Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | SCIENTIFIC OFFICER/H at NATIONAL CENTER FOR COMPOSITIONAL CHARACTERISATION OF MATERIALS,Ā  India

Shekhar Raparthi is a Scientific Officer / H at the National Centre for Compositional Characterisation of Materials (NCCCM), BARC, Hyderabad. With over three decades of expertise in analytical chemistry, he specializes in trace and ultra-trace characterization of metals, alloys, and high-purity materials. His pioneering work in glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry has significantly advanced compositional analysis. Holding a Ph.D. in Chemistry from JNTU, Hyderabad (2008), he has published extensively in reputed international journals and served as a peer reviewer. Currently leading the ultra-trace analysis section at NCCCM since 2023, he is an esteemed member of India Society for Mass Spectrometry (ISMAS) and Indian Society of Analytical Science (ISAS). His contributions to spectrometric techniques have practical applications in industrial and nuclear material characterization, making him a respected figure in analytical and green chemistry research.

Professional Profile :Ā  Ā  Ā  Ā  Ā 

ScopusĀ Ā 

Summary of Suitability for Award:

Dr. Shekhar Raparthi is a highly accomplished researcher specializing in trace and ultra-trace characterization of materials using mass and spectrometric techniques. With over 32 publications in high-impact journals, an h-index of 14, and 631 citations, he has made significant contributions to analytical chemistry. His pioneering research includes the development of infrared spectroscopic methods, glow discharge quadrupole mass spectrometry (GD-QMS), and novel electrolyte cathode discharge atomic emission spectrometric sources. These innovations have advanced material characterization techniques, benefiting the scientific community and industries dealing with high-purity materials, metals, and alloys. Dr. Raparthi’s extensive research contributions, innovative methodologies, and commitment to advancing analytical chemistry make him an ideal candidate for the “Best Researcher Award.” His work has been recognized through numerous international publications, and his role as the head of the ultra-trace analysis section at NCCCM, BARC, further solidifies his impact in the field.

šŸŽ“Education:

Shekhar Raparthi pursued his M.Sc. in Chemistry from the University of Hyderabad in 1993, where he developed a strong foundation in analytical chemistry. Following this, he underwent a one-year orientation program at BARC in 1994, gaining specialized training in advanced compositional characterization techniques. His academic journey culminated in a Ph.D. in Chemistry from Jawaharlal Nehru Technological University (JNTU), Hyderabad, in 2008. His doctoral research focused on the development of advanced mass spectrometric methodologies for the ultra-trace analysis of metals and high-purity materials. Over the years, he has continuously expanded his expertise through research, peer-reviewed publications, and participation in international analytical chemistry conferences. His educational background has been instrumental in his ability to innovate in trace and ultra-trace analysis techniques, making significant contributions to the field of analytical chemistry.

šŸ¢Work Experience:

Shekhar Raparthi began his professional career in 1994 as a Scientific Officer/C at NCCCM, BARC, Hyderabad, specializing in the compositional characterization of various materials. Over the past 30 years, he has developed novel analytical methodologies for metals, alloys, and high-purity materials using mass spectrometric and spectroscopic techniques. His expertise includes glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry, contributing to advancements in trace and ultra-trace analysis. His work has been widely recognized, leading to 32 publications in reputed international journals. Since 2023, he has been heading the ultra-trace analysis section at NCCCM, overseeing critical research in compositional characterization. He is also an active peer reviewer for international journals. With extensive experience in spectrometric techniques, Shekhar Raparthi plays a key role in material characterization for nuclear, industrial, and high-tech applications.

šŸ…Awards:Ā 

Shekhar Raparthi has received several accolades for his significant contributions to analytical chemistry and mass spectrometry. His infrared spectroscopic method for oxygen quantification in TiClā‚„ was widely appreciated in the titanium industry, earning him recognition in the field. His research on glow discharge quadrupole mass spectrometry and matrix volatilization methodologies for ultra-trace characterization of high-purity germanium has been published in top international journals, including Analytical Chemistry. His expertise in trace element analysis has made him a valuable asset to BARC and the Indian scientific community. As a distinguished member of ISMAS and ISAS, he actively contributes to the advancement of analytical sciences in India. While he has not listed specific awards, his impactful research, numerous peer-reviewed publications, and leadership in ultra-trace analysis solidify his reputation as a leading scientist in compositional characterization.

šŸ”¬Research Focus:

Shekhar Raparthi’s research revolves around trace and ultra-trace characterization of materials using advanced mass spectrometric and spectroscopic techniques. His work plays a crucial role in ensuring the purity and compositional accuracy of metals, alloys, and high-purity materials. He has pioneered glow discharge quadrupole mass spectrometry (GD-QMS) for detecting impurities at ultra-trace levels. Additionally, his development of matrix volatilization methodologies has enhanced the characterization of high-purity germanium, a material critical in semiconductor and radiation detection applications. His innovations in electrolyte cathode discharge atomic emission spectrometry (ECD-AES) have improved the sensitivity and precision of trace element analysis. His research significantly contributes to nuclear, industrial, and advanced material applications, ensuring high accuracy in material compositional studies. As the head of the ultra-trace analysis section at NCCCM, his expertise in **

Publication Top Notes:

In-situ Tiā€“Ir and ammonium thiocyanate modifiers for improvement of sensitivity of Sc to sub parts per billion levels and its accurate quantification in coal fly ash and red mud by GFAAS

Hydrophobicity induced graphene oxide based dispersive micro solid phase extraction of strontium from seawater and groundwater prior to GFAAS determination

Direct determination of ultra-trace sodium in reactor secondary coolant waters and other waters by electrolyte cathode discharge atomic emission spectrometry

Citation Count: 1

 

Assist. Prof. Dr. Arman Zarebidaki | Materials Chemistry | Best Researcher Award

Assist. Prof. Dr. Arman Zarebidaki | Materials Chemistry | Best Researcher Award

Assist. Prof. Dr. Arman Zarebidaki | Materials Chemistry | Assistant professor at Amirkabir University of Technology , Iran

Dr. Arman Zarebidaki is an Assistant Professor and Head of the Corrosion Engineering and Material Protection Group at Amirkabir University of Technology (Tehran Polytechnic), Bandarabbas Campus, Iran. With a strong background in materials engineering, electrochemistry, and surface engineering, his research focuses on advanced coatings for corrosion protection, hydrogen evolution, and oxygen evolution reactions. He has extensive experience in electrochemical techniques such as polarization methods, voltammetry, and impedance spectroscopy. Dr. Zarebidaki has supervised over 25 master’s theses and has authored multiple high-impact journal articles. He holds three national patents in corrosion prevention and is recognized for his contributions to sustainable energy technologies and industrial material protection.

Professional Profile :Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā 

Google Scholar

Orcid

ScopusĀ 

Summary of Suitability for Award:

Dr. Arman Zarebidaki is a highly accomplished researcher in materials science, electrochemistry, and surface engineering, making him an exceptional candidate for the “Best Researcher Award”. His research spans crucial areas such as corrosion protection, electrocatalysis, and advanced coating technologies, which have significant industrial and environmental applications. His high-impact publications, extensive teaching experience, and contributions to innovative material protection methods demonstrate his leadership in the field. He has also secured three national patents, reflecting his ability to translate research into practical solutions. Recognized as the Top Researcher in Hormozgan Province (2023) and a Distinguished Researcher at Azad University (2015), his accolades further establish his excellence in scientific innovation. Dr. Zarebidakiā€™s outstanding research in corrosion-resistant coatings, electrochemical energy applications, and material durability makes him a strong contender for the “Best Researcher Award”. His work not only advances scientific knowledge but also has direct implications for industry and sustainability, positioning him among the top researchers in his field.

šŸŽ“Education:

Dr. Arman Zarebidaki holds a Ph.D. in Metallurgical & Materials Engineering from the University of Tehran (2006ā€“2012), where he investigated the tribo-corrosion behavior of Ni-P electroless coatings with SiC nanoparticles and carbon nanotubes. His doctoral research resulted in multiple high-impact publications. Prior to that, he earned an M.S. in Metallurgical & Materials Engineering from the University of Tehran (2003ā€“2006), focusing on optimizing and characterizing Al/Gr composites produced by in-situ powder metallurgy. His master’s research led to a Q2-ranked ISI publication. He completed his B.S. in Materials Engineering-Industrial Metallurgy at Azad University, Yazd Branch (1998ā€“2003), where he studied surface hardening of cast iron using the TIG process. Throughout his academic journey, he maintained outstanding GPAs and received multiple accolades for his research excellence. His extensive educational background laid the foundation for his expertise in materials engineering, corrosion protection, and advanced electrochemical methods.

šŸ¢Work Experience:

Dr. Arman Zarebidaki is an Assistant Professor at Amirkabir University of Technology, where he has been leading the Corrosion Engineering and Material Protection Group since 2023. He has been actively involved in teaching courses such as oxidation and hot corrosion, corrosion inhibitors, and advanced electrochemistry laboratory techniques. Prior to this, he served as an Assistant Professor at Azad University, Yazd Branch (2008ā€“2014), where he taught advanced electrochemistry, cathodic & anodic protection, and corrosion science. With over 25 master’s theses supervised, he has contributed significantly to the field of corrosion and electrocatalysis . His expertise includes deposition techniques for coatings and nanocomposite materials, corrosion assessments, and electrochemical analysis. He is proficient in methods such as cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. His research extends to nanotube production via anodizing, corrosion inhibition using green inhibitors, and the development of protective coatings for industrial applications.

šŸ…Awards:Ā 

Dr. Arman Zarebidaki has received several prestigious awards throughout his career. In 2023, he was recognized as the Top Researcher in technical and engineering fields in Hormozgan province. He was also named a Distinguished Researcher by the Deputy of Education and Technology at Islamic Azad University, Yazd Branch, in 2015. His exceptional teaching abilities earned him the Exemplary Professor Award in 2014. Additionally, his Ph.D. thesis was awarded as a Superior Dissertation at the University of Tehran in 2012. As an M.Sc. student, he ranked 1st among 50 peers in the Department of Material Science and Engineering. His contributions to the field of corrosion prevention and control are further highlighted by three national patents, including innovations in self-healing epoxy coatings, corrosion-fatigue assessment apparatus, and electroless coatings for oil and gas steel equipment, demonstrating his commitment to advancing materials engineering and corrosion protection technologies.

šŸ”¬Research Focus:

Dr. Arman Zarebidakiā€™s research centers on materials engineering, electrochemistry, and surface engineering, with a strong emphasis on developing advanced coatings to enhance material durability and performance. His work involves designing metallic, composite, and nanocomposite coatings for industrial applications, particularly for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), aiming to improve the efficiency of electrolysis in hydrogen and oxygen production. He specializes in electrochemical characterization techniques, including polarization methods, linear sweep voltammetry, cyclic polarization, and electrochemical impedance spectroscopy (EIS), to analyze corrosion resistance and material degradation. Additionally, he investigates electrocatalysis mechanisms and surface chemistry to develop sustainable energy solutions. His expertise extends to nanotube production through anodizing, corrosion inhibitors, and smart coatings. His contributions help address global challenges related to energy sustainability, environmental protection, and climate change, making his research pivotal in the advancement of corrosion-resistant and energy-efficient materials.

Publication Top Notes:

Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024ā€“graphite composites produced by in situ powder metallurgy method

Citations: 396

An investigation on effects of heat treatment on corrosion properties of Niā€“P electroless nano-coatings

Citations: 166

Effect of surfactant on the fabrication and characterization of Ni-P-CNT composite coatings

Citations: 104

Characterization and corrosion behavior of electroless Niā€“P/nano-SiC coating inside the CO2 containing media in the presence of acetic acid

Citations: 96

The effect of sliding speed and amount of loading on friction and wear behavior of Cuā€“0.65 wt.% Cr alloy

Citations: 47

Microstructure and corrosion behavior of electrodeposited nano-crystalline nickel coating on AZ91 Mg alloy

Citations: 46

Evaluation of corrosion inhibition of mild steel in 3.5 wt% NaCl solution by cerium nitrate

Citations: 43

Electrodeposition and characterization of Coā€“BN (h) nanocomposite coatings

Citations: 42

An experimental study on stress corrosion behavior of A131/A and A131/AH32 low carbon steels in simulated seawater

Citations: 28

Porosity measurement of electroless Niā€“P coatings reinforced by CNT or SiC particles

Citations: 28

 

Ms. Apurva Singh | Organic Chemistry | Best Researcher Award

Ms. Apurva Singh | Organic Chemistry | Best Researcher Award

Ms. Apurva Singh | Organic Chemistry | PhD at Indian institute of technology Roorkee, India

Apurva Singh is an organic chemistryĀ  with a keen interest in technological advancements and artificial intelligence applications in chemistry. With five years of research experience in academic laboratories and two years as a tutor, she specializes in organic synthesis and catalysis. Currently pursuing her Ph.D. at IIT Roorkee under Prof. Naseem Ahmed, she is engaged in process chemistry, exploring new methodologies using homogeneous and heterogeneous catalysis. Apurva has a strong publication record in international journals, reflecting her expertise and dedication to scientific research. She is highly motivated, analytical, and committed to knowledge exchange. Her enthusiasm for teaching, research, and interdisciplinary collaboration makes her a dynamic professional in the field of chemistry.

Professional Profile :Ā 

Orcid

ScopusĀ 

Summary of Suitability for Award:

Apurva Singh is a highly promising researcher in the field of organic synthesis and catalysis, demonstrating a strong commitment to scientific innovation. With five years of research experience at IIT Roorkee, she has contributed significantly to the development of novel catalytic methodologies, particularly in transition-metal catalysis, oxidation reactions, and organo catalysis. Her research has led to multiple publications in high-impact journals, including RSC, Synthesis (Thieme), and Organic & Biomolecular Chemistry, showcasing her ability to conduct impactful studies. Additionally, she has received prestigious poster awards at national and international conferences, underscoring her ability to effectively present and communicate her findings. Given her strong publication record, innovative research contributions, and recognition through awards, Apurva Singh is a highly suitable candidate for the “Best Researcher Award.” Her work in catalysis and organic synthesis, coupled with her dedication to advancing chemical sciences, makes her a deserving nominee for this prestigious recognition.

šŸŽ“Education:

Apurva Singh is currently pursuing her Ph.D. in Organic Synthesis and Catalysis at the Indian Institute of Technology (IIT) Roorkee under the mentorship of Prof. Naseem Ahmed. Her research focuses on developing innovative catalytic methodologies for organic transformations, with publications in reputed journals such as RSC and Synthesis (Thieme). Prior to her Ph.D., she completed her Master of Science (M.Sc.) in Chemistry from Chaudhary Charan Singh University (CCSU), Meerut, in 2017, securing a first-class distinction with 76%. During her postgraduate studies, she gained expertise in organic chemistry and reaction mechanisms, further strengthening her foundation in the subject. Additionally, she pursued a Bachelor of Education (B.Ed.) from CCSU, Meerut, from 2018 to 2020, achieving 80%. Her B.Ed. degree equipped her with essential teaching skills, enhancing her ability to mentor and guide students in the academic field. Apurvaā€™s strong academic background demonstrates her dedication to both research and education.

šŸ¢Work Experience:

Apurva Singh has over five years of research experience in organic chemistry, specializing in catalysis, and two years of teaching experience. She is currently a Ph.D. researcher at IIT Roorkee, working on process chemistry, where she investigates novel catalytic methodologies for organic synthesis. Her research involves designing transition-metal complexes for oxidation reactions and developing regio selective synthetic strategies. She has published multiple research articles in internationally recognized journals, highlighting her contributions to the field. Apart from research, she has two years of experience as an academic tutor, mentoring undergraduate and postgraduate students in organic chemistry. She has assisted in research activities, manuscript writing, and conference presentations. Her expertise extends to coding for computational chemistry applications, bridging experimental and theoretical approaches. Apurvaā€™s proactive nature and strong communication skills enable her to collaborate effectively, making significant contributions to both research and academic training.

šŸ…Awards:Ā 

Apurva Singh has received multiple accolades for her outstanding research contributions. In 2024, she was awarded the Poster Award at the Indian Academy of Sciences Meeting and Lecture Workshop held at IIT Roorkee, recognizing her innovative work in catalysis and organic synthesis. In the same year, she won another Poster Award at the 2nd International Conference on Molecules to Materials at NIT Hamirpur, further establishing her expertise in the field. These awards highlight her ability to present complex scientific findings effectively and her dedication to advancing research. Her work has been widely appreciated for its significance in developing new catalytic methodologies, and she continues to be an active participant in scientific conferences and symposiums. Apurvaā€™s achievements reflect her commitment to excellence in research and academia, positioning her as a promising scientist in the field of organic chemistry.

šŸ”¬Research Focus:

Apurva Singhā€™s research focuses on organic synthesis and catalysis, with a strong emphasis on developing novel transition-metal complexes for oxidation reactions. She explores homogeneous and heterogeneous catalysis to improve reaction efficiency and selectivity, mimicking enzymatic processes for sustainable chemistry. Her work includes the design of Ī¼-chlorido-bridged dimanganese(II) complexes to replicate galactose oxidase enzyme activity, offering applications in oxidation and aldol reactions. She is also engaged in Fenton free radical reactions for regio selective synthesis of complex molecules. Her recent studies on organocatalytic synthesis of bioactive pyrazoline and pyrimidine derivatives contribute to medicinal chemistry by targeting bacterial enzymes like thymidine kinase in Staphylococcus aureus. Apurva is particularly interested in the intersection of chemistry and artificial intelligence, leveraging computational tools to predict reaction mechanisms and optimize catalyst design. Her multidisciplinary approach bridges fundamental chemistry with emerging technologies, driving innovation in organic synthesis and process chemistry.

Publication Top Notes:

1. Nickel(II)-hydrazineylpyridine catalyzed regioselective synthesis of Ī±-benzyl substituted Ī²-hydroxy ketones via a Fenton free radical reaction

Authors: Not provided in the given data

Year: 2025

Journal: Organic & Biomolecular Chemistry

2. Oxidative Cyclization Reactions Catalyzed by Designed Transition-Metal Complexes: A New Strategy for the Synthesis of Flavone, Quinolone, and Benzofuran Derivatives

Authors: Not provided in the given data

Year: 2023

Journal: Synthesis

3. Designed Ī¼-Chlorido-bridged dimanganese(II) complexes to mimic the activity of galactose oxidase enzyme: Application in the dehydrogenative oxidation of alcohol and aldol reaction

Authors: Not provided in the given data

4. Organocatalytic synthesis of novel pyrazoline and pyrimidine derivatives as potent thymidine kinase inhibitors targeting Staphylococcus aureus

Authors: M.I. Issa Alahmdi

Year: 2025

 

 

Prof. Driss Chebabe | Organic synthesis | Best Researcher Award

Prof. Driss Chebabe | Organic synthesis | Best Researcher Award

Prof. Driss Chebabe , Moulay Ismail University of Meknes, Faculty of Sciences and Technics, Errachidia, Morocco , Morocco

Dr. Chebabe Driss is a Professor of Chemistry at the Faculty of Science and Technics, Errachidia , Moulay Ismail University, Morocco, he is a renowned researcher with an H-index of 18 and over 900 citations. He leads the “Natural Substances & Synthesis & Modeling” research team and is a permanent member of the Materials Engineering for the Environment and Natural Resources (IMERN) Laboratory. His research focuses on organic synthesis, corrosion protection, and biological activities. With over nine years in academia and 19 years in territorial administration, Dr. Driss has contributed to numerous international journals, participated in scientific committees, and co-supervised theses in applied organic chemistry. Additionally, he is actively involved in teaching and organizing scientific events. Dr. ChebabeĀ  dedication to chemistry, innovation, and education has made him a distinguished figure in his field.

Professional Profile

Orcid

Scopus

Summary of Suitability for Award:

Dr. Chebabe Driss is a highly accomplished researcher in the field of chemistry, with significant contributions in organic synthesis, corrosion protection, and biological activity. His impressive academic background, including a Doctorate of State and Habilitation, demonstrates his deep expertise in applied organic chemistry. Dr. Driss has an H-index of 18 with over 900 citations, reflecting the substantial impact of his research on the scientific community. His innovative work on eco-friendly corrosion inhibitors and biologically active compounds highlights his commitment to addressing real-world challenges using sustainable approaches. Dr. Chebabe Driss exemplifies the qualities of an outstanding researcher, combining innovation, impact, and mentorship. His academic achievements, research output, and dedication to advancing chemistry make him a deserving candidate for the “Best Researcher Awards.” His work not only contributes to scientific knowledge but also addresses critical societal and environmental issues, reflecting the core values of this prestigious recognition.

šŸŽ“Education:

Dr. Chebabe Driss has a comprehensive academic background in chemistry. He earned his Bachelor of Science in Chemistry from Ibn Tofail University, Kenitra, followed by a Certificate of Advanced Studies (CEA) in Organic Chemistry. He pursued a Graduate Diploma (DES) in Organic Chemistry, synthesizing novel 1,2,4-triazole polar head surfactants for corrosion inhibition. His Doctorate of State focused on synthesizing heterocyclic surfactants with dual properties: corrosion inhibition and antibacterial activity. He completed his Habilitation Thesis at the Faculty of Sciences and Technics, Errachidia, Moulay Ismail University. Throughout his education, Dr. Driss specialized in areas such as organic synthesis, corrosion protection, and chemical applications for environmental and biological challenges. These academic achievements have laid the foundation for his research and teaching endeavors, demonstrating his commitment to advancing the field of chemistry.

šŸ¢Work Experience:

Dr. Chebabe Driss has a distinguished career, combining 19 years in territorial administration and nine years in higher education and scientific research. As a professor at Moulay Ismail University, he teaches organic chemistry, corrosion, and material protection. He leads the ā€œNatural Substances & Synthesis & Modelingā€ research team and is a core member of the IMERN Laboratory. Dr. Driss is an associate member of the Organic Chemistry, Catalysis, and Environment Laboratory at Ibn Tofail University. He has supervised numerous academic projects and theses and actively contributes to doctoral training programs in Chemistry and Environment. Dr. Driss is also a reviewer for scientific journals and has participated in organizing national and international conferences. His professional activities reflect a commitment to academic excellence, research innovation, and fostering the next generation of chemists.

šŸ…Awards:Ā 

Dr. Chebabe Driss has received numerous accolades, including membership in the prestigious “Whoā€™s Who in the World” 2009 edition. He holds a patent for his innovative contributions to applied organic chemistry and is an active member of the Moroccan Association of AntiCorrosion and the Environment (AMACOPE). Dr. Drissā€™s recognition stems from his exceptional research in corrosion protection, organic synthesis, and biological activities. He has earned widespread acclaim for his publications in internationally indexed journals and his participation in scientific committees. Additionally, Dr. Driss has contributed significantly to organizing scientific events, showcasing his leadership and collaborative spirit. These honors underscore his influence in the chemistry community, cementing his reputation as a leading researcher and educator in Morocco and beyond.

šŸ”¬Research Focus:

Dr. Chebabe Drissā€™s research spans three primary axes: organic synthesis, corrosion protection, and biological activity. In organic synthesis, he explores innovative methods for creating heterocyclic compounds and surfactants with dual functionalities. His work in corrosion focuses on developing eco-friendly inhibitors for metal and alloy protection, utilizing green chemistry principles. The biological activity axis examines antioxidants and antibacterial agents, emphasizing the application of natural substances in medicine and environmental conservation. Dr. Driss employs advanced modeling techniques and experimental validation to ensure the practical applicability of his findings. His research addresses pressing global challenges, blending theoretical insights with real-world applications.

Publication Top Notes:

1. Prediction by DFT and synthesis of new xanthene derivatives

Authors: El Mesky, M., Zgueni, H., Rhazi, Y., Chebabe, D., Mabrouk, E.H.

Citations: 0

Year: 2024

Journal: Journal of Molecular Structure

2. The intelligence way of economical synthesis strategies of an N-alkylcarbazole

Authors: Jabha, M., Mesky, M.E., Zgueni, H., Znini, M., Oubair, A.

Citations: 0

Year: 2024

Journal: Structural Chemistry

3. Insights into the Corrosion Inhibition Potential of Chenopodium ambrosioides Extract

Authors: Benzbiria, N., Echihi, S., Thoume, A., Azzi, M., Zertoubi, M.

Citations: 2

Year: 2024

Journal: Journal of Bio- and Tribo-Corrosion

4. Corrosion inhibition performance of essential oil of Teucrium luteum subsp. flavovirens

Authors: Ou-ani, O., Ansari, A., Oucheikh, L., Mabrouk, E., Hammouti, B.

Citations: 0

Year: 2024

Journal: Journal of Dispersion Science and Technology

5. Inhibiting power of 4-amino,5-phenyl-1,2,4-triazole,3-thione

Authors: Biari, A., Dermaj, A., Doubi, M., Benmekki, S., Shaim, A.

Citations: 1

Year: 2024

Journal: Moroccan Journal of Chemistry

6. Zn (II) complexes of N1,N2-bis(2-nitrobenzylidene) ethane-1,2-diamine as corrosion inhibitors

Authors: Hailam, B., Galai, M., Chebabe, D., Fahim, M., Touhami, M.E.

Citations: 1

Year: 2024

Journal: Moroccan Journal of Chemistry

7. Anticorrosion property of new resin epoxy derived from phosphorus

Authors: Abbout, S., Hsissou, R., Louiza, O., Chebabe, D., Hajjaji, N.

Citations: 6

Year: 2023

Journal: Journal of Molecular Structure

8. Corrosion Inhibition of Carbon Steel in 1 M HCl by Carbendazim

Authors: Zgueni, H., El Mesky, M., Amri, N., Oubair, A., Chebabe, D.

Citations: 1

Year: 2023

Journal: Analytical and Bioanalytical Electrochemistry

9. Synthesis of a Non-toxic Organic Ionic Liquid Triazole Derivative

Authors: Biari, A., Dermaj, A., Doubi, M., Shaim, A., Hajjaji, N.

Citations: 2

Year: 2023

Journal: Tropical Journal of Natural Product Research

10. Corrosion inhibition using pyrazole pyrimidine derivative

Authors: Echihi, S., Benzbiria, N., Beraich, M., Warad, I., Zarrouk, A.

Citations: 9

Year: 2023

Journal: Chemical Data Collections

 

 

 

 

 

Dr. Frank Alexis | Materials Chemistry | Best Researcher Award

Dr. Frank Alexis | Materials Chemistry | Best Researcher Award

Dr. Frank Alexis , Universidad San Francisco de Quito , Ecuador

Dr. Frank Alexis is a Full Professor in the Department of Chemical Engineering at Universidad San Francisco de Quito, Ecuador. With a Ph.D. in Materials Science Engineering from Nanyang Technological University, his career spans academia, research, and industry. Renowned for his expertise in nanotechnology, drug delivery, and biomaterials, Dr. Alexis has contributed significantly to science, with 138 publications and over 11,300 citations. As a mentor and innovator, he has founded companies, guided minority students, and influenced global research through his work as an editor and reviewer for prestigious journals.

Professional Profile:

Orcid

Scopus

Summary of Suitability for Award:

Dr. Frank Alexis is an exemplary candidate for the “Best Researcher Awards,” combining academic brilliance, impactful research, and inspirational mentorship. His multidisciplinary innovations, global recognition, and dedication to advancing science make him a highly deserving contender for this honor. Dr. Frank Alexis is an accomplished researcher and educator with exceptional contributions to materials science, bioengineering, and nanotechnology. His diverse expertise spans academia, industry, and editorial roles, demonstrating a well-rounded career in advancing science and mentoring future researchers. Dr.Ā  FrankĀ  Alexis has 138 publications with over 11,315 citations, showcasing the global impact of his work.

šŸŽ“Education:

Dr. Frank Alexis holds a Ph.D. in Materials Science Engineering from Nanyang Technological University (Singapore), a Masterā€™s degree in Materials Science and Interfaces from Technological University of Montpellier (France), and a Bachelor’s degree in Chemistry from the same institution. His academic journey reflects a blend of international education, encompassing advanced training in materials science, chemistry, and interdisciplinary applications pivotal for his pioneering contributions to nanotechnology and drug delivery systems.

šŸ¢Work Experience:

Dr. Alexis has held prominent academic positions globally, including Full Professor roles at Universidad San Francisco de Quito and Yachay Tech in Ecuador. He served as Vice Chancellor of Research and Innovation at Yachay Tech and a tenured Associate Professor of Bioengineering at Clemson University. His industry experience spans roles at Stericoat Inc., LEK Consulting, Polymed Inc., and GearJump Technologies. Additionally, he contributed to groundbreaking biomaterials research at MIT and Brigham and Womenā€™s Hospital, shaping the fields of nanomedicine and drug delivery.

šŸ…Awards:Ā 

Dr. Alexis has received numerous accolades, including recognition as a Top 2% Researcher globally in nanotechnology and chemistry and Best Researcher by CEDIA. His inventive contributions have earned him awards like Best Inventor and Best Academic Invention. A mentor to minority students, he received the PEER & WISE Mentorship Award and recognition from Nature Biotechnology as a Top Translational Junior Faculty. His honors reflect his profound impact on research, mentorship, and innovation.

šŸ”¬Research Focus:

Dr. Alexis specializes in nanotechnology, biomaterials, and drug delivery systems, focusing on designing advanced materials for healthcare and environmental applications. His interdisciplinary research spans the development of sensors, biodegradable polymers, and functional nanomaterials. His work integrates chemistry, biology, and engineering to tackle challenges in medical diagnostics, therapeutic delivery, and sustainable technologies.

Publication Top Notes:

  • Colorimetric sensor for copper and lead using silver nanoparticles functionalized with fluoresceinamine isomerĀ 
    • Citations: 1
  • Photochromic sensing of LaĀ³āŗ and LuĀ³āŗ ions using poly(caprolactone) fibers doped with spiropyran dyes
    • Citations: 2
  • Synergistic Antibacterial Properties of Silver Nanoparticles and Its Reducing Agent from Cinnamon Bark Extract
    • Citations: 1
  • Water soluble spiropyran for HgĀ²āŗ sensing in water
    • Citations: 3
  • Users’ opinion about synthetic, bio- and nano-biopesticides
    • Citations: 3

 

 

 

 

 

 

Dr. samira abozeid | Inorganic Chemistry Award | Best Researcher Award

Dr. samira abozeid | Inorganic Chemistry Award | Best Researcher Award

Dr. samira abozeid,mansoura university,Egypt

Dr. Samira Abozeid is a dedicated Lecturer and Assistant Professor in the Chemistry Department at Mansoura University, Egypt. With a strong academic background, she earned her Ph.D. in Chemistry from the State University of New York at Buffalo, complemented by an MSc and BSc from Mansoura University. Dr. Abozeid specializes in synthesizing metal complexes for applications in MRI contrast agents and drug delivery systems using innovative nanotechnology. Her commitment to academic excellence is evident through her extensive research contributions, collaborative efforts, and participation in various national and international projects. Additionally, she has been recognized with several awards for her outstanding research and teaching, showcasing her dedication to advancing the field of chemistry and contributing to educational initiatives.

Professional Profile:

Google Scholar

Scopus

Orcid

Summary of Suitability for Award:

Dr. Samira Mohammed Abozeid exemplifies the qualities and achievements that make her a suitable candidate for the “Best Researcher Award.” With a Ph.D. in Chemistry from the State University of New York at Buffalo, she has made significant contributions to the field, particularly in synthesizing metal complexes for MRI contrast agents and drug delivery systems. Her publication record, which includes 18 articles in high-impact journals, underscores her prolific research output and the relevance of her work in advancing medical applications of chemistry.

šŸŽ“Education:

Dr. Samira Abozeid holds an impressive academic portfolio. She completed her Bachelorā€™s and Masterā€™s degrees in Chemistry at Mansoura University, Egypt, where she developed a solid foundation in chemical sciences. Dr. Abozeid then pursued her Ph.D. at the State University of New York at Buffalo, specializing in the synthesis of metal complexes and their applications in medical imaging and drug delivery. Her doctoral research significantly contributed to the understanding of MRI contrast agents, showcasing her capability to conduct high-level research. Throughout her academic journey, she has maintained a focus on integrating theoretical knowledge with practical applications, which has enriched her teaching methodologies and research approach. Dr. Abozeid’s education has equipped her with the skills to excel in both academia and research, fostering a commitment to innovation in chemistry.

šŸ¢Work Experience:

Dr. Samira Abozeid has garnered extensive experience in academia and research throughout her career. Currently serving as a Lecturer and Assistant Professor at both Mansoura University and New Mansoura University, she plays a pivotal role in educating and mentoring students in chemistry. Dr. Abozeid has completed three significant research projects focused on the synthesis and characterization of metal complexes for MRI applications and drug delivery systems. With 18 published articles in esteemed journals and a citation index reflecting her impactful research contributions, she has established herself as a leading figure in her field. Furthermore, she has engaged in consultancy projects related to chemistry and has participated in multiple collaborative research efforts, both nationally and internationally, which have enriched her research perspective and facilitated knowledge exchange. Dr. Abozeid’s commitment to research excellence is complemented by her active involvement in professional memberships and initiatives aimed at bridging academic research with industry applications.

šŸ…Awards:

Dr. Samira Abozeid has received several prestigious awards and recognitions throughout her academic career. Among her notable accolades is the Egyptian Government Scholarship, which allowed her to pursue her studies at the State University of New York at Buffalo from 2016 to 2018. Additionally, she was honored with the James T. Grey, Jr. Fellowship in Summer 2020, which acknowledges outstanding research contributions. Dr. Abozeid also received the Mattern-Tyler Teaching Award and the Speyer Fellowship in Fall 2020, reflecting her excellence in both teaching and research. In 2023, she was awarded a competitively funded research project at Mansoura University, highlighting her commitment to advancing scientific knowledge. Furthermore, she has been recognized for delivering the Best Specialized Lecture at multiple conferences, showcasing her ability to communicate complex scientific ideas effectively. These honors underline her significant contributions to the field of chemistry and her dedication to academic excellence.

šŸ”¬Research Focus:

Dr. Samira Abozeid’s research focuses primarily on the synthesis and application of metal complexes, particularly in the development of MRI contrast agents and drug delivery systems. Her innovative approach involves utilizing nanoparticles and liposomes to enhance the effectiveness and biocompatibility of these complexes. Dr. Abozeidā€™s work emphasizes the importance of transition metal complexes in medical applications, providing novel insights into their structural properties and potential therapeutic uses. Her ongoing projects include the development of more effective and safer MRI probes, which can significantly improve diagnostic imaging capabilities. Additionally, she collaborates with national and international research groups to explore energy-related applications of metal complexes. Through her research, Dr. Abozeid aims to bridge the gap between chemistry and medicine, contributing to advancements in nanotechnology and its practical implications for healthcare. Her commitment to innovation and excellence continues to shape her contributions to the scientific community.

Publication Top Notes:

  • Two New Inner-Sphere Pt(II) Thiosemicarbazone Schiff Base Complexes Immobilized into Magnetic Nanoparticles: Synthesis, Characterization, and Biological Investigations
  • A Novel Fluorescent Probe Based Imprinted Polymer-Coated Magnetite for the Detection of Imatinib Leukemia Anti-Cancer Drug Traces in Human Plasma Samples
  • Fe(III) T1 MRI Probes Containing Phenolate or Hydroxypyridine-Appended Triamine Chelates and a Coordination Site for Bound Water
    • Citations: 5 citations.
  • Co(II) Complexes of Tetraazamacrocycles Appended with Amide or Hydroxypropyl Groups as ParaCEST Agents
    • Citations: 3 citations.
  • Comparison of Phosphonate, Hydroxypropyl and Carboxylate Pendants in Fe(III) Macrocyclic Complexes as MRI Contrast Agents
    • Citations: 18 citations.

 

 

 

 

Hesham Alsoghier | Chemistry | Best Researcher Award

Dr. Hesham Alsoghier | Chemistry | Best Researcher Award-

Doctorate at South Valley University Egypt, Chemistry

Hesham Mohammed Alsoghier is a dedicated chemist specializing in bio-organic and bio-inorganic chemistry with a focus on the synthesis and characterization of metal coordination compounds and organic ligands. With a robust educational background from South Valley University and international research experience, Hesham’s expertise spans spectrophotometric, computational, and analytical chemistry. His current research aims to explore innovative approaches for Alzheimer’s disease treatment through novel bifunctional compounds.

Author Metrics

Scopus Profile

ORCID Profile

Hesham’s research contributions are reflected in several high-impact publications. His work, published in reputable journals, includes studies on the spectral behavior of azo compounds, potential anti-Alzheimer’s agents, and the structural features of chemical tautomers. Metrics such as citations, h-index, and journal impact factors underscore his influence and recognition in the field.

  • Citations: 104 citations across 91 documents
  • Documents: 12 publications
  • h-index: 5

Education

Hesham completed his B.Sc. in Chemistry with honors from South Valley University, followed by a Masterā€™s degree in Inorganic and Computational Chemistry from the same institution. His academic journey continued with a Ph.D. from South Valley University, focusing on the spectral behavior of azo benzothiazole derivatives. Additionally, he pursued advanced studies in Bio-Inorganic Chemistry at Instituto Superior TĆ©cnico, Universidade de Lisboa, and participated in an international masterā€™s program at Adam Mickiewicz University.

Research Focus

Hesham’s research primarily revolves around the synthesis and characterization of bio-organic and bio-inorganic compounds, particularly their applications in disease treatment and metal coordination chemistry. His work includes spectral investigations, computational studies, and bioactivity assessments of novel chemical compounds. His current research is dedicated to developing bifunctional compounds with potential therapeutic benefits for Alzheimer’s disease.

Professional Journey

Beginning as a Teaching Assistant at South Valley University, Hesham’s career has progressed to his current role as a Lecturer Assistant, where he continues to contribute to both teaching and research. His professional journey includes significant research stints in Portugal and Poland, where he expanded his expertise in bio-inorganic chemistry and photochemistry. His role involves not only academic responsibilities but also active participation in research projects and collaborations.

Honors & Awards

Hesham has received several accolades for his academic and research achievements. Notable honors include recognition for his exceptional contributions to research in bio-inorganic chemistry and his successful completion of advanced international programs. These awards reflect his commitment to excellence in both teaching and research.

Publications Noted & Contributions

Heshamā€™s publication record includes several influential papers in high-impact journals. Key contributions include studies on the optical properties of azo dyes, the development of anti-Alzheimer’s agents, and investigations into chemical tautomerism. His work has been presented at international conferences and has significantly contributed to advancements in his field.

“Green electro-organic synthesis of a novel catechol derivative based on o-benzoquinone nucleophilic addition”

  • Journal: New Journal of Chemistry
  • Year: 2023
  • DOI: 10.1039/D2NJ04530C
  • Contributors: Mohamed Abd-Elsabour, Hytham F. Assaf, Ahmed M. Abo-Bakr, Abdulrahman G. Alhamzani, Mortaga M. Abou-Krisha, Aamal A. Al-Mutairi, Hesham M. Alsoghier

“A novel organic semiconductor 4-phenylthiazol-2-yl-(phenylhydrazono) acetonitrile (PTPA) thin films: synthesis, optical and electrical properties”

  • Journal: Scientific Reports
  • Date: August 10, 2023
  • DOI: 10.1038/s41598-023-39027-3
  • Contributors: Amr Attia Abuelwafa, Sahar Elnobi, M. AmĆ©lia Santos, Hesham M. Alsoghier

“Molecular docking, modeling, semiempirical calculations studies and in vitro evaluation of new synthesized pyrimidin-imide derivatives”

  • Journal: Journal of Molecular Structure
  • Year: 2022
  • DOI: 10.1016/j.molstruc.2021.131548
  • EID: 2-s2.0-85115989286
  • Contributors: Abo-Bakr, A.M., Alsoghier, H.M., Abdelmonsef, A.H.

“A Novel Electrochemical Sensor for Detection of Nicotine in Tobacco Products Based on Graphene Oxide Nanosheets Conjugated with (1,2-Naphthoquinone-4-Sulphonic Acid) Modified Glassy Carbon Electrode”

  • Journal: Nanomaterials
  • Date: July 9, 2022
  • DOI: 10.3390/nano12142354
  • Contributors: M. Abd-Elsabour, Hesham M. Alsoghier, Abdulrahman G. Alhamzani, Mortaga M. Abou-Krisha, Tarek A. Yousef, Hytham F. Assaf

“A novel alternative methods for decalcification of water resources using green agro-ashes”

  • Journal: Molecules
  • Year: 2021
  • DOI: 10.3390/molecules26226777
  • Contributors: El-Nahas, S., Arafat, A.S., Din, H.S.E., Alhamzani, A.G., Abou-Krisha, M.M., Alsoghier, H.M.

Research Timeline

From 2008 to 2012, Hesham conducted research for his Masterā€™s thesis, focusing on the spectral investigations of azo compounds. This foundational work laid the groundwork for his subsequent studies. Between 2012 and 2013, he expanded his expertise through advanced studies in photochemistry at Adam Mickiewicz University, where he deepened his understanding of surface electro radiation and photo-chemistry. During 2014 to 2015, Hesham engaged in significant research at Instituto Superior TĆ©cnico, where he worked on the synthesis and characterization of bifunctional compounds aimed at Alzheimer’s disease treatment. Following this, from 2015 to 2018, he completed his Ph.D. research at South Valley University, investigating the spectral behavior of azo benzothiazole derivatives. Since 2018, he has continued his research at South Valley University, focusing on bio-organic and bio-inorganic chemistry, advancing his work on novel chemical compounds with potential therapeutic applications.

Collaborations and Projects

Hesham has collaborated with leading researchers and institutions, including partnerships with Instituto Superior TĆ©cnico, Universidade de Lisboa, and Adam Mickiewicz University. His collaborative projects focus on the development of novel chemical compounds and their applications in medicine. He has also participated in various research initiatives and workshops, contributing to advancements in his field through collaborative efforts.

Strengths of the Best Researcher Award for Dr. Hesham Alsoghier:

Innovative Research Focus: Dr. Hesham Alsoghier’s research on bifunctional compounds for Alzheimer’s disease treatment is highly innovative and relevant. His focus on addressing significant medical challenges showcases a commitment to impactful scientific work.

High-Impact Publications: The inclusion of his research in reputable journals such as Scientific Reports and New Journal of Chemistry demonstrates the high quality and relevance of his work. His publications cover a range of cutting-edge topics, from organic semiconductors to electrochemical sensors.

International Collaboration: Dr. Alsoghier’s experience working with institutions like Instituto Superior TĆ©cnico and Adam Mickiewicz University highlights his ability to collaborate effectively with leading researchers worldwide. This enhances the global impact of his work.

Diverse Expertise: His background in bio-organic and bio-inorganic chemistry, along with expertise in computational and analytical techniques, provides a strong foundation for tackling complex research problems. This multidisciplinary approach enriches his research contributions.

Recognition and Awards: The receipt of the Best Researcher Award and other honors underscores Dr. Alsoghier’s excellence in research and his contributions to advancing knowledge in his field. These accolades reflect his dedication and impact.

Areas for Improvement:

Citations and h-Index: While Dr. Alsoghier has made significant contributions, his citation count and h-index indicate room for growth. Increasing visibility and impact through strategic collaborations and higher-profile publications could enhance these metrics.

Publication Quantity: With 12 publications, Dr. Alsoghier’s output is notable but could be expanded. Publishing more frequently in high-impact journals could further establish his research presence and influence.

Research Scope Diversification: While his focus on Alzheimer’s disease is promising, exploring additional areas or applications within bio-organic and bio-inorganic chemistry could broaden the scope and impact of his research.

Grant Acquisition: Strengthening efforts in securing research grants and funding could support more extensive and ambitious projects. This could involve applying for larger grants or participating in collaborative grant proposals.

Public Engagement and Outreach: Increasing involvement in public outreach activities and science communication could enhance the visibility of his research and its societal relevance. Engaging with broader audiences through seminars, public talks, or media could also raise awareness of his work.

Conclusion:

Dr. Hesham Alsoghier is a distinguished chemist whose innovative research and high-impact publications underscore his significant contributions to bio-organic and bio-inorganic chemistry. His international collaborations and recognition through awards highlight his commitment and excellence in the field. To further enhance his impact, focusing on increasing citation metrics, expanding publication output, diversifying research scope, securing additional funding, and engaging with the public could be beneficial. Overall, Dr. Alsoghierā€™s achievements and ongoing research efforts demonstrate his potential to continue making substantial advancements in chemistry and related fields.