During his Ph.D. at Wuhan University of Technology, he earned the Outstanding Ph.D. Graduate Award and the Thesis Award in 2021, reflecting the significance and impact of his doctoral research. These accolades underscore Dr. Cao’s commitment to excellence in both academic research and practical innovation. His ability to bridge theoretical insights with applied engineering solutions has made him a recognized name in his field. These honors not only mark his personal achievements but also highlight his leadership potential in driving forward environmentally friendly and high-performance pavement technologies. Dr. Cao continues to strive for innovation and sustainability in the infrastructure materials sector.

🔬Research Focus:

Dr. Zhilong Cao’s research is centered on sustainable and intelligent solutions for modern pavement infrastructure. His work explores low-carbon construction and maintenance materials, particularly for asphalt pavements, aiming to reduce environmental impact while improving performance. A key area of interest is the regeneration and recycling of SBS-modified asphalt, especially for aging road surfaces and airport runways. He also investigates green and smart functional materials that respond to environmental stimuli, enhancing pavement durability and functionality. Dr. Cao’s research extends to polyurethane-modified asphalts and innovative crosslinking networks for performance recovery in aged pavements. His interdisciplinary approach bridges materials science with transportation engineering, aligning his work with global sustainability goals. Through national projects and industry collaborations, he contributes to next-generation infrastructure technologies that emphasize longevity, efficiency, and eco-friendliness. His research has both academic and practical implications, improving the resilience and sustainability of urban transportation systems.

Publication Top Notes:

1. Investigation on Active Rejuvenation Mechanism of Aged SBS Modified Bitumen: Insights from Experiments and Molecular Dynamics

2. Laboratory Evaluation of Ultraviolet Aging Performance of Regenerated SBS Modified Bitumen Based on Active Flexible Rejuvenators with Different Molecular Structures

3. Creep Recovery Behavior of Fresh, Aged, and Rejuvenated SBS-Modified Asphalt under High Shear Stresses

4. Effect of Organic Coal Gangue Powder with Terminal Active Isocyanate Groups on the Performance of Asphalt and Its Mixture

5. VOCs Inhibited Asphalt Mixtures for Green Pavement: Emission Reduction Behavior, Environmental Health Impact and Road Performance

6. Environmentally Friendly End-Capped Polyurethane for Enhancing Asphalt-Granite Adhesion

 

 

Assoc. Prof. Dr. Shixiong Li | Inorganic Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Shixiong Li | Inorganic Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Shixiong Li,  Inorganic Chemistry,  Teacher at Wuzhou University, China

Dr. Shixiong Li is a dedicated environmental scientist and academician serving as a lecturer and associate professor at Wuzhou University. He is also a master’s supervisor at Guangxi University and holds multiple expert roles, including membership in the Guangxi Science and Technology Expert Database and the Wuzhou Environmental Emergency Expert Database. Dr. Li obtained his Ph.D. in Environmental Science and Engineering from South China University of Technology in 2018. His research interests lie in the synthesis of functional environmental materials and water resource reuse technologies. With a strong presence in scientific publishing, he has authored numerous papers in prestigious journals like Angewandte Chemie International Edition, Journal of Catalysis, and Inorganic Chemistry Frontiers. He also serves as a peer reviewer for high-impact journals. In addition to academia, he contributes to legal and civic activities as a people’s assessor at the Changzhou District Court.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Shixiong Li, currently serving as a teacher and researcher at Wuzhou University, has built a distinguished research career in the field of environmental chemistry. With a Ph.D. in Environmental Science and Engineering from South China University of Technology (2018), he has demonstrated strong academic training in environmental disciplines. Dr. Shixiong Li is a highly deserving candidate for the Research for “Environmental Chemistry Award”. His substantial contributions to environmental material synthesis and pollutant remediation directly align with the award’s mission to recognize impactful environmental chemistry research. His innovative approaches, quality publications, and practical focus on water purification and waste treatment place him among the leading researchers in this domain.

🎓Education:

Dr. Shixiong Li earned his Doctorate (Ph.D.) in Environmental Science and Engineering from South China University of Technology . His doctoral research focused on the design and synthesis of environmentally functional materials and the mechanisms underpinning water purification technologies. Prior to his Ph.D., Dr. Li completed his undergraduate and possibly master’s degrees (specific details not mentioned) likely in chemistry, materials science, or environmental engineering, forming a solid foundation for his current research. His academic journey reflects a strong commitment to interdisciplinary environmental studies, particularly involving the synthesis of metal-organic frameworks (MOFs), photocatalytic systems, and advanced adsorption materials. His education equipped him with a deep understanding of green chemistry, catalysis, nanomaterials, and environmental remediation technologies, which he now applies in both academic and real-world contexts. Dr. Li continues to expand his educational expertise through supervising graduate students and participating in academic collaborations at regional and international levels.

🏢Work Experience:

Dr. Shixiong Li currently serves as a full-time lecturer and associate professor at the School of Mechanical and Resource Engineering, Wuzhou University. He is also a recognized master’s supervisor at Guangxi University. Over the years, Dr. Li has contributed significantly to teaching, curriculum development, and guiding graduate research. His professional roles extend beyond teaching — he is an expert member of multiple scientific and technical committees, including the Guangxi Science and Technology Expert Database, Wuzhou Environmental Emergency Expert Database, and the Materials Expert Committee at Viser Publishing (Singapore). He also serves as a standardization expert and legal assessor in Wuzhou. His experience includes managing and executing national and regional research projects, particularly in the field of photocatalysis and wastewater treatment. Furthermore, he acts as a peer reviewer for elite scientific journals, such as JACS and Journal of Catalysis, demonstrating his prominence in the academic community.

🏅Awards: 

Dr. Shixiong Li has been recognized for his academic and professional excellence with various prestigious appointments and honors. He is a selected expert in the Guangxi Science and Technology Expert Database, indicating regional recognition of his expertise. In Wuzhou, he holds positions in the Environmental Emergency Expert Database and serves as a Standardization Expert, which reflect his contributions to public environmental safety and policy. His peer-reviewing roles in high-ranking SCI journals like Angewandte Chemie, JACS, and Inorganic Chemistry highlight international acknowledgment of his scientific merit. Furthermore, his appointment as a People’s Assessor at the Changzhou District Court demonstrates his trusted civic role in community and judicial matters. His invitation to the Materials Expert Committee of Viser Publishing (Singapore) further indicates global engagement in scientific publishing. Collectively, these honors underline his multifaceted contributions in research, public service, and scientific leadership.

🔬Research Focus:

Dr. Shixiong Li’s research centers on the design and synthesis of functional environmental materials, with a particular emphasis on metal-organic frameworks (MOFs) and their applications in photocatalysis, adsorption, and wastewater treatment. His work explores green, in-situ synthetic approaches for constructing Cu(I)/Cu(II) hybrid materials, aiming to degrade organic pollutants and remove heavy metals from aqueous systems efficiently. He investigates the mechanistic roles of inorganic ions and coordinated ligands in modulating the photocatalytic and adsorption performances of MOFs. Additionally, his current projects explore hydroxyl-modified two-dimensional Cu-based photocatalysts, revealing insights into molecular-level interactions that boost reactivity and selectivity. Dr. Li’s findings have advanced sustainable material applications for water reuse and environmental remediation. Through interdisciplinary approaches combining inorganic chemistry, materials science, and environmental engineering, his research contributes to scalable, eco-friendly technologies for real-world problems. His publications in top-tier journals and ongoing collaborations confirm the practical relevance and innovation of his scientific contributions.

Publication Top Notes:

1. Mechanism of Coordinated Anions Regulating the Photocatalytic Performance of Cu(I) Metal–Organic Frameworks

2. An Iron-Based Metal–Organic Framework with Strong Water Stability and Effective Adsorption of Methylene Blue from Wastewater

3. Zinc Complexes with Mixed Ligands and the Effect on Excitation and Emission Spectra by Changing the Binding Sites

4. Praseodymium–Selenium Connecting Selenotungstate Containing Mixed Building Blocks for Catalytic Synthesis of Aza-Heterocycles

5. A Two-Dimensional Cobalt-Based Metal–Organic Framework Efficiently Adsorbs Cr(VI) from Wastewater

6. Effect and Mechanism of Inorganic Ions on the Photocatalytic Performance of Amino Modified UIO-67 Type Metal–Organic Framework

7. Two‐Dimensional Copper‐Based Metal–Organic Framework for Efficient Removal of Methylene Blue from Wastewater

8. Performance and Mechanism of the Modified Group Regulated the MIL-101(Fe) Type Fenton-like Catalysts

9. A Bifunctional Three-Dimensional Zn(II) Metal–Organic Framework with Strong Luminescence and Adsorption Cr(VI) Properties

10. Effect and Mechanism of Inorganic Anions on the Adsorption of Cd²⁺ on Two-Dimensional Copper-Based Metal–Organic Framework

 

Dr. Ji-Wei Ren | Organic Chemistry | Best Researcher Award

Dr. Ji-Wei Ren | Organic Chemistry | Best Researcher Award

Dr. Ji-Wei Ren, Organic Chemistry, Taishan University , China 

Dr. Ji-Wei Ren is a Lecturer in the College of Chemistry and Chemical Engineering at Taishan University, China. He earned his Ph.D. in Chemical Engineering and Technology from Central South University, where he developed expertise in visible light catalysis, organo catalysis, and green synthesis. Dr. Ren has previously served as a Research Associate at Ningbo University’s Institute of Drug Discovery Technology, engaging in interdisciplinary research on biomimetic reducing agents and chiral resolution. With a strong foundation in heterocyclic construction and peptide synthesis, his work integrates sustainable and biomimetic chemistry with modern synthetic methodologies. Dr. Ren has published multiple high-impact research articles in leading journals such as Org. Lett., J. Org. Chem., and Org. Chem. Front.. His research is characterized by innovation, precision, and relevance to both pharmaceutical and materials chemistry. He actively contributes to academic platforms like ORCID and collaborates with renowned scientists across China.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Ji-Wei Ren exemplifies the qualities of an outstanding researcher through his pioneering work in the field of organic synthesis, particularly in visible light catalysis, organocatalysis, and green chemistry. He has published over 11 peer-reviewed articles in top-tier journals such as Organic Chemistry Frontiers, Journal of Organic Chemistry, Organic Letters, and Chemistry – A European Journal. Several of his works have been highlighted by Synfacts, showcasing their novelty and scientific impact. His innovative contributions include the development of racemization-free synthesis protocols, the application of biomimetic reducing agents, and the design of sustainable methodologies for heterocycle and peptide construction. He brings a fresh perspective to traditional synthetic methods by incorporating visible light and bio-inspired techniques, addressing both the efficiency and environmental responsibility in chemical synthesis. Dr. Ji-Wei Ren is highly suitable for the “Best Researcher Award”. His significant scientific output, innovation in research, recognition by the international community, and dedication to sustainable chemistry clearly distinguish him as a leading researcher in his field. His commitment to impactful and environmentally conscious science makes him not only an excellent candidate but also a role model for emerging researchers. This award would be a deserving recognition of his ongoing contributions to the scientific world.

🎓Education:

Dr. Ji-Wei Ren completed both his undergraduate and doctoral studies at Central South University. He earned his Bachelor of Engineering in Pharmaceutical Engineering in June 2013, where he gained foundational knowledge in pharmaceutical chemistry, drug design, and synthesis. Subsequently, he pursued a Doctorate in Chemical Engineering and Technology (2013–2019) at the same university. His Ph.D. research focused on innovative synthetic strategies using organo catalysis and visible-light-driven methodologies for the construction of functional molecules, especially in the development of peptide and heterocyclic compounds. Under the mentorship of distinguished faculty, he honed his skills in reaction design, stereoselective synthesis, and catalysis. His academic training also included a deep understanding of biomimetic reactions, green synthesis, and photochemical transformations. This robust educational background laid the groundwork for his interdisciplinary research efforts, enabling him to contribute significantly to the fields of sustainable and asymmetric synthesis.

🏢Work Experience:

Dr. Ji-Wei Ren began his academic career as a Research Associate (2019–2022) at the Institute of Drug Discovery Technology, Ningbo University, where he focused on peptide synthesis and the development of bio-inspired reducing agents. His role involved collaborative projects in pharmaceutical chemistry and catalysis, contributing to the advancement of efficient and eco-friendly synthetic methods. In August 2022, he joined Taishan University as a Lecturer in the College of Chemistry and Chemical Engineering. At Taishan University, Dr. Ren continues his research in visible light catalysis and organocatalytic transformations, guiding students in advanced organic chemistry techniques and experimental methodologies. He has also contributed to curriculum development and interdisciplinary research programs. His teaching and research philosophy is rooted in innovation, sustainability, and student engagement. With over a decade of academic training and research, Dr. Ren combines a strong theoretical foundation with hands-on experience in both industrial and academic labs.

🏅Awards: 

Dr. Ji-Wei Ren has been consistently recognized for his impactful contributions to organic chemistry and green synthesis methodologies. His 2021 publication in Organic Letters was highlighted by Synfacts in 2022 for its innovative racemization-free synthesis approach, underlining the originality and practical importance of his work. Additionally, his earlier work in The Journal of Organic Chemistry (2017) was also spotlighted in Synfacts, reflecting his ongoing excellence in visible light-mediated and organocatalytic transformations. During his doctoral studies at Central South University, he was honored with multiple academic excellence awards for his outstanding research and scholarly dedication. His publications in top-tier journals like Organic Chemistry Frontiers, Organic & Biomolecular Chemistry, and Chemistry – A European Journal have further established him as a rising expert in his field. These recognitions underscore both the scientific value and the practical applicability of his research in modern organic synthesis.

🔬Research Focus:

Dr. Ji-Wei Ren’s research is centered on the development of innovative, environmentally friendly methodologies in organic synthesis. His primary interests lie in visible light catalysis, where he designs photochemical processes to enable mild and selective transformations. He is also deeply involved in chiral resolution and organocatalysis, with a particular emphasis on enantioselective reactions that are crucial for pharmaceutical synthesis. A significant part of his work involves constructing complex heterocyclic compounds, often using biomimetic and green synthesis strategies to reduce environmental impact. Dr. Ren has pioneered the use of L-amino acid esters as biomimetic reducing agents and introduced new deoxygenation and amidation protocols that avoid racemization—critical for peptide and amide bond formation. His interdisciplinary approach blends traditional organic chemistry with sustainability, aiming to create scalable, efficient, and selective processes suitable for industrial application. His contributions significantly enhance both academic understanding and practical implementation in organic synthesis.

Publication Top Notes:

“A visible light-mediated deoxygenation protocol for the synthesis of dipeptides, amides and esters without racemization”

“L-Amino acid ester as a biomimetic reducing agent for the reduction of unsaturated C=C bonds”

“Umpolung Strategy for the One-Pot Synthesis of Highly Steric Bispirooxindoles via the L-Amino Acid Ester-Promoted In Situ Reduction/Nucleophilic Addition/Cyclization Cascade Reaction”

“A visible light-induced deoxygenative amidation protocol for the synthesis of dipeptides and amides”

“An organocatalytic enantioselective ring-reorganization domino sequence of methyleneindolinones with 2-aminomalonates”

“Straightforward Synthesis of 3-Selenocyanato-Substituted Chromones through Electrophilic Selenocyanation of Enaminones under Grinding Conditions”

“Organocatalytic, Enantioselective, Polarity-Matched Ring-Reorganization Domino Sequence Based on the 3-Oxindole Scaffold”

“A One‐Pot Ring‐Opening/Ring‐Closure Sequence for the Synthesis of Polycyclic Spirooxindoles”

“L-Pyroglutamic Sulphonamide as Hydrogen-Bonding Organocatalyst: Enantioselective Diels–Alder Cyclization to Construct Carbazolespirooxindoles”

“Acid-Relayed Organocatalytic exo-Diels-Alder Cycloaddition of Cyclic Enones with 2-Vinyl-1H-indoles”

 

Ms. NTUMBA LOBO | Physical Chemistry | Best Researcher Award

Ms. NTUMBA LOBO | Physical Chemistry | Best Researcher Award

Ms. NTUMBA LOBO | Physical Chemistry | PhD student at NAGOYA INSTITUTE OF TECHNOLOGY, Japan

Ntumba Lobo, a Congolese researcher, is a Ph.D. student and research assistant at Nagoya Institute of Technology, Japan. She specializes in semiconductor materials, focusing on carrier recombination effects in perovskites. She holds a Master’s degree from Shibaura Institute of Technology, Japan, in hydrogen storage materials, and an M.Sc. in Nuclear Physics from Addis Ababa University, Ethiopia. With experience in international collaborations, she was an exchange researcher at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. Ntumba has participated in several scientific conferences and published extensively in high-impact journals. She has also held teaching and research positions, including at the University of Kinshasa and the Centre Régional de Recherche Nucléaire de Kinshasa. Her work contributes significantly to materials science and renewable energy applications.

Professional Profile :         

Google Scholar

Orcid

Scopus  

Summary of Suitability for Award:

Ntumba Lobo is an exceptional researcher with a strong multidisciplinary background in semiconductor materials, energy storage, and nuclear physics. Her Ph.D. research at Nagoya Institute of Technology, Japan, focuses on metal halide perovskites, lithium tantalate, and carrier dynamics, contributing significantly to the development of advanced semiconductor materials. She has demonstrated excellence in research through multiple international collaborations, including an exchange program at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. Her expertise in material characterization techniques such as Time-Resolved Photoluminescence (TRPL), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) has led to high-impact publications and conference presentations. Ntumba Lobo’s extensive research contributions, global collaborations, and expertise in semiconductor and energy materials make her a strong candidate for the “Best Researcher Award.” Her work is not only innovative but also has a significant impact on the future of optoelectronic devices and sustainable energy solutions. Her dedication to scientific excellence, combined with her ability to work across disciplines, positions her as a deserving recipient of this prestigious recognition.

🎓Education:

Ntumba Lobo is currently pursuing a Ph.D. in Science and Engineering at Nagoya Institute of Technology, Japan, specializing in semiconductor materials (expected completion in September 2025). She was an exchange student at i-MEET, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, in 2022, where she worked on single and polycrystal semiconductor materials. She obtained a Master’s degree in Science and Engineering from Shibaura Institute of Technology, Japan (2018-2020), focusing on energy storage materials. Before that, she completed an M.Sc. in Nuclear Physics from Addis Ababa University, Ethiopia (2014-2016), with a dissertation on nuclear fusion reactions. Her academic journey began with a B.Sc. (Honors) in Physics from the University of Kinshasa, Democratic Republic of the Congo (2012), where she contributed to non-destructive characterization of reinforced concrete using ultrasound methods. Her diverse educational background in physics, material science, and engineering has equipped her with expertise in semiconductor research and energy materials.

🏢Work Experience:

Ntumba Lobo has extensive experience in research and teaching. Since 2020, she has been a Research Assistant at Nagoya Institute of Technology, working on semiconductor materials and device characterization. She has completed multiple internships, including at OSM Group Co., Ltd. (Japan, 2019) and For Delight Co. Ltd. (Japan, 2018), where she gained industry exposure. Her research career started with an internship at the Centre Régional de Recherche Nucléaire de Kinshasa (2016-2017) in nuclear physics. She also worked as a Teaching Assistant at the University of Kinshasa (2013-2014) and taught physics, scientific drawing, and technology at Liziba High School (2012-2013). Her hands-on expertise in material characterization techniques, including Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and photoconductivity measurements, has contributed to multiple high-impact publications. Her professional experience spans academic, industrial, and research institutions, making her a well-rounded scientist in semiconductor and energy materials.

🏅Awards: 

Ntumba Lobo has been recognized for her contributions to material science and semiconductor research. She received funding for an exchange research program at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany (2022), where she worked on advanced semiconductor materials. Her research on energy storage materials during her Master’s at Shibaura Institute of Technology was highly appreciated. She has presented her work at prestigious conferences, including the 16th International Symposium on Metal-Hydrogen Systems (China, 2018) and the Solid-State Devices and Materials Conference (Japan, 2023). She also participated in specialized training programs such as the Summer School on Space Weather in Kinshasa (2011) and Advanced Python Programming and Geographic Information Systems training in Addis Ababa (2016). Her continuous engagement in international research collaborations and conferences showcases her commitment to scientific advancement.

🔬Research Focus:

Ntumba Lobo’s research focuses on semiconductor materials, particularly metal halide perovskites and their carrier dynamics. She investigates surface recombination, carrier lifetime, and trapping effects in single and polycrystalline materials using techniques like Microwave Photoconductivity Decay (µPCD) and Time-Resolved Photoluminescence (TRPL). Her work extends to lithium tantalate and its photoconductance properties. She has also contributed to the field of hydrogen storage materials, analyzing the effects of TiO₂, Nb₂O₅, and TiH₂ catalysts on magnesium hydride. Additionally, her expertise in nuclear physics has allowed her to explore neutron-induced reactions and fusion mechanisms. By integrating her knowledge in physics, materials science, and engineering, she aims to develop efficient, stable, and high-performance materials for energy storage and semiconductor applications. Her research is pivotal in advancing next-generation optoelectronic devices and sustainable energy solutions.

Publication Top Notes:

Stability investigation of the γ-MgH₂ phase synthesized by high-energy ball milling

Citations: 27

Stable quasi-solid-state zinc-ion battery based on the hydrated vanadium oxide cathode and polyacrylamide-organohydrogel electrolyte

Citations: 13

Trapping effects and surface/interface recombination of carrier recombination in single- or poly-crystalline metal halide perovskites

Citations: 9

Study of ²⁰Ne Induced Reaction in ⁵⁹Co: Incomplete and Complete Fusion

Citations: 3

Effect of TiO₂ + Nb₂O₅ + TiH₂ Catalysts on Hydrogen Storage Properties of Magnesium Hydride

Citations: 2

La Super Symétrie en Physique Quantique

Citations: 1

Mitigation of carrier trapping effects on carrier lifetime measurements with continuous-wave laser illumination for Pb-based metal halide perovskite materials

Transport and business improvement in the province of South-Ubangi (Democratic Republic of the Congo)

 

Dr. Diba Kadivar | Inorganic Chemistry | Best Researcher Award

Dr. Diba Kadivar | Inorganic Chemistry| Best Researcher Award

Dr. Diba Kadivar | Inorganic Chemistry| Ph. D. graduate in inorganic chemistry at chemistry and chemical engineering research center of iran , Iran

Dr. Diba Kadivar is a Ph.D. graduate in Inorganic Chemistry with extensive expertise in anticancer platinum complexes. She has been serving as a technical assistant at the Iranian Food and Drug Administration (IFDA) for over eight years, contributing to pharmaceutical research and regulatory affairs. Dr. Kadivar has conducted significant studies on the synthesis, characterization, and biological activity of novel platinum-based anticancer agents. Her research focuses on the impact of geometric isomerism and aliphatic N-substituted glycine derivatives on platinum complexes’ pharmacological properties. She has published multiple papers in reputed journals and actively collaborates on cancer cell line studies. Passionate about innovative drug discovery, she has contributed to the development of metal-based nanocomplexes for potential therapeutic applications. Dr. Kadivar remains committed to advancing medicinal inorganic chemistry through her research and collaborations, aiming to enhance the effectiveness of anticancer therapies while minimizing side effects.

Professional Profile :         

Google Scholar

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Diba Kadivar is a distinguished researcher in inorganic chemistry, specializing in anticancer platinum complexes. With a Ph.D. in inorganic chemistry and eight years of experience as a technical assistant at the Iranian Food and Drug Administration (IFDA), she has made notable contributions to the development of novel platinum-based anticancer agents. Her research focuses on the impact of geometric isomerism and the role of aliphatic N-substituted glycine derivatives in enhancing the biological activities of platinum complexes. She has published in reputable journals such as Elsevier and the Iranian Quarterly Journal of Chemical Communications, with a citation index of 18. Dr. Diba Kadivar’s innovative research on platinum-based anticancer drugs, scientific contributions, and expertise in inorganic medicinal chemistry make her highly suitable for the “Best Researcher Award.” Her work advances cancer treatment strategies, and her publications demonstrate scientific excellence and impact in medicinal chemistry.

🎓Education:

Dr. Diba Kadivar pursued her doctoral studies in Inorganic Chemistry, specializing in metal-based drug development and anticancer platinum complexes. Her academic journey has been marked by a strong foundation in medicinal chemistry, with a keen interest in exploring the role of isomerism in drug efficacy. During her Ph.D., she conducted extensive research on platinum complexes with glycine derivatives, focusing on their interaction with DNA and anticancer properties. Her work involved molecular docking, dynamic simulations, and in-vitro studies to evaluate the pharmacological potential of these compounds. Through her research, she contributed to the field of coordination chemistry and its applications in medicine. She has actively participated in international conferences, presenting her findings on novel platinum-based therapies. With a passion for drug discovery, Dr. Kadivar continues to apply her expertise in chemistry to enhance the effectiveness of anticancer agents.

🏢Work Experience:

Dr. Diba Kadivar has accumulated over eight years of professional experience as a technical assistant at the Iranian Food and Drug Administration (IFDA). In this role, she has been actively involved in regulatory affairs, pharmaceutical analysis, and drug quality control, ensuring the safety and efficacy of therapeutic compounds. Alongside her administrative responsibilities, she has played a vital role in cancer research, working in laboratory settings to study platinum-based anticancer agents. Her expertise extends to working with cancer and normal cell lines, contributing to drug screening and cytotoxicity assays. Additionally, she has been involved in synthesizing and characterizing novel platinum complexes, focusing on their pharmacological interactions. Dr. Kadivar also collaborates with academic institutions and research centers, aiming to bridge the gap between regulatory science and drug discovery. Her hands-on experience in both research and regulatory affairs makes her a key contributor to pharmaceutical advancements in Iran.

🏅Awards: 

Dr. Diba Kadivar has been recognized for her contributions to inorganic and medicinal chemistry, particularly in the field of platinum-based anticancer research. She has received accolades for her pioneering work on the role of geometric isomerism in anticancer drug efficacy. Her research has been acknowledged at national and international scientific conferences, where she has been invited as a speaker and presenter. She has also played a key role in regulatory initiatives at the Iranian Food and Drug Administration, contributing to drug quality assurance and research-based policy-making. Additionally, her publications in esteemed journals such as Elsevier and the Iranian Quarterly Journal of Chemical Communications have received notable citations, highlighting her impact on the field. Dr. Kadivar’s dedication to advancing cancer therapy and pharmaceutical sciences continues to earn her recognition among her peers, further solidifying her reputation as an innovative researcher in medicinal inorganic chemistry.

🔬Research Focus:

Dr. Diba Kadivar’s research primarily revolves around the synthesis, characterization, and biological evaluation of platinum-based anticancer complexes. She investigates the impact of geometric isomerism on drug efficacy, focusing on how structural variations influence DNA interactions and cytotoxicity. Her studies explore novel ligand designs, particularly aliphatic N-substituted glycine derivatives, to enhance the pharmacological properties of platinum complexes. In addition to drug synthesis, she conducts in-vitro studies on cancer and normal cell lines to assess the cytotoxic potential of these compounds. She is also involved in molecular docking and dynamic simulations to predict drug interactions at the molecular level. Furthermore, she has worked on calcium, magnesium, copper, and zinc glycine edible nanocomplexes, aiming to develop biocompatible metal-based therapies. Through her interdisciplinary approach, Dr. Kadivar contributes to bridging chemistry and medicine, paving the way for new, targeted anticancer treatments with improved therapeutic outcomes.

Publication Top Notes:

Pharmacological properties of some 3-substituted indole derivatives, a concise overview

Authors: K. Nikoofar, D. Kadivar, S. Shirzadnia

Citations: 13

Year: 2014

Effect of geometric isomerism on the anticancer property of new platinum complexes with glycine derivatives as asymmetric N, O donate ligands against human cancer

Authors: D. Kadivar, M. E. Moghadam, B. Notash

Citations: 5

Year: 2024

Novel anticancer agents, Pt complex with 1-pyrrolidineacetic acid ligand: Synthesis, biological activity, DNA interaction, molecular docking, and dynamic study

Authors: D. Kadivar, M. E. Moghadam, M. Rezaeisadat

Year: 2025