Dr. Yuntian Xiao | Coordination Chemistry | Best Researcher Award

Dr. Yuntian Xiao | Coordination Chemistry | Best Researcher Award

Dr. Yuntian Xiao , Tianjin University , China

Yuntian Xiao is a Ph.D. candidate at Tianjin University’s School of Chemical Engineering and Technology, specializing in chemical engineering with a focus on crystallization technology. Guided by Professor Qiuxiang Yin, Xiao’s research emphasizes sustainable pesticide delivery, environmental chemistry, and molecular simulation. His academic journey began with a Bachelor’s degree in Chemical Engineering from Tianjin University of Science and Technology, followed by a Master’s degree in Chemical Engineering at Tianjin University. He has contributed significantly to the fields of cocrystal engineering and agrochemical sustainability, earning numerous accolades such as the National Scholarship and the Tianjin University Major Awards. Xiao has published extensively in top journals like Chem. Eng. J. and Green Chem., showcasing innovations in crystallization and molecular assembly. Proficient in advanced lab techniques and computational tools, Xiao actively engages in research that bridges science and industry, aiming to develop eco-friendly solutions in agriculture and beyond.

Professional Profile

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Yuntian Xiao demonstrates exceptional qualifications that align with the criteria for the “Best Researcher Awards.” As a Ph.D. candidate specializing in chemical engineering at Tianjin University, Xiao has made significant contributions to sustainable agriculture and environmental chemistry through cocrystal engineering and molecular simulation. With 15 high-impact publications in prestigious journals such as Chem. Eng. J. and ACS Appl. Mater. Interfaces, Xiao has advanced innovations in agrochemical delivery systems and crystallization processes. His interdisciplinary research addresses global challenges like environmental sustainability and efficient pesticide usage. Based on his impactful research contributions, proven academic excellence, and innovative approaches to addressing critical environmental issues, Yuntian Xiao is a highly suitable candidate for the “Best Researcher Awards.” His dedication to sustainability and interdisciplinary problem-solving exemplifies the qualities expected of a leading researcher, making him a deserving nominee.

🎓Education:

Yuntian Xiao is pursuing a Ph.D. in Chemical Engineering at Tianjin University’s School of Chemical Engineering and Technology, where he specializes in crystallization technology under the guidance of Professor Qiuxiang Yin. His doctoral research focuses on sustainable agrochemical solutions through cocrystal engineering. Xiao earned his Master’s degree in Chemical Engineering from Tianjin University, working at the National Engineering Research Center of Industry Crystallization Technology under Professor Chuang Xie . During his Master’s program, he deepened his understanding of crystallization processes and molecular simulations. He holds a Bachelor’s degree in Chemical Engineering and Technology from Tianjin University of Science and Technology, where he excelled academically, achieving a GPA of 3.92. His comprehensive curriculum covered subjects like Chemical Thermodynamics, Reaction Engineering, and Phase Diagrams, building a solid foundation in chemical engineering principles. Xiao’s academic journey reflects a commitment to excellence and a passion for advancing sustainable chemical engineering solutions.

🏢Work Experience:

Yuntian Xiao has diverse research experience in crystallization technology and sustainable chemical engineering solutions. His doctoral research includes developing cocrystal engineering strategies for agrochemical delivery, focusing on herbicides with sustained release, reduced leaching, and enhanced efficiency. He has employed molecular simulations to understand these processes at a mechanistic level. Xiao has also contributed to interdisciplinary projects, including the melt crystallization of buty nediol, reactive crystallization of sodium bicarbonate, and cooling crystallization of creatine phosphate sodium. His main responsibilities involved optimizing experimental methods, modeling processes, and analyzing factors influencing industrial crystallization outcomes. Proficient in techniques like PXRD, TGA/DSC, SEM, Raman, and HPLC, Xiao also has advanced computational skills, including MATLAB and Materials Studio. His expertise combines experimental techniques with computational modeling, allowing him to bridge fundamental research with industrial applications. Xiao’s contributions highlight his ability to address real-world challenges in chemical engineering effectively.

🏅Awards: 

Yuntian Xiao has received numerous awards recognizing his academic excellence and research achievements. As a Ph.D. student, he earned the Ph.D. Student Major Award (2021–2022) from Tianjin University for his innovative research in chemical engineering. During his Master’s program, he consistently achieved the Master Student Major Awards (2018–2021) and a Minor Award (2019–2020) for exceptional academic performance and contributions to crystallization research. His undergraduate achievements include the National Scholarship (2017–2018), a prestigious honor awarded for outstanding academic performance and extracurricular involvement. Additionally, Xiao received the Student Major Awards (2015–2018) from Tianjin University of Science and Technology and the Merit Student Award (2015–2016) from Hebei University of Technology. These accolades reflect Xiao’s dedication to excellence and his impactful contributions to chemical engineering research, solidifying his reputation as a top-performing researcher and scholar.

🔬Research Focus:

Yuntian Xiao’s research focuses on sustainable chemical engineering solutions, particularly through cocrystal engineering. His work addresses global challenges in agriculture and environmental chemistry by designing eco-friendly agrochemical delivery systems. By developing novel cocrystals, Xiao aims to achieve sustained-release pesticides and herbicides with reduced environmental leaching and enhanced efficacy. His expertise extends to mechanochemistry and molecular simulations, employing advanced computational tools to predict and optimize crystallization mechanisms. Xiao has also explored solid-state chemistry to enhance the lifecycle efficiency of agrochemicals. His interdisciplinary projects include studies on the crystallization of buty nediol, sodium bicarbonate, and creatine phosphate sodium, demonstrating his ability to translate research into industrial applications. Xiao’s research integrates experimental techniques like PXRD, Raman spectroscopy, and HPLC with computational modeling, ensuring a comprehensive understanding of crystallization processes. His innovative work in sustainable chemical engineering highlights his commitment to addressing pressing environmental and agricultural challenges.

Publication Top Notes:

1. Title: Cocrystals of propylthiouracil and nutraceuticals toward sustained-release: Design, structure analysis, and solid-state characterization
Authors: Y Xiao, L Zhou, H Hao, Y Bao, Q Yin, C Xie
Journal: Crystal Growth & Design
Citations: 47
Year: 2021

2. Title: New salts and cocrystals of pymetrozine with improvements on solubility and humidity stability: Experimental and theoretical study
Authors: D Wu, J Li, Y Xiao, X Ji, C Li, B Zhang, B Hou, L Zhou, C Xie, J Gong, …
Journal: Crystal Growth & Design
Citations: 46
Year: 2021

3. Title: Mechanochemical synthesis of cocrystal: From mechanism to application
Authors: Y Xiao, C Wu, X Hu, K Chen, L Qi, P Cui, L Zhou, Q Yin
Journal: Crystal Growth & Design
Citations: 29
Year: 2023

4. Title: Cocrystal engineering strategy for sustained release and leaching reduction of herbicides: a case study of metamitron
Authors: Y Xiao, C Wu, L Zhou, Q Yin, J Yang
Journal: Green Chemistry
Citations: 24
Year: 2022

5. Title: Pursuing Green and Efficient Agriculture from Molecular Assembly: A Review of Solid-State Forms on Agrochemicals
Authors: Y Xiao, C Wu, P Cui, L Zhou, Q Yin
Journal: Journal of Agricultural and Food Chemistry
Citations: 21
Year: 2023

6. Title: Analysis of solid-liquid equilibrium behavior of highly water-soluble beet herbicide metamitron in thirteen pure solvents using experiments and molecular simulations
Authors: Y Xiao, C Wu, C Zhao, L Qi, Y Bao, L Zhou, Q Yin
Journal: Journal of Molecular Liquids
Citations: 18
Year: 2022

7. Title: Structure analysis and insight into hydrogen bond and van der Waals interactions of etoricoxib cocrystals and cocrystal solvate
Authors: Y Wang, L Wang, F Zhang, N Wang, Y Gao, Y Xiao, Z Wang, Y Bao
Journal: Journal of Molecular Structure
Citations: 16
Year: 2022

8. Title: Comparison Study of KBH4 Spherical Agglomerates Prepared in Different Antisolvents: Mechanisms and Properties
Authors: Z Zhang, L Wang, P Zhao, Y Xiao, H Hao, Y Bao
Journal: Industrial & Engineering Chemistry Research
Citations: 13
Year: 2021

9. Title: Intermolecular interactions and solubility behavior of multicomponent crystal forms of 2,4-D: Design, structure analysis, and solid-state characterization
Authors: L Fang, Y Xiao, C Zhang, Z Gao, S Wu, J Gong, S Rohani
Journal: CrystEngComm
Citations: 13
Year: 2021

10. Title: Enhancing adsorption capacity and herbicidal efficacy of 2,4-D through supramolecular self-assembly: insights from cocrystal engineering to solution chemistry
Authors: Y Xiao, C Wu, P Cui, X Luo, L Zhou, Q Yin
Journal: Chemical Engineering Journal
Citations: 12
Year: 2023

 

 

 

 

 

Assoc. Prof. Dr. Paresh Patel | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Paresh Patel | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Paresh Patel , Uka Tarsadia University , India

Dr. Paresh N. Patel, is an Indian chemist and academic leader, currently serving as the I/c Director of the Tarsadia Institute of Chemical Science, Uka Tarsadia University, Gujarat. With over 12 years of experience in teaching, research, and administration, Dr. Patel has significantly contributed to organic synthesis, nanotechnology, and bio-sensor development. He has authored 42 peer-reviewed publications, holds five patents, and supervised numerous MSc and PhD scholars. As an editor and reviewer for reputed journals, he actively engages in the scientific community. Dr. Patel has been instrumental in securing several high-value research grants, collaborating with academia and industry to advance chemical sciences.

Professional Profile

Orcid

Scopus

Summary of Suitability for Award:

Dr. Paresh N. Patel is an accomplished researcher with a prolific career spanning over a decade in chemical sciences. His expertise lies in organic synthesis, nanotechnology, and biosensor development, supported by 42 international publications, five patents, and significant research grants totaling over ₹3 crore. He has successfully led and collaborated on high-impact projects funded by prestigious organizations such as DST, GUJCOST, GSBTM, and DBT, demonstrating his ability to secure competitive funding and deliver innovative outcomes. Dr. Paresh N. Patel’s exceptional achievements, diverse research portfolio, and impactful contributions make him highly suitable for the “Best Researcher Award.” His innovative work has advanced the frontiers of chemical sciences and demonstrated practical relevance, aligning with the award’s objective of recognizing excellence in research.

🎓Education:

Dr. Paresh N. Patel completed his PhD in Organic Synthesis from Sardar Patel University in 2013, after earning an MSc in Organic Chemistry (2009) and a BSc in Chemistry (2007) from the same institution. His academic training provided a robust foundation for his research in asymmetric synthesis, nanomaterials, and renewable resources. During his doctoral studies, he specialized in single-crystal X-ray diffraction and advanced organic methodologies. He also received an Institute Postdoctoral Fellowship at IIT Madras, where he further honed his expertise in heterocyclic compound synthesis. Over his academic journey, Dr. Patel has consistently demonstrated academic excellence, evident in his comprehensive research output and accolades for innovation.

🏢Work Experience:

Dr. Paresh N. Patel has an illustrious career spanning academia and research. He has served as an I/c Director at Tarsadia Institute of Chemical Science since 2019 and was promoted to Associate Professor in 2024. Previously, he was an Assistant Professor (2016–2024) at Uka Tarsadia University and a Postdoctoral Fellow at IIT Madras (2013–2016), contributing to teaching and research in organic chemistry. He has also worked as a Fellow at NIF-Ahmedabad and an SRF at Sardar Patel University. His roles have encompassed teaching spectroscopy, nanotechnology, and stereochemistry, as well as guiding MSc, PhD, and Postdoctoral scholars. Dr. Patel’s leadership in organizing scientific events and workshops reflects his dedication to fostering innovation and skill development in chemical sciences.

🏅Awards: 

Dr. Paresh N. Patel has earned numerous accolades for his contributions to chemical research. He was awarded the prestigious DST Inspire Grant (₹24 lakh) and several significant project grants, including ₹30 lakh from GUJCOST and ₹32 lakh from GSBTM. He also received an International Travel Grant from DBT to present his research in the USA and was a recipient of a ₹10 lakh ICSR-IIT Madras project fund. His excellence in academia has been recognized through various seed grants from Uka Tarsadia University and industrial-funded research projects. Additionally, his proposals under DST-SYST and DST-TDP are under consideration, with a substantial ₹3 crore DST-FIST project in preparation. These accolades highlight Dr. Patel’s commitment to advancing scientific knowledge and fostering impactful collaborations.

🔬Research Focus:

Dr. Paresh N. Patel’s research centers on innovative applications of organic chemistry and nanotechnology. His projects include developing nano-scale organic biosensors (DST-SERB) and synthesizing gold nanoparticles from renewable resources for organic synthesis (GSBTM). He also explores asymmetric synthesis using biocatalysts and collaborates with industry to develop biotechnology for hydrogen and ethanol production. His research portfolio includes several high-value grants, such as DST Inspire, GUJCOST, and GSBTM. Dr. Patel’s interdisciplinary approach integrates materials science, biotechnology, and organic chemistry, aiming to address environmental and industrial challenges. His work not only advances theoretical understanding but also offers practical solutions in chemical and biosensor technology.

Publication Top Notes:

Title: Study of lawsone and its modified disperse dyes derived by triple cascade reaction: dyeing performance on nylon and polyester fabrics
Authors: Patel, N.C., Desai, D.H., Patel, P.N.
Year: 2024
Citations: 2

Title: Selective detection of azelnidipine in pharmaceuticals via carbon dot mediated spectrofluorimetric method: A green approach
Authors: Lodha, S.R., Gore, A.H., Merchant, J.G., Shah, S.A., Shah, D.R.
Year: 2024
Citations: 1

Title: Benzothiophene based semi-bis-chalcone as a photo-luminescent chemosensor with real-time hydrazine sensing and DFT studies
Authors: Oza, N.H., Kasundra, D., Deshmukh, A.G., Boddula, R., Patel, P.N.
Year: 2024
Citations: 0

Title: A lawsone based novel disperse dyes with DHPMs scaffold: dyeing studies on nylon and polyester fabric
Authors: Patel, N.C., Talati, K.S., Patel, P.N.
Year: 2024
Citations: 0

Title: Surface functionalized graphene oxide integrated 9,9-diethyl-9H-fluoren-2-amine monohybrid nanostructure: Synthesis, physicochemical, thermal and theoretical approach towards optoelectronics
Authors: Borane, N., Boddula, R., Odedara, N., Jirimali, H., Patel, P.N.
Year: 2024
Citations: 1

Title: Fungus reinforced sustainable gold nanoparticles: An efficient heterogeneous catalyst for reduction of nitro aliphatic, aromatic and heterocyclic scaffolds
Authors: Deshmukh, A.G., Rathod, H.B., Patel, P.N.
Year: 2023
Citations: 1

Title: Green and sustainable bio-synthesis of gold nanoparticles using Aspergillus Trinidadensis VM ST01: Heterogeneous catalyst for nitro reduction in water
Authors: Deshmukh, A.G., Mistry, V., Sharma, A., Patel, P.N.
Year: 2023
Citations: 3

Title: Design and synthesis of chalcone mediated novel pyrazoline scaffolds: Discovery of benzothiophene comprising antimicrobial inhibitors
Authors: Tandel, S.N., Kasundra, D.V., Patel, P.N.
Year: 2023
Citations: 2

Title: Studies of novel benzofuran based chalcone scaffolds: A dual spectroscopic approach as selective hydrazine sensor
Authors: Tandel, S.N., Deshmukh, A.G., Rana, B.U., Patel, P.N.
Year: 2023
Citations: 4

Title: Novel chalcone scaffolds of benzothiophene as an efficient real-time hydrazine sensor: Synthesis and single crystal XRD studies
Authors: Tandel, S.N., Mistry, P., Patel, P.N.
Year: 2023
Citations: 4

 

 

 

Prof. Dr. Mahmoud Omar | Analytical Chemistry | Best Researcher Award

Prof. Dr. Mahmoud Omar | Analytical Chemistry | Best Researcher Award

Prof. Dr. Mahmoud Omar , Faculty of pharmacy, Taibah University , Egypt

Dr. Mahmoud Ahmed Omar Hassan is a distinguished Professor specializing in Pharmacognosy and Pharmaceutical Chemistry. Currently serving at the College of Pharmacy, Taibah University, Saudi Arabia, he brings extensive expertise in analytical chemistry and pharmaceutical sciences. His research emphasizes innovative analytical methods and the determination of pharmaceutical compounds in diverse matrices. With over two decades of teaching and research, Dr. Hassan has significantly contributed to pharmacy education, mentoring students in analytical and pharmaceutical chemistry. He is widely published, with impactful work on spectro fluorimetry, spectrophotometry, chromatography, and voltammetry. His contributions enhance drug quality assurance and pharmaceutical analysis.

Professional Profile

Google Scholar

Scopus

Summary of Suitability for Award:

Dr. Mahmoud Ahmed Omar Hassan is an exemplary candidate for the “Best Researcher Awards” due to his extensive contributions to pharmaceutical analytical chemistry. With over 25 years of experience in academia and research, he has demonstrated unparalleled expertise in developing innovative analytical methods. His research addresses critical challenges in drug analysis, including determination in pharmaceutical formulations and biological fluids, with a strong focus on green chemistry and quality assurance. Dr. Hassan’s prolific publication record includes high-impact articles in peer-reviewed journals, showcasing groundbreaking work in spectrofluorimetry, chromatography, and photoluminescence. He has also been a mentor and educator, teaching advanced courses and shaping future scientists.

🎓Education:

Dr. Mahmoud Ahmed Omar Hassan holds a Ph.D. in Pharmaceutical Sciences (Pharmaceutical Analytical Chemistry) from Minia University, Egypt, completed in 2005. His doctoral research emphasized advanced analytical techniques for pharmaceutical applications. He earned his Master’s degree in Pharmaceutical Sciences (Pharmaceutical Analytical Chemistry) from Assiut University, Egypt, in 1999, focusing on drug analysis and quality control. He began his academic journey with a Bachelor’s degree in Pharmaceutical Sciences from Al-Azhar University, Egypt, in 1994. His comprehensive educational foundation underpins his expertise in analytical chemistry, making him a leader in pharmaceutical education and research.

🏢Work Experience:

Dr. Hassan’s career spans over 25 years in academia and research. He started as a Demonstrator at Al-Azhar University in 1995, progressing to Associate Lecturer by 1999. He joined Minia University in 1999, where he served as an Assistant Professor until 2010, later becoming an Associate Professor (2010–2015) and Professor (2015–2019). In 2019, he joined Taibah University, Saudi Arabia, as a Professor in the Pharmacognosy and Pharmaceutical Chemistry Department, where he teaches pharmaceutical analytical chemistry and technology courses. His vast teaching experience and mentorship have shaped future leaders in pharmaceutical sciences.

🏅Awards: 

Dr. Hassan has been recognized for his contributions to pharmaceutical sciences and education. He received accolades for research excellence at Minia University and was honored at Taibah University for advancing pharmaceutical analysis techniques. His innovative teaching methods and mentorship earned him recognition from students and academic institutions alike. Dr. Hassan’s achievements reflect his dedication to advancing analytical chemistry and his impactful role in enhancing pharmaceutical education and research.

🔬Research Focus:

Dr. Hassan specializes in developing innovative analytical methods for pharmaceutical analysis. His work focuses on determining drugs in pure forms, pharmaceutical formulations, and biological fluids using advanced techniques like spectrofluorimetry, spectrophotometry, voltammetry, and chromatography. He is committed to promoting green analytical chemistry and improving drug quality assurance practices. His research aims to address global challenges in pharmaceutical analysis, ensuring the efficacy and safety of drugs.

Publication Top Notes:

Use of charge-transfer complexation in the spectrophotometric analysis of certain cephalosporins

Authors: GA Saleh, HF Askal, MF Radwan, MA Omar

Citations: 159

Year: 2001

Kinetic spectrofluorimetric determination of certain cephalosporins in human plasma

Authors: MA Omar, OH Abdelmageed, TZ Attia

Citations: 88

Year: 2009

Development and validation of HPLC method for simultaneous determination of amlodipine, valsartan, hydrochlorothiazide in dosage form and spiked human plasma

Authors: EG Samya M, A Osama H, D Sayed M

Citations: 77

Year: 2012

Validated spectrofluorimetric method for determination of selected aminoglycosides

Authors: MA Omar, HM Ahmed, MA Hammad, SM Derayea

Citations: 54

Year: 2015

Development of spectrofluorimetric method for determination of certain aminoglycoside drugs in dosage forms and human plasma through condensation with ninhydrin and phenyl

Authors: MA Omar, MA Hammad, DM Nagy, AA Aly

Citations: 51

Year: 2015

Development and validation of a new spectrofluorimetric method for the determination of some beta-blockers through fluorescence quenching of eosin Y. Application to content

Authors: SM Derayea, MA Omar, MAK Abdel-Lateef, AI Hassan

Citations: 48

Year: 2016

Spectrophotometric and spectrofluorimetric determination of certain diuretics through ternary complex formation with eosin and lead (II)

Authors: MA Omar

Citations: 42

Year: 2010

Kinetic spectrophotometric determination of certain cephalosporins in pharmaceutical formulations

Authors: MA Omar, OH Abdelmageed, TZ Attia

Citations: 37

Year: 2009

Validated spectrophotometric methods for determination of certain aminoglycosides in pharmaceutical formulations

Authors: MA Omar, DM Nagy, MA Hammad, AA Aly

Citations: 35

Year: 2013

Studying the association complex formation of atomoxetine and fluvoxamine with eosin Y and its application in their fluorimetric determination

Authors: SM Derayea, MA Omar, AA Abu-Hassan

Citations: 33

Year: 2018

 

 

 

 

 

 

Assoc. Prof. Dr. Furkan Ayaz | Photochemistry | Best Researcher Award

Assoc. Prof. Dr. Furkan Ayaz | Photochemistry | Best Researcher Award

Assoc. Prof. Dr. Furkan Ayaz, Biruni University , Turkey

Assoc. Prof. Dr. Furkan Ayaz is a prominent academician and researcher in molecular biology and genetics. He is currently the Head of the Molecular Biology and Genetics Department at Biruni University, Turkey. Dr. Furkan Ayaz completed his Doctoral studies at the University of Massachusetts, where his thesis focused on the role of Notch3 in T-helper cell differentiation and the induction of Experimental Autoimmune Encephalomyelitis (EAE). With a deep passion for molecular biology, he has held several prestigious positions, including Director of the Biotechnology Research and Application Center at Mersin University and Co-head of the Biotechnology Department. His academic journey is marked by his leadership in international academic programs and commitment to fostering academic exchange.

Professional Profile

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Assoc. Prof. Dr. Furkan Ayaz is highly qualified for the “Best Researcher Awards” based on his extensive academic and research achievements. He has made significant contributions to molecular biology, particularly in the understanding of immune cell differentiation and autoimmune diseases. His doctoral research on the Notch3 signaling pathway has had a profound impact in the field of immunology and disease mechanisms. His leadership in academic roles, including as Head of the Department of Molecular Biology and Genetics at Biruni University, and his tenure as Director of the Biotechnology Research and Application Center at Mersin University, demonstrate his ability to lead and foster academic development. Dr. Furkan Ayaz’s involvement in international academic exchange programs further highlights his commitment to global scientific collaboration.

🎓Education:

Dr. Furkan Ayaz obtained his Bachelor’s degree in 2010, followed by a Master’s degree at the University of Massachusetts Amherst in 2015, where his thesis revolved around the Notch3 pathway in immune system regulation. He then completed his Ph.D. at the University of Massachusetts in 2016 under the mentorship of Barbara Osborne, focusing on T helper cell differentiation and the pathogenesis of EAE. His academic achievements have earned him recognition and promotions within his institutions, ultimately achieving the title of Associate Professor in 2023 at Biruni University. Throughout his education, Dr. Furkan Ayaz was deeply involved in molecular and cell biology research, which has shaped his current expertise in genetics.

🏢Work Experience:

Assoc. Prof. Dr. Furkan Ayaz has an extensive academic career, serving in multiple key administrative and teaching roles. From 2017 to 2021, he served as Co-head of the Biotechnology Department and later became the Director of the Biotechnology Research and Application Center at Mersin University. His leadership roles also include his recent appointment as Head of the Department of Molecular Biology and Genetics at Biruni University in 2023. Furthermore, Dr. Furkan Ayaz has significantly contributed to student exchange programs, holding the positions of Bologna Coordinator, Erasmus Coordinator, and Mevlana Exchange Programme Coordinator, all aimed at fostering global collaboration and student mobility. His diverse experience has made him an essential figure in academic administration and research leadership.

🏅Awards: 

Dr. Furkan Ayaz has been recognized for his exceptional contributions to science and academia. One of his major accolades is the “Bilime Maksimum Destek Ödülleri” (Maximum Support Award for Science) from Mersin University in 2017. This award highlights his dedication to advancing research in molecular biology. His leadership in biotechnology research has also garnered significant institutional recognition, particularly for his pioneering work in the application of molecular biology techniques. These honors are a testament to Dr. Furkan Ayaz’s commitment to advancing scientific research and his continued influence in the field.

🔬Research Focus:

Dr. Furkan Ayaz’s primary research focus is on the molecular mechanisms of immune cell differentiation, with particular emphasis on the Notch signaling pathway and its role in autoimmune diseases. His work aims to better understand the pathophysiology of autoimmune encephalomyelitis (EAE) and related diseases. Furthermore, he explores the genetic aspects of cellular differentiation and its implications in disease mechanisms. His interdisciplinary approach integrates molecular biology, immunology, and genetics to develop innovative solutions for medical challenges, particularly in autoimmune disorders and genetic disease models. Dr. Furkan Ayaz is also focused on advancing biotechnology, gene therapy, and molecular diagnostics.

Publication Top Notes:

Non-canonical notch signaling in cancer and immunity

Authors: F Ayaz, BA Osborne

Citations: 208

Year: 2014

Synthetic mimics of antimicrobial peptides with immunomodulatory responses

Authors: HD Thaker, A Som, F Ayaz, D Lui, W Pan, RW Scott, J Anguita, GN Tew

Citations: 118

Year: 2012

Immunomodulatory effects of coated gold nanoparticles in LPS-stimulated in vitro and in vivo murine model systems

Authors: DF Moyano, Y Liu, F Ayaz, S Hou, P Puangploy, B Duncan, BA Osborne, …

Citations: 63

Year: 2016

Investigation of genotoxic and apoptotic effects of zirconium oxide nanoparticles (20 nm) on L929 mouse fibroblast cell line

Authors: H Atalay, A Çelik, F Ayaz

Citations: 36

Year: 2018

Immunostimulatory effect of Zinc Phthalocyanine derivatives on macrophages based on the pro-inflammatory TNFα and IL1β cytokine production levels

Authors: F Ayaz, A Yuzer, M Ince

Citations: 35

Year: 2018

Regulation of oxidative stress by methylation-controlled J protein controls macrophage responses to inflammatory insults

Authors: N Navasa, I Martín, JM Iglesias-Pedraz, N Beraza, E Atondo, H Izadi, …

Citations: 33

Year: 2015

Immunomodulatory activities of zinc (II) phthalocyanine on the mammalian macrophages through p38 pathway: Potential ex vivo immunomodulatory PDT reagents

Authors: A Yüzer, F Ayaz, M Ince

Citations: 32

Year: 2019

Differential immunomodulatory effect of carbon dots influenced by the type of surface passivation agent

Authors: F Ayaz, MO Alas, R Genc

Citations: 28*

Year: 2020

Anti-cancer and anti-inflammatory activities of bromo-and cyano-substituted azulene derivatives

Authors: F Ayaz, A Yuzer, T Ince, M Ince

Citations: 27

Year: 2020

Photo induced anti-inflammatory activities of a Thiophene substituted subphthalocyanine derivative

Authors: HT Önal, A Yuzer, M Ince, F Ayaz

Citations: 26

Year: 2020

 

 

 

 

 

Dr. Mohammad Reza Samadi | Polymer Chemistry Award | Best Researcher Award

Dr. Mohammad Reza Samadi | Polymer Chemistry Award | Best Researcher Award

Dr. Mohammad Reza Samadi, National University of Skill , Iran

Mohammad Reza Samadi, born in Borujerd, Iran, is an accomplished mechanical engineer specializing in manufacturing, production, and non-destructive testing (NDT). With a Ph.D. in Mechanical Engineering from Malek Ashtar University of Technology, Tehran, he has garnered international recognition for his contributions to welding and materials engineering. His extensive expertise spans welding inspection, business model creation, and technological innovation, further solidified by his certifications from prestigious institutions. Samadi’s diverse skill set includes proficiency in software like AutoCAD, Ansys, and Abaqus, complemented by practical knowledge of industrial machinery. A prolific author and researcher, he has published several books and articles, contributing significantly to his field. He currently serves as a faculty member at Iran’s Technical and Vocational University and has earned numerous awards for his research excellence and innovations in engineering and materials science.

Professional Profile:

Google Scholar  

Summary of Suitability for Award:

Mohammad Reza Samadi’s extensive research background and achievements, he appears to be a highly suitable candidate for the “Best Researcher Award.” Dr. Samadi, with a Ph.D. in Mechanical Engineering from Malek Ashtar University of Technology, specializes in manufacturing, production, and welding technologies. His expertise spans various critical areas such as friction stir welding (FSW) of aluminum alloys, casting technologies, and advanced industrial inspection techniques. His broad skill set in non-destructive testing (NDT), quality control, and his proficiency with various industry-standard certifications further highlight his technical depth and commitment to research excellence.

🎓Education:

Dr. Mohammad Reza Samadi holds a Ph.D. in Mechanical Engineering with a focus on Manufacturing and Production from Malek Ashtar University of Technology, Tehran. In addition to his formal education, he has earned various national and international certifications. These include ASNT Level I-II certificates in non-destructive testing (PT, RT, UT), and certifications in welding inspection, biotechnology, and industrial standards. His comprehensive education also includes specialized courses in piping theory, casting technologies, business model development, and industrial inspection skills. Samadi has enhanced his knowledge through a diverse array of professional courses from institutions across Iran, including Malek Ashtar University, Arak Method Research Institute, and Iran’s Technical and Vocational University, building a strong academic foundation for his mechanical engineering and inspection expertise.

🏢Work Experience:

With a robust career in mechanical engineering and technical inspection, Dr. Mohammad Reza Samadi has extensive experience in non-destructive testing, welding inspection, and advanced manufacturing technologies. He has served as a faculty member at the Technical and Vocational University of Iran, where he also judges research projects. In addition, Samadi has participated in evaluating and refereeing projects for industry and academic institutions, including events like Iran’s National Conference on Modern Business. He has authored several books on welding and materials science, as well as research papers in reputable journals. His technical expertise includes familiarity with a range of software for mechanical design and simulation, such as AutoCAD, Abaqus, and Ansys, underscoring his contributions to both academia and industry.

🏅Awards:

Dr. Mohammad Reza Samadi has received numerous awards for his research, including a silver medal from the Silicon Valley International Festival of Inventions and New Technologies . He has also been recognized as the best provincial researcher by the Lorestan Province universities and received top honors from the Technical and Vocational University over several years. His research in welding and materials science has garnered him special awards, such as the Khayyam Festival’s Special Award, and he has consistently been awarded in the Technical and Vocational University’s annual research festivals. Samadi’s contributions to engineering and technical education have earned him numerous commendations, solidifying his status as a leader in his field.

🔬Research Focus:

Dr. Mohammad Reza Samadi’s research primarily focuses on enhancing mechanical properties through welding and nanotechnology applications in materials science. His expertise includes friction stir welding, laser welding, and non-destructive testing methods aimed at improving strength, hardness, and durability of composite materials, particularly in the automotive and aerospace sectors. Additionally, he explores the use of advanced casting techniques, industrial valve technology, and welding inspection standards. Samadi’s research contributes to innovations in sustainable engineering and industrial quality control, where he seeks to optimize material performance through experimental and computational methods. His interdisciplinary work combines practical manufacturing skills with extensive academic research, advancing materials engineering in Iran and globally.

Publication Top Notes:

  1. Optimizing the mechanical properties of TiO2/PA12 nano‐composites fabricated by SLS 3D printing
    • Citations: 20
  2. Enhancing the tensile properties of PA6/CNT nanocomposite in selective laser sintering process
    • Citations: 10
  3. Optimizing the mechanical properties of weld joint in laser welding of GTD-111 superalloy and AISI 4340 steel
    • Citations: 9
  4. An investigation on the friction stir welding of PP/TiO2 nanocomposites for improving the tensile strength and hardness of the weld joint
    • Citations: 6
  5. Studying the effects of FDM process parameters on the mechanical properties of parts produced from PLA using response surface methodology
    • Citations: 4

 

 

 

 

Dr. Murat Dönmez | Organometallic Award | Inorganic Chemistry Award

Dr. Murat Dönmez | Organometallic Award | Inorganic Chemistry Award 

Dr. Murat Dönmez , Trakya University , Turkey

Dr. Murat Dönmez is an R&D Specialist at Teknik Kimya Donatım A.Ş. in Istanbul, Turkey. With a strong background in chemistry, he specializes in the synthesis of chemical formulations, particularly in the development of silicone-based products, antimicrobial agents, and metal complex applications. Dr. Murat Dönmez completed his Ph.D. in Chemistry at Trakya University, focusing on N-Heterocyclic Carbene complexes, and has gained significant experience in R&D roles at various chemical companies. Throughout his career, he has developed innovative solutions in polymeric defoaming, fiber production, and environmental-friendly textile processes. Dr. Murat Dönmez has contributed to multiple national and international projects, with extensive expertise in chemical formulations, process control, and laboratory management. His work in R&D has led to enhanced product quality and process optimization, contributing to his reputation as a dynamic researcher and specialist in industrial chemistry. He has published numerous articles and presented at prestigious chemistry congresses.

Professional Profile: 

Scopus 

Summary of Suitability for Award:

Based on the provided information, Dr. Murat Dönmez is highly suitable for the  ” Inorganic Chemistry Award” , particularly given his significant contributions to the field of inorganic chemistry through his research on N-heterocyclic carbenes (NHCs) and their metal complexes. His work primarily involves synthesizing and characterizing metal complexes, such as silver (Ag(I)) and palladium (Pd(II)) complexes, and studying their antimicrobial properties. These activities directly align with the focus of inorganic chemistry, which often explores the properties, synthesis, and applications of metal-containing compounds.

🎓Education:

Dr. Murat Dönmez holds a Ph.D. in Chemistry from Trakya University. His dissertation focused on the synthesis and antimicrobial analysis of new pincer-type N-Heterocyclic Carbene complexes involving metals like Silver, Palladium, and Platinum. He also earned a Master’s degree in Chemistry from Trakya University , where he further honed his research skills. His academic journey began with a Bachelor’s degree in Chemistry from Manisa Celal Bayar University,  Throughout his academic tenure, Dr. Dönmez developed a deep interest in organic synthesis, chemical formulations, and the antimicrobial properties of metal complexes. His solid educational foundation, combined with advanced training in chemical instrumentation (GC-MS, HPLC, FT-IR), has contributed significantly to his expertise in R&D. Dr. Dönmez’s education laid the groundwork for his successful career, which spans across multiple sectors, including industrial chemistry, textile production, and formulation development.

🏢Work Experience:

Dr. Murat Dönmez’s professional experience spans over a decade, during which he has held several significant positions in the chemical and textile industries. Currently, he works as an R&D Specialist at Teknik Kimya Donatım A.Ş. in Istanbul, where he develops silicone-based, oil, and polymeric defoaming products. He has contributed extensively to formulation projects for color masterbatch and mold release applications. Previously, Dr. Dönmez worked as an R&D Engineer at Akkim Kimya San. Ve Tic. A.Ş., where he managed process control for polyacrylonitrile fibers and contributed to Six Sigma projects aimed at improving fiber quality. His earlier roles included production supervision at Mogul Tekstil and R&D laboratory specialist positions at Eren Tekstil and Ecesoy Tekstil Fabrikası, where he improved processes, developed eco-friendly dyeing methods, and led safety training. Dr. Dönmez has also taught chemistry and science, imparting knowledge to students while coordinating with parents and faculty.

🏅Awards:

Dr. Murat Dönmez has received several accolades for his contributions to chemistry and research. His work in R&D has earned recognition in various industry sectors, including textile and chemical manufacturing. Dr. Dönmez was honored with certifications in GMP-GLP for drug production and effective communication techniques, reinforcing his leadership and technical communication skills. He has also been awarded for his work in energy efficiency and technical instrumentation, underscoring his commitment to environmental sustainability. Dr. Dönmez’s contribution to national R&D projects, particularly those focused on industrial processes and green chemistry, has been acknowledged through various training opportunities and professional development programs. His ability to balance technical expertise with educational outreach has positioned him as a key player in the field of chemical research and product development. Additionally, his participation in international conferences like the International Balkan Chemistry Congress and the National Chemistry Congress further highlights his recognition in the scientific community.

🔬Research Focus:

Dr. Murat Dönmez’s research focuses on organic synthesis, chemical formulations, and the antimicrobial properties of metal complexes. His work is particularly centered on the development of novel N-Heterocyclic Carbene complexes, involving silver, palladium, and platinum, with applications in antimicrobial and catalytic processes. In his recent work, Dr. Dönmez has conducted esterification studies on lithocholic acid derivatives, expanding the scope of chemical transformations and their industrial applications. He has also contributed significantly to process development in the textile industry, specifically in environmentally-friendly dyeing methods. His expertise in formulating silicone-based, oil, and polymeric defoaming products has been applied to improve manufacturing processes. Dr. Dönmez’s interdisciplinary research integrates aspects of organic chemistry, industrial applications, and green chemistry, focusing on practical, sustainable solutions. Through his research, Dr. Dönmez aims to advance the chemical industry by developing innovative materials and processes that are both effective and environmentally friendly.

Publication Top Notes:

  • The new pincer-type NHCs obtained by synthesizing Ag(I)-NHC complexes with various tails containing hydroxyl or acetate derivatives: Structural properties and in vitro antibacterial activities
  • Synthesis methods, characterizations and usage areas of medicinal compounds from THP, and their Ag(I)-NHC complexes, and their antimicrobial efficiencies
  • Synthesis, Spectral Analysis and Antimicrobial Activity of New Pd(II) Complexes Involving 5,6-Dimethylbenzimidazole
    • Citations: 3
  •  Synthesis of macrocyclization cyclophanes and their metal complexes, characterization and antimicrobial activity
  •  Synthesis of pincer type carbene and their Ag(I)-NHC complexes, and their antimicrobial activities
    • Citations: 3

 

 

 

 

Prof. Kurosh Rad-Moghadam | Organic Chemistry Award | Best Researcher Award

Prof. Kurosh Rad-Moghadam | Organic Chemistry Award | Best Researcher Award

Prof. Kurosh Rad-Moghadam, University of Guilan , Iran 

Prof. Kurosh Rad-Moghadam is an esteemed Professor of Organic Chemistry at the University of Guilan, Iran. With a foundation in pure and organic chemistry, he completed his BSc, MSc, and PhD at Shahid Beheshti University, Tehran, focusing on multicomponent syntheses and quinazoline derivatives. Joining the University of Guilan , Prof. Rad-Moghadam has since established himself as a leader in organic synthesis, specializing in advanced NMR spectroscopy, polymer chemistry, and nanotechnology. He has supervised over 60 MSc and PhD theses, guiding pioneering research on bioderived nanocomposites, ionic liquids, and deep eutectic solvents. His innovative contributions include developing sustainable methods in organic synthesis and bio-inspired eutectic melts, contributing significantly to eco-friendly chemical processes. With numerous publications in reputed journals, Prof. Rad-Moghadam continues to advance the frontiers of green chemistry and materials science.

Professional Profile: 

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Kurosh Rad-Moghadam demonstrates a remarkable profile of sustained research excellence in organic and pharmaceutical chemistry, which aligns strongly with the criteria for a “Best Researcher Award.” With an h-index of 23 and over 1,500 citations, Dr. Rad-Moghadam’s impact is evident in his innovative research contributions. His pioneering work in organic synthesis, particularly involving bioderived nanocomposites, ionic liquids, and deep eutectic solvents, has advanced sustainable chemistry methods and green solvent alternatives. His published work, represented in high-impact journals, showcases groundbreaking advancements in the synthesis and catalytic applications of ionic liquids, positioning him as a leading researcher in green chemistry.

🎓Education:

Prof. Rad-Moghadam’s academic journey began with a BSc in Pure Chemistry, followed by an MSc and PhD in Organic Chemistry at Shahid Beheshti University, Tehran. His MSc dissertation explored pseudo Mannich-type multicomponent synthesis, a versatile approach in organic chemistry. Building upon this, his PhD research delved into quinazoline derivatives, a class of compounds with pharmaceutical potential. These studies provided him with a robust understanding of organic synthesis principles and innovative approaches to multicomponent reactions. His educational background enabled him to excel in complex areas like bioderived nanocomposites and green chemistry. Through post-graduate studies, he developed expertise in areas pivotal to modern organic chemistry, including advanced NMR spectroscopy and sustainable polymer chemistry, which continue to shape his research endeavors at the University of Guilan.

🏢Work Experience:

With over two decades of teaching and research experience, Prof. Rad-Moghadam has been a central figure at the University of Guilan . He has supervised more than 40 MSc and 20 PhD theses, focusing on bioderived nanocomposites and ionic liquids, with ongoing guidance for 10 PhD and 7 MSc students. His consultancy for a polyurethane adhesive production company exemplifies his engagement in industry-relevant research, particularly in advanced materials. His teaching spans advanced organic synthesis, polymer nanotechnology, and spectroscopy, equipping students with crucial skills for research and industry. His innovative projects have gained international recognition, making him a sought-after researcher in green chemistry. Prof. Rad-Moghadam also actively contributes to scientific communities, furthering the application of eco-friendly chemicals and ionic liquids in organic synthesis.

🏅Awards:

Prof. Rad-Moghadam has received multiple accolades for his pioneering contributions to green chemistry and advanced organic synthesis. Recognized for his innovative work on ionic liquids and bioderived nanocomposites, he has established a reputation as a key figure in sustainable chemistry. His publications in high-impact journals highlight his research’s significance, leading to over 1,500 citations and an h-index of 23, reflecting the impact of his work within the scientific community. He was invited to contribute to the prestigious “Green Solvents II” volume, showcasing his expertise in sustainable solvents and ionic liquids. Prof. Rad-Moghadam’s dedication to education and research excellence has earned him respect as both a mentor and a scientist, positioning him as a leader in advancing green chemistry applications globally.

🔬Research Focus:

Prof. Rad-Moghadam’s research primarily explores eco-friendly synthetic methodologies, focusing on the design and application of bioderived nanocomposites, ionic liquids, and deep eutectic solvents. He has pioneered the use of bio-based materials to enhance the chemical and physical properties of nanoparticles, facilitating advancements in nanotechnology and sustainable materials science. His studies on ionic liquids have introduced novel catalytic properties, opening pathways for energy-efficient synthesis of organic compounds. His development of bioderived eutectic melts with unique thermal properties has potential applications in temperature-sensitive devices and selective synthesis in biosystems. With a strong commitment to green chemistry, his work addresses the environmental impact of traditional chemical processes, promoting renewable resources and reducing chemical waste. His research contributes significantly to sustainable practices in organic synthesis, offering innovative solutions for eco-friendly chemistry.

Publication Top Notes:

  1.  Starch mediates and cements densely magnetite-coating of talc, giving an efficient nano-catalyst for three-component synthesis of imidazo[1,2-c]quinazolines
    Citations: 2
  2.  Deep eutectic melt of betaine and trichloroacetic acid; its anomalous thermal behavior and green promotion effect in selective synthesis of benzimidazoles
    Citations: 1
  3.  A New Bioactive Thiazolidinone-based Azo Dye for Naked-eye Colorimetric Detection of Cyanide Ions
  4. Finely Dispersed Fe3O4 and Ag Nanoparticles Adhered by Starch Nano-layers: an Efficient Catalyst for the Synthesis of Pyrano[2,3-d]Pyrimidines
    Citations: 1
  5.  Ethyl 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate in the smiles rearrangement reaction: straightforward synthesis of amino acid derived quinolin-2(1H)-one enamines

 

 

 

 

Dr. Victoria Varchenko | Analytical Chemistry Award | Best Researcher Award

Dr. Victoria Varchenko | Analytical Chemistry Award | Best Researcher Award

Dr. Victoria Varchenko ,Institute of Functional Materials Chemistry of State Scientific Institution “Institute for Single Crystals” of NAS of Ukraine , Ukraine

Victoria Varchenko is a skilled analytical chemist whose expertise lies in electrochemical methods and nanoparticle characterization. He completed her Ph.D. in Analytical Chemistry  at  Institute for Single Crystals, Ukraine, under Dr. K.N. Belikov. Her doctoral research focused on modified carbon paste electrodes for voltammetric determination of indole compounds, a vital area in analytical chemistry. Varchenko has contributed to the development of advanced procedures for preconcentration, sorption, and microextraction. he currently holds a position as Research Associate at the same institute, where he applies her deep knowledge of voltammetry, electrochemical transformations, and inductively coupled plasma optical emission spectrometry (ICP-OES). Her work significantly impacts the accuracy and efficiency of analytical chemistry techniques, especially in complex environmental and biological sample analysis.

Professional Profile:

Orcid

Scopus

Summary of Suitability for Award:

Victoria Varchenko’s qualifications, experience, and research contributions make her a strong candidate for the “Best Researcher Awards.” Her educational background includes a Ph.D. in Analytical Chemistry from the State Scientific Institution “Institute for Single Crystals” of the National Academy of Sciences of Ukraine, with a focus on modified carbon paste electrodes for the voltammetric determination of electroactive indole compounds. Her research in this area shows innovation in analytical chemistry, specifically in voltammetry, and her expertise in preconcentration, separation, microextraction, and electrochemical transformation of organic substances demonstrates a deep understanding of complex chemical processes.

🎓Education:

Victoria Varchenko obtained her Ph.D. in Analytical Chemistry from the Institute for Single Crystals, Ukraine, in  under the guidance of Dr. K.N. Belikov. Her thesis, titled Modified Carbon Paste Electrodes for Voltammetric Determination of Electroactive Indole Compounds, significantly contributed to the field of electrochemical analysis. Before pursuing her doctoral degree, she earned a Master of Science in Chemistry from V.N. Karazin Kharkov National University in  specializing in chemical metrology. This foundational training provided her with a deep understanding of analytical techniques and quality control processes. Varchenko’s education has equipped her with the skills necessary to develop innovative solutions to complex analytical challenges, especially in the areas of voltammetry, sorption, and microextraction.

🏢Work Experience:

Victoria Varchenko has a rich background in analytical chemistry, with over eight years of experience at the State Scientific Institution “Institute for Single Crystals” of the National Academy of Sciences of Ukraine. She started her career there as a Junior Research Associate , where she focused on developing and validating analytical procedures, particularly in microextraction, voltammetry, and sorption techniques. In 2020, she was promoted to Research Associate, where she continues to focus on advanced applications of electrochemical methods, including the study of organic substances’ electrochemical transformations. Varchenko’s work also involves the use of inductively coupled plasma optical emission spectrometry (ICP-OES) for comprehensive analysis of diverse sample types. Her experience spans various research areas, including nanoparticle synthesis, voltammetric analysis, and analytical quality control, positioning her as an expert in her field.

🏅Awards:

Victoria Varchenko has received recognition for her significant contributions to the field of analytical chemistry, particularly for her innovative research on electrochemical techniques. Though specific awards are not detailed, her work is highly regarded in the scientific community, with multiple publications in peer-reviewed journals. Her research, including the development of modified carbon paste electrodes for indole compound determination, has been instrumental in advancing analytical chemistry techniques. Additionally, her work on microextraction and sorption in environmental analysis has been well-received. Varchenko has been an active contributor to quality control advancements in chemical analysis, further demonstrating her impact on the field. Her work is supported by her position as a Research Associate at a leading institution, reflecting the esteem with which she is regarded by her peers.

🔬Research Focus:

Victoria Varchenko’s primary research interests lie in advancing analytical chemistry techniques, with a particular focus on preconcentration, separation methods, and electrochemical analysis. She specializes in developing and applying modified carbon paste electrodes for voltammetric determination of electroactive organic compounds. Her work in microextraction and sorption has led to enhanced sample preparation methods, improving the efficiency and accuracy of analytical testing. Varchenko is also involved in nanoparticle synthesis and characterization, areas that are increasingly important in environmental and biological analysis. Furthermore, she applies inductively coupled plasma optical emission spectrometry (ICP-OES) for the comprehensive analysis of complex samples, such as environmental and agricultural products. Varchenko’s research is aimed at creating more efficient, accurate, and environmentally friendly analytical methods, with applications in fields like environmental monitoring and health diagnostics.

Publication Top Notes:

  • Differential-Pulse Polarographic Determination of Periciazine by Hydrogenperoxymonofulfate Treatment
  • Menthol-Based (Deep) Eutectic Solvents: A Review on Properties and Application in Extraction
    • Cited by: 13
  •  Application of Cloud-Point Extraction for the Determination of Arsenic using Inductively Coupled Plasma Atomic Emission Spectrometry in Several Pharmaceutical Preparations
  • : Grafting of phosphorus-containing tetrahydroxy(thia)calixarenes on silica enhances europium(III) adsorption
    • Cited by: 3
  • Study on the sorption properties of (NH4)2TiOF4 particles
    • Cited by: 3

 

 

 

 

Dr. Shu Tian | Surface Chemistry Award | Best Researcher Award

Dr. Shu Tian | Surface Chemistry Award | Best Researcher Award

Dr. Shu Tian, Ningbo Institute of Materials Technology & Engineering, CAS , China

Shu Tian is an Assistant Professor at Ningbo Institute of Materials Technology & Engineering, CAS. he holds a strong background in materials science and engineering, having earned his bachelor’s degree from Northeastern University and completed a joint master’s program between Shanghai University and Ningbo Institute. His Ph.D. in Chemical Engineering was awarded by Tianjin University. Dr. Tian’s research focuses on developing environmentally friendly, long-lasting antifouling materials, with a particular interest in organic and functional coatings. he has contributed to various advanced protective coatings and collaborates with several prestigious research institutions. Dr. Tian has published numerous research papers and holds multiple patents for his innovations in surface chemistry and materials science.

Professional Profile:

Google Scholar

Summary of Suitability for Award:

Dr. Shu Tian is highly suitable for the “Best Researcher Award” based on his extensive contributions to the field of materials science, particularly in the area of antifouling and functional coatings. his innovative approach to designing environmentally friendly, long-lasting coatings that address significant challenges such as marine biofouling, corrosion, and surface icing highlights his leadership in research. Dr. Tian has successfully led two major research projects and contributed to over 10 others, demonstrating her ability to drive impactful, collaborative scientific advancements.

🎓Education:

Shu Tian’s academic journey began with a Bachelor’s degree from the School of Materials Science and Engineering at Northeastern University. he continued his studies as a joint graduate student between Shanghai University and Ningbo Institute of Materials Technology and Engineering, CAS, where he completed his Master’s degree. Dr. Tian then pursued a Ph.D. at the School of Chemical Engineering, Tianjin University, focusing on advanced materials and coatings. He is strong educational foundation has propelled his into his  current position as an Assistant Professor at Ningbo Institute of Materials Technology & Engineering, where he continues to expand his expertise in surface chemistry and material science.

🏢Work Experience:

Dr. Shu Tian’s professional experience includes serving as an Assistant Professor at Ningbo Institute of Materials Technology & Engineering, CAS, since September 2023. Prior to this, he was involved in advanced research during his doctoral studies and contributed to various research projects on functional organic coatings. As the leader of two projects and a key member of over ten others, Dr. Tian has honed his skills in materials development, particularly in antifouling and protective coatings. he has also collaborated with top research institutes like Zhejiang University of Technology, Luoyang Ship Material Research Institute, and Soochow University. his research experience spans marine biofouling, corrosion, and surface icing prevention.

🏅Awards:

Dr. Shu Tian has received several recognitions for his innovative contributions to the field of materials science, particularly for his work on antifouling and functional coatings. While specific awards and honors were not listed, his recognition is evident in the numerous citations and patents he has achieved. his research has garnered attention in several international academic and scientific communities. his work continues to advance the field, earning his respect and acknowledgment from peers and industry leaders. The publication of his research and successful patent filings further demonstrate his commitment to innovation in the material sciences.

🔬Research Focus:

Dr. Shu Tian’s research is centered on the development of environmentally friendly and durable antifouling materials. his work explores surface chemistry and functional coatings, including bio-based antibacterial coatings, integrated anticorrosion and antifouling coatings, and biomimetic anti-icing coatings. he investigates ways to improve the longevity and performance of materials in harsh environments, focusing on the prevention of biofouling, corrosion, and surface icing in marine applications. Dr. Tian’s contributions are key to addressing challenges in protective coatings, with a focus on sustainability, material innovation, and the development of smart coatings with multi-functional properties.

Publication Top Notes:

  •  A new hybrid silicone-based antifouling coating with nanocomposite hydrogel for durable antifouling properties
    Citations: 110
  •  Pro-healing zwitterionic skin sensor enables multi-indicator distinction and continuous real-time monitoring
    Citations: 99
  •  Fabrication of bio-based amphiphilic hydrogel coating with excellent antifouling and mechanical properties
    Citations: 73
  •  Amphiphilic marine antifouling coatings based on a hydrophilic polyvinylpyrrolidone and hydrophobic fluorine–silicon-containing block copolymer
    Citations: 61
  •  Force-induced ion generation in zwitterionic hydrogels for a sensitive silent-speech sensor
    Citations: 52

 

 

 

 

 

Mr. Lei Mou | Analytical Chemistry Award | Young Scientist Award

Mr. Lei Mou | Analytical Chemistry Award | Young Scientist Award

Mr. Lei Mou ,Guangzhou Medical University, China

Lei Mou is a Research Associate at the Terasaki Institute for Biomedical Innovation, Los Angeles, specializing in biosensors, wearable devices, and organ-on-a-chip technology. With a robust background in biomedical engineering and materials science, Lei completed a Ph.D. from the National Center for Nanoscience and Technology (NCNST) under Prof. Xingyu Jiang. His work integrates advanced microfluidic and biosensor platforms aimed at enhancing clinical diagnostics and wearable health monitoring. With extensive research and technical skills, he has contributed to innovative approaches in immunoassay technology, HPV detection, and biosignal computing. Lei’s contributions to nanobiotechnology are also reflected in his numerous patents, high-impact publications, and presentations at international conferences.

Professional Profile:

Google Scholar

Summary of Suitability for Award:

Lei Mou demonstrates strong potential for the “Young Scientist Award,” with impressive accomplishments in biomedical engineering, especially in clinical biosensors, wearable devices, and organs-on-a-chip technology. His academic foundation is rooted in a Ph.D. from the Chinese Academy of Sciences, where he specialized in biomaterials and point-of-care diagnostic platforms, laying a solid groundwork for his current innovative research.

🎓Education:

Lei Mou earned his Ph.D. in Biomedical Engineering from the National Center for Nanoscience and Technology, Chinese Academy of Sciences (2016-2020), where he researched biosensors and microfluidic devices under Prof. Xingyu Jiang’s mentorship. His undergraduate studies in Materials Science and Engineering were completed at the University of Science and Technology Beijing (USTB) in 2016, as part of the Excellent Engineer Training Program. Here, he laid the foundation for his expertise in nanomaterials and engineering design, achieving numerous accolades for academic excellence. Lei’s educational path has emphasized interdisciplinary research, equipping him with a skill set to bridge materials science, biomedical engineering, and clinical applications effectively.

🏢Work Experience:

Lei Mou is currently a Research Associate at the Terasaki Institute for Biomedical Innovation (TIBI), where he focuses on the development of organ-on-a-chip systems and advanced biosensors. Prior to this, he was a Researcher at the Third Affiliated Hospital of Guangzhou Medical University, where he specialized in clinical biosensors and wearable device technology. Lei’s professional experience has enabled him to develop high-sensitivity immunoassay platforms and contribute to significant projects in health-related microfluidic applications. His work bridges clinical settings and advanced engineering, bringing laboratory innovations closer to real-world applications.

🏅Awards:

Lei Mou has earned numerous awards for his academic and research excellence, including the Director’s Scholarship at NCNST and the First Class Scholarship for Master’s Students, recognizing him as a top 3% student. During his undergraduate studies, he received the prestigious 86 Alumni Scholarship, the National Scholarship from China’s Ministry of Education, and the Beijing Outstanding Graduates Award. His achievements reflect his commitment to excellence and innovation in his field, with honors that highlight his performance and contributions to biomedical engineering and materials science.

🔬Research Focus:

Lei Mou’s research focuses on microfluidic immunoassays, wearable biosensors, and organs-on-a-chip technologies. He specializes in integrating nanotechnology with biomedical engineering to develop advanced diagnostic tools for healthcare. His work includes creating chemiluminescence immunoassay platforms that amplify biomarker signals using gold nanoparticles, as well as developing portable devices for detecting high-risk HPV strains. His research has significant implications for personalized medicine and remote diagnostics, aiming to improve accessibility and precision in clinical diagnostics and healthcare monitoring.

Publication Top Notes:

  • Surface chemistry of gold nanoparticles for health-related applications
    • Citations: 277
  • Microfluidics‐based biomaterials and biodevices
    • Citations: 183
  • Materials for microfluidic immunoassays: a review
    • Citations: 154
  • Printable metal-polymer conductors for highly stretchable bio-devices
    • Citations: 130
  • Highly stretchable and biocompatible liquid metal‐elastomer conductors for self‐healing electronics
    • Citations: 109