Dr. Mohamed Abulela | Environmental Chemistry | Best Researcher Award

Dr. Mohamed Abulela | Environmental Chemistry | Best Researcher Award

Dr. Mohamed Abulela | Environmental Chemistry | Assiut university , Egypt

Dr. Mohamed Ahmed Mohamed Abdelazim Abulela is a skilled synthetic organic chemist from Assiut, Egypt, with extensive experience in both academic and industrial research. He serves as a full-time researcher at the Assiut Sugar Industry Technology Research Institute and a part-time lecturer at the Faculty of Science, New Valley Branch, Assiut University. He earned his Ph.D. in Organic Chemistry from Assiut University in 2010, focusing on selenium-containing heterocycles. His postdoctoral fellowship at Saurashtra University, India, enhanced his expertise in X-ray crystallography and selenium chelate synthesis. Dr. Abulela’s work includes the development of environmental chemistry  friendly colorimetric methods, sugar quantification techniques, and biomass modification for adsorption and biofuel applications. His research contributes to sustainable practices in both chemistry and environmental science. With strong English and computer skills, he actively participates in international conferences and collaborative research initiatives.

Professional Profile :         

Orcid 

Summary of Suitability for Award:

Dr. Mohamed Abdelazim Abulela is highly suitable for the “Best Researcher Award”. His innovative methodologies, applied research relevance, and contribution to sustainable technologies in the fields of synthetic organic and environmental chemistry showcase the qualities expected of an awardee. His balanced presence in academia and industry, along with international collaborations and scientific publications, position him as a well-rounded, impactful researcher who deserves formal recognition for his ongoing scientific contributions.

🎓Education:

Dr. Abulela’s academic journey began with a B.Sc. in Chemistry from Assiut University in 1999, graduating with a “Very Good” general grade. He earned his M.Sc. in Organic Chemistry from the same institution in 2005, with a thesis on the synthesis of new triazepines with potential biological activity. Continuing his pursuit of advanced organic synthesis, he completed a Ph.D. in 2010, focused on the synthesis and application of heterocyclic compounds related to selenolopyridine derivatives. His academic excellence and research curiosity led him to a postdoctoral fellowship at Saurashtra University in Rajkot, India (2015–2016), where he specialized in X-ray crystallography and the synthesis of selenium chelates. His robust educational background laid a strong foundation for his career in chemical research, particularly in the design of novel bioactive compounds and green analytical methods. His academic formation reflects a commitment to innovation in synthetic organic and environmental chemistry.

🏢Work Experience:

Dr. Abulela has a diverse research portfolio combining synthetic organic chemistry and industrial bioprocessing. At the Assiut Sugar Industry Technology Research Institute, he has worked extensively on the synthesis of bioactive compounds, particularly triazepines and selenium-based heterocycles and chelates. He has contributed to the development of eco-friendly analytical methods for quantifying reducing sugars and ethanol in fermentation broths using non-toxic materials. His work also includes the valorization of sugarcane bagasse as a bioadsorbent for wastewater treatment and oil removal. He has determined enzymatic activity (invertase, amylase, cellulase) relevant to biofuel production. He played a key role in a national project under Prof. Dr. Abdelaziz A. Said, focused on bagasse modification for adsorptive applications. Alongside his full-time research, he lectures part-time at Assiut University’s New Valley branch, mentoring future chemists. His combined industrial and academic roles make him a valuable asset in applied and sustainable chemical sciences.

🏅Awards: 

While specific awards are not listed in the available profile, Dr. Mohamed Abulela’s achievements reflect his recognized contributions to both academia and applied research. He was selected for a prestigious Postdoctoral Fellowship at Saurashtra University, India (2015–2016), where he contributed to international collaborative projects in drug design and crystallography. His participation in key events like German Science Day (2016) and international pharmacognosy conferences signals his active role in the global scientific community. His publications in indexed, peer-reviewed journals and his involvement in national-level research projects further underscore the recognition of his scientific capabilities. As a lecturer and researcher, he continues to inspire students and contribute significantly to Egypt’s industrial and environmental chemistry sectors. His consistent output, including innovative analytical techniques and eco-friendly applications, speaks to his dedication, earning him respect and distinction within the regional chemical research community.

🔬Research Focus:

Dr. Abulela’s research centers on synthetic organic chemistry with an emphasis on heterocyclic compounds, especially 1,2,4-triazepines and selenium-based molecules, including chelates. His work bridges fundamental synthesis with practical applications in bioactivity, analytical chemistry, and environmental chemistry. He has developed novel colorimetric methods for sugar and ethanol detection using safe, sustainable reagents. His interest in green chemistry is further demonstrated by projects modifying sugarcane bagasse into an effective adsorbent for dyes and oil removal in wastewater treatment. Dr. Abulela also investigates enzyme activity related to biofuel research and explores the use of bio-sorbents for eco-remediation. His expertise extends to X-ray crystallography, allowing for detailed structural characterization of synthesized compounds. By combining synthetic techniques with real-world industrial challenges, his work supports sustainable technological advancements in the sugar industry and beyond. His research contributes meaningfully to cleaner chemical practices and the development of low-cost, efficient solutions in applied chemistry.

Publication Top Notes:

“A Simplified Procedure for Cellulase Filter Paper Assay”

“Self-Colorimetric Determination of Bio-Ethanol Using Permanganate in Fermentation Samples”

“2-Aminoethanaminium 2-(ethoxycarbonyl)-4,6-dinitrophenolate as a Greener Route in Reducing Sugar Quantification”

“Modified Sugarcane Bagasse with Tartaric Acid for Removal of Diazonium Blue from Aqueous Solutions”

“A Simplified Procedures for Cellulase Filter Paper Assay” (Preprint)

 

Dr. Diba Kadivar | Inorganic Chemistry | Best Researcher Award

Dr. Diba Kadivar | Inorganic Chemistry| Best Researcher Award

Dr. Diba Kadivar | Inorganic Chemistry| Ph. D. graduate in inorganic chemistry at chemistry and chemical engineering research center of iran , Iran

Dr. Diba Kadivar is a Ph.D. graduate in Inorganic Chemistry with extensive expertise in anticancer platinum complexes. She has been serving as a technical assistant at the Iranian Food and Drug Administration (IFDA) for over eight years, contributing to pharmaceutical research and regulatory affairs. Dr. Kadivar has conducted significant studies on the synthesis, characterization, and biological activity of novel platinum-based anticancer agents. Her research focuses on the impact of geometric isomerism and aliphatic N-substituted glycine derivatives on platinum complexes’ pharmacological properties. She has published multiple papers in reputed journals and actively collaborates on cancer cell line studies. Passionate about innovative drug discovery, she has contributed to the development of metal-based nanocomplexes for potential therapeutic applications. Dr. Kadivar remains committed to advancing medicinal inorganic chemistry through her research and collaborations, aiming to enhance the effectiveness of anticancer therapies while minimizing side effects.

Professional Profile :         

Google Scholar

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Diba Kadivar is a distinguished researcher in inorganic chemistry, specializing in anticancer platinum complexes. With a Ph.D. in inorganic chemistry and eight years of experience as a technical assistant at the Iranian Food and Drug Administration (IFDA), she has made notable contributions to the development of novel platinum-based anticancer agents. Her research focuses on the impact of geometric isomerism and the role of aliphatic N-substituted glycine derivatives in enhancing the biological activities of platinum complexes. She has published in reputable journals such as Elsevier and the Iranian Quarterly Journal of Chemical Communications, with a citation index of 18. Dr. Diba Kadivar’s innovative research on platinum-based anticancer drugs, scientific contributions, and expertise in inorganic medicinal chemistry make her highly suitable for the “Best Researcher Award.” Her work advances cancer treatment strategies, and her publications demonstrate scientific excellence and impact in medicinal chemistry.

🎓Education:

Dr. Diba Kadivar pursued her doctoral studies in Inorganic Chemistry, specializing in metal-based drug development and anticancer platinum complexes. Her academic journey has been marked by a strong foundation in medicinal chemistry, with a keen interest in exploring the role of isomerism in drug efficacy. During her Ph.D., she conducted extensive research on platinum complexes with glycine derivatives, focusing on their interaction with DNA and anticancer properties. Her work involved molecular docking, dynamic simulations, and in-vitro studies to evaluate the pharmacological potential of these compounds. Through her research, she contributed to the field of coordination chemistry and its applications in medicine. She has actively participated in international conferences, presenting her findings on novel platinum-based therapies. With a passion for drug discovery, Dr. Kadivar continues to apply her expertise in chemistry to enhance the effectiveness of anticancer agents.

🏢Work Experience:

Dr. Diba Kadivar has accumulated over eight years of professional experience as a technical assistant at the Iranian Food and Drug Administration (IFDA). In this role, she has been actively involved in regulatory affairs, pharmaceutical analysis, and drug quality control, ensuring the safety and efficacy of therapeutic compounds. Alongside her administrative responsibilities, she has played a vital role in cancer research, working in laboratory settings to study platinum-based anticancer agents. Her expertise extends to working with cancer and normal cell lines, contributing to drug screening and cytotoxicity assays. Additionally, she has been involved in synthesizing and characterizing novel platinum complexes, focusing on their pharmacological interactions. Dr. Kadivar also collaborates with academic institutions and research centers, aiming to bridge the gap between regulatory science and drug discovery. Her hands-on experience in both research and regulatory affairs makes her a key contributor to pharmaceutical advancements in Iran.

🏅Awards: 

Dr. Diba Kadivar has been recognized for her contributions to inorganic and medicinal chemistry, particularly in the field of platinum-based anticancer research. She has received accolades for her pioneering work on the role of geometric isomerism in anticancer drug efficacy. Her research has been acknowledged at national and international scientific conferences, where she has been invited as a speaker and presenter. She has also played a key role in regulatory initiatives at the Iranian Food and Drug Administration, contributing to drug quality assurance and research-based policy-making. Additionally, her publications in esteemed journals such as Elsevier and the Iranian Quarterly Journal of Chemical Communications have received notable citations, highlighting her impact on the field. Dr. Kadivar’s dedication to advancing cancer therapy and pharmaceutical sciences continues to earn her recognition among her peers, further solidifying her reputation as an innovative researcher in medicinal inorganic chemistry.

🔬Research Focus:

Dr. Diba Kadivar’s research primarily revolves around the synthesis, characterization, and biological evaluation of platinum-based anticancer complexes. She investigates the impact of geometric isomerism on drug efficacy, focusing on how structural variations influence DNA interactions and cytotoxicity. Her studies explore novel ligand designs, particularly aliphatic N-substituted glycine derivatives, to enhance the pharmacological properties of platinum complexes. In addition to drug synthesis, she conducts in-vitro studies on cancer and normal cell lines to assess the cytotoxic potential of these compounds. She is also involved in molecular docking and dynamic simulations to predict drug interactions at the molecular level. Furthermore, she has worked on calcium, magnesium, copper, and zinc glycine edible nanocomplexes, aiming to develop biocompatible metal-based therapies. Through her interdisciplinary approach, Dr. Kadivar contributes to bridging chemistry and medicine, paving the way for new, targeted anticancer treatments with improved therapeutic outcomes.

Publication Top Notes:

Pharmacological properties of some 3-substituted indole derivatives, a concise overview

Authors: K. Nikoofar, D. Kadivar, S. Shirzadnia

Citations: 13

Year: 2014

Effect of geometric isomerism on the anticancer property of new platinum complexes with glycine derivatives as asymmetric N, O donate ligands against human cancer

Authors: D. Kadivar, M. E. Moghadam, B. Notash

Citations: 5

Year: 2024

Novel anticancer agents, Pt complex with 1-pyrrolidineacetic acid ligand: Synthesis, biological activity, DNA interaction, molecular docking, and dynamic study

Authors: D. Kadivar, M. E. Moghadam, M. Rezaeisadat

Year: 2025

 

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R ,Inorganic Chemistry, GOVERNMENT POLYTECHNIC COLLEGE, EZHUKONE, KOLLAM, KERALA, India

Dr. Minitha R. is an Associate Professor with over 14 years of teaching and 15 years of research experience in chemistry. She holds an M.Sc., M.Phil., NET, UGC-JRF, and Ph.D. Her expertise spans organic, coordination, supramolecular, and inorganic chemistry. She has served in key academic roles, including NSS Programme Officer and Chief Superintendent of Examinations. A dedicated researcher, Dr. Minitha has guided students and undertaken projects like developing a chemosensor for metal ion detection. She has organized multiple national seminars and actively participates in international conferences and workshops.

Professional Profile :                       

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Minitha R., an accomplished Associate Professor with 15 years of research experience, has significantly contributed to the field of Inorganic Chemistry, particularly in Coordination Chemistry, Supramolecular Chemistry, and Organic Chemistry. With a strong publication record, she has authored several impactful research papers in highly reputed journals, covering diverse topics such as metal complexes, chemosensors, molecular structures, and spectroscopic studies. Dr. Minitha R. is an exceptional candidate for the “Best Researcher Award,” given her proven research excellence, scholarly contributions, and leadership in the scientific community. Her extensive work in metal-based coordination complexes, chemosensors, and supramolecular chemistry, along with her active role in mentoring and academic leadership, makes her a highly deserving nominee.

🎓Education:

Dr. Minitha R. holds a Ph.D. in Chemistry and has qualified for the NET and UGC-JRF. She completed her M.Sc. and M.Phil. in Chemistry, demonstrating academic excellence throughout. Her education provided her with a strong foundation in inorganic chemistry, particularly in complex synthesis, supramolecular interactions, and chemosensing applications. Her academic journey was driven by a passion for molecular recognition, ligand design, and structural chemistry. She has actively participated in seminars and workshops to enhance her knowledge and keep up with evolving research trends.

🏢Work Experience:

With 14 years of teaching and 15 years of research experience, Dr. Minitha R. has handled Organic, Inorganic, and Physical Chemistry courses. She has successfully guided research scholars, fostering innovations in supramolecular and coordination chemistry. Apart from teaching, she has played key roles as an NSS Programme Officer, Nature Club Coordinator, Chief Superintendent of Examinations, and Young Innovators Programme Facilitator. She has also organized national seminars and workshops on emerging trends in chemistry, enhancing academic collaboration and knowledge dissemination.

🏅Awards: 

Dr. Minitha R. has been recognized for her outstanding contributions to academia and research. She served as the NSS Programme Officer (2021-2022), demonstrating her commitment to student welfare and community service. As the Nature Club Coordinator (2019-2020), she played a crucial role in promoting environmental awareness. Her leadership extended to being the Chief Superintendent of Examinations (2020-2021), ensuring smooth academic assessments. Additionally, she facilitated the Young Innovators Programme (2019), fostering creativity and scientific curiosity among students. Her research endeavors were supported by a KSCSTE-funded M.Sc. student project, where she developed a chemosensor for metal ion detection. These roles reflect her dedication to education, research, and institutional development.

🔬Research Focus:

Dr. Minitha R. specializes in Inorganic Chemistry, with a keen interest in Organic Chemistry, Coordination Chemistry, and Supramolecular Chemistry. Her research explores the synthesis and characterization of novel metal complexes, particularly those with biological and chemosensory applications. She has contributed significantly to the development of pyrazolylhydrazone-based metal complexes, dioxo molybdenum(VI) compounds, and benzothiazolium salts. Her work also extends to fluorescent hydrazones and ruthenium(II) complexes, emphasizing their structural and functional properties. Additionally, her studies on five-coordinate Zn(II) complexes highlight their potential in nonlinear optical applications. Through her research, she aims to bridge the gap between fundamental chemistry and real-world applications, particularly in materials science, catalysis, and medicinal chemistry.

Publication Top Notes:

Formation of dicyano ruthenium(II) complex mediated by triethylamine via deprotonation of hydrazonochroman-2,4-dione
Synthesis, spectroscopic and biological studies of metal complexes of an ONO donor pyrazolylhydrazone – Crystal structure of ligand and Co(II) complex
Studies of some dioxo molybdenum(VI) complexes of a polydentate ligand
One pot synthesis of 1–(3–methyl–4H–benzo[1,4]thiazin–2–yl)-ethanone and its antimicrobial properties
 Synthesis, spectral, and magnetic studies of benzothiazolium tetrachlorocuprate salts: crystal structure and semiconducting behavior of bis[2-(4-methoxyphenyl)benzothiazolium] tetrachlorocuprate(II)
Fluorescent coumarin-based hydrazone: Synthesis, crystal structure, and spectroscopic studies
FT-IR, FT-Raman and computational study of 1H-2,2-dimethyl-3H-phenothiazin-4[10H]-one
Synthesis, crystal structure, spectral analysis, and NLO studies of five-coordinate Zn(II) complexes of hydrazochromandione
 Chemosensing study of 1,4-Benzothiazine generated from acetylacetone

 

Prof. Massimo Padalino | Medicinal Chemistry | Excellence in Innovation Award

Prof. Massimo Padalino | Medicinal Chemistry | Excellence in Innovation Award

Prof. Massimo Padalino | Medicinal Chemistry | Professore associato at University of Bari, Italy

Dr. Massimo Antonio Padalino obtained his M.D. from the University of Padova, Italy, in 1995. He completed his residency in Cardiovascular Surgery at the University of Padova Medical School (1995-1999), where he served as Chief Resident (1999-2000). He pursued advanced surgical training through prestigious fellowships, including a Surgical Clinical Fellowship in Cardiovascular Surgery at the Mayo Clinic, USA (2001-2002), and specialized training in Pediatric Cardiovascular Surgery at Boston Children’s Hospital, Harvard Medical School (2002), and Mott Children’s Hospital, University of Michigan (2003-2004). He earned a Ph.D. in Cardiovascular Sciences from the University of Padova (2005-2008) and further specialized with a Master’s degree in Cardiovascular Pathology (2011) and Pediatric Cardiology (2014). Additionally, he completed a research fellowship at the Cardiac Registry, Harvard Medical School, and a visiting fellowship at Johns Hopkins Hospital (2015), solidifying his expertise in congenital and pediatric cardiac surgery.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Massimo Antonio Padalino is an outstanding candidate for the “Excellence in Innovation Award” due to his pioneering contributions to pediatric and congenital cardiovascular surgery. His research has led to innovative surgical techniques for congenital heart disease, particularly in neonatal and single-ventricle repairs. His work on novel bioprosthetic materials, cardiac regeneration, and mechanical circulatory support (ECMO, VAD) has significantly improved patient outcomes. He has also played a key role in international registries (EUROFONTAN, EUROAAOCA) and multicenter studies, advancing global knowledge in congenital heart surgery. His collaboration with premier institutions like Harvard Medical School and Mayo Clinic further highlights his commitment to innovation. Dr. Padalino’s groundbreaking work in pediatric cardiac surgery, including innovative surgical strategies, regenerative medicine, and advanced circulatory support techniques, makes him highly suitable for the “Excellence in Innovation Award.” His contributions have transformed congenital heart disease treatment, making a lasting impact on the field.

🎓Education:

Dr. Massimo Antonio Padalino obtained his M.D. from the University of Padova in  Italy.  He completed his residency in Cardiovascular Surgery at the University of Padova Medical School (1995-1999), where he served as Chief Resident (1999-2000). He pursued advanced surgical training through prestigious fellowships, including a Surgical Clinical Fellowship in Cardiovascular Surgery at the Mayo Clinic, USA (2001-2002), and specialized training in Pediatric Cardiovascular Surgery at Boston Children’s Hospital, Harvard Medical School (2002), and Mott Children’s Hospital, University of Michigan (2003-2004). He earned a Ph.D. in Cardiovascular Sciences from the University of Padova (2005-2008) and further specialized with a Master’s degree in Cardiovascular Pathology (2011) and Pediatric Cardiology (2014). Additionally, he completed a research fellowship at the Cardiac Registry, Harvard Medical School, and a visiting fellowship at Johns Hopkins Hospital (2015), solidifying his expertise in congenital and pediatric cardiac surgery.

🏢Work Experience:

Dr. Massimo Antonio Padalino has over two decades of experience in pediatric and congenital cardiovascular surgery. Since December 2023, he has served as Pediatric and Congenital Cardiac Surgeon in Chief at UOC Cardiochirurgia, University of Bari, Italy. Previously, he was a senior Pediatric and Congenital Cardiovascular Surgeon at the University of Padova Medical School (2004-2023), where he independently performed approximately 150 complex congenital heart surgeries annually, spanning neonates to adults. His expertise includes neonatal heart surgery, single-ventricle palliation, heart transplantation, and mechanical circulatory support (ECMO and VAD). His clinical training includes tenures at leading institutions such as Mayo Clinic, Boston Children’s Hospital, and the University of Michigan. He has also been actively involved in postoperative intensive care, clinical research, and multicenter studies, significantly contributing to advancements in pediatric cardiac surgery. His leadership extends to mentoring and training the next generation of cardiac surgeons.

🏅Awards: 

Dr. Massimo Antonio Padalino has received numerous accolades for his contributions to pediatric and congenital cardiovascular surgery. He is a Fellow of the European Society of Cardiology (FESC) and has been recognized for his expertise in congenital heart disease management. His work in innovative surgical strategies and regenerative medicine has earned him invitations to speak at leading international cardiology and cardiac surgery conferences. He has also received research grants for pioneering studies in cardiac regeneration, bioprosthetic materials, and surgical outcomes in congenital heart disease. His collaborations with renowned institutions, including Harvard Medical School and the Mayo Clinic, have strengthened his reputation as a leading figure in pediatric cardiac surgery. His research and clinical excellence are reflected in his numerous high-impact publications, which have significantly influenced advancements in congenital heart surgery and pediatric cardiology worldwide.

🔬Research Focus:

Dr. Massimo Antonio Padalino’s research focuses on congenital heart disease surgery, particularly early repair techniques and novel surgical strategies for single-ventricle physiology. He actively contributes to international registries, including the EUROFONTAN and EUROAAOCA, studying surgical outcomes in congenital heart defects. His work explores innovative approaches to preserving pulmonary valve function in Tetralogy of Fallot repair and alternative strategies for managing end-stage heart failure in children, including ECMO, VAD, and pulmonary artery banding. Additionally, he investigates heart transplantation in congenital heart disease, cardiac regeneration in infants with dilated cardiomyopathy, and bioprosthetic materials for cardiac tissue reconstruction. His research also addresses the neurological and pulmonary effects of cardiopulmonary bypass in pediatric patients, aiming to improve outcomes and long-term survival. Through clinical trials and multicenter studies, Dr. Padalino is dedicated to advancing pediatric cardiac surgery, refining surgical techniques, and enhancing postoperative care for children with complex congenital heart conditions.

Publication Top Notes:

Heart–Liver Interplay in Patients with Fontan Circulation

Authors: Not provided in the given data

Year: 2025

Citations: Data not available

DOI: 10.3390/jcm14041114

The Impact of Dominant Ventricle Morphology and Additional Ventricular Chamber Size on Clinical Outcomes in Patients with Fontan Circulation

Authors: Not provided in the given data

Year: 2025

Citations: Data not available

DOI: 10.1017/S1047951124026581

First Report from the European Registry for Anomalous Aortic Origin of Coronary Artery (EURO-AAOCA)

Authors: Not provided in the given data

Year: 2024

Citations: Data not available

DOI: 10.1093/icvts/ivae074

Current Understanding and Future Directions of Transcatheter Devices to Assist Failing Fontan

Authors: Not provided in the given data

Year: 2024

Citations: Data not available

DOI: 10.1016/j.jscai.2024.101334

Intracorporeal LVAD Implantation in Pediatric Patients: A Single-Center 10 Years’ Experience

Authors: Not provided in the given data

Year: 2024

Citations: Data not available

DOI: 10.1111/aor.14716

Late Gadolinium Enhancement and Anomalous Coronary Aortic Origin in a Large Paediatric Cohort

Authors: Not provided in the given data

Year: 2024

Citations: Data not available

DOI: 10.1093/eurheartj/ehae545

Percutaneous Approach to Residual Pulmonary Bifurcation Stenosis in Conotruncal Diseases

Authors: Not provided in the given data

Year: 2024

Citations: Data not available

DOI: 10.1017/s1047951123000999

Postoperative Outcomes of Fontan Operation in a Multicenter Italian Study. How Far Have We Gone? Early Outcomes After Fontan Operation

Authors: Not provided in the given data

Year: 2024

Citations: Data not available

DOI: 10.1007/s00246-024-03642-2

Successful Implantation of HeartMate3 in a Small Child After Multimodality Imaging Pathway to Assess Feasibility

Authors: Not provided in the given data

Year: 2024

Citations: Data not available

DOI: 10.1097/MAT.0000000000002069

Overshoot of the Respiratory Exchange Ratio during Recovery from Maximal Exercise Testing in Young Patients with Congenital Heart Disease

Authors: Not provided in the given data

Year: 2023

Citations: Data not available

DOI: 10.3390/children10030521

Three-Dimensional-Enabled Surgical Planning for the Correction of Right Partial Anomalous Pulmonary Venous Return

Authors: Not provided in the given data

Year: 2023

Citations: Data not available

DOI: 10.3390/jcm12020472

Chronic Heart Failure in Children: State of the Art and New Perspectives

Authors: Not provided in the given data

Year: 2023

Citations: Data not available

DOI: 10.3390/jcm12072611

Effect of Preoperative Pulmonary Hemodynamic and Cardiopulmonary Bypass on Lung Function in Children with Congenital Heart Disease

Authors: Not provided in the given data

Year: 2023

Citations: Data not available

DOI: 10.1007/s00431-023-04926-0

Hybrid Approach for End-Stage Heart Failure Treatment in a 6-Month-Old Baby

Authors: Not provided in the given data

Year: 2023

Citations: Data not available

DOI: 10.1017/S104795112300046X

Late Left Ventricular Myocardial Remodeling After Pulmonary Artery Banding for End-Stage Dilated Cardiomyopathy in Infants: An Imaging Study

Authors: Not provided in the given data

Year: 2023

Citations: Data not available

DOI: 10.1016/j.ijcard.2023.05.040

Ms. Apurva Singh | Organic Chemistry | Best Researcher Award

Ms. Apurva Singh | Organic Chemistry | Best Researcher Award

Ms. Apurva Singh | Organic Chemistry | PhD at Indian institute of technology Roorkee, India

Apurva Singh is an organic chemistry  with a keen interest in technological advancements and artificial intelligence applications in chemistry. With five years of research experience in academic laboratories and two years as a tutor, she specializes in organic synthesis and catalysis. Currently pursuing her Ph.D. at IIT Roorkee under Prof. Naseem Ahmed, she is engaged in process chemistry, exploring new methodologies using homogeneous and heterogeneous catalysis. Apurva has a strong publication record in international journals, reflecting her expertise and dedication to scientific research. She is highly motivated, analytical, and committed to knowledge exchange. Her enthusiasm for teaching, research, and interdisciplinary collaboration makes her a dynamic professional in the field of chemistry.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Apurva Singh is a highly promising researcher in the field of organic synthesis and catalysis, demonstrating a strong commitment to scientific innovation. With five years of research experience at IIT Roorkee, she has contributed significantly to the development of novel catalytic methodologies, particularly in transition-metal catalysis, oxidation reactions, and organo catalysis. Her research has led to multiple publications in high-impact journals, including RSC, Synthesis (Thieme), and Organic & Biomolecular Chemistry, showcasing her ability to conduct impactful studies. Additionally, she has received prestigious poster awards at national and international conferences, underscoring her ability to effectively present and communicate her findings. Given her strong publication record, innovative research contributions, and recognition through awards, Apurva Singh is a highly suitable candidate for the “Best Researcher Award.” Her work in catalysis and organic synthesis, coupled with her dedication to advancing chemical sciences, makes her a deserving nominee for this prestigious recognition.

🎓Education:

Apurva Singh is currently pursuing her Ph.D. in Organic Synthesis and Catalysis at the Indian Institute of Technology (IIT) Roorkee under the mentorship of Prof. Naseem Ahmed. Her research focuses on developing innovative catalytic methodologies for organic transformations, with publications in reputed journals such as RSC and Synthesis (Thieme). Prior to her Ph.D., she completed her Master of Science (M.Sc.) in Chemistry from Chaudhary Charan Singh University (CCSU), Meerut, in 2017, securing a first-class distinction with 76%. During her postgraduate studies, she gained expertise in organic chemistry and reaction mechanisms, further strengthening her foundation in the subject. Additionally, she pursued a Bachelor of Education (B.Ed.) from CCSU, Meerut, from 2018 to 2020, achieving 80%. Her B.Ed. degree equipped her with essential teaching skills, enhancing her ability to mentor and guide students in the academic field. Apurva’s strong academic background demonstrates her dedication to both research and education.

🏢Work Experience:

Apurva Singh has over five years of research experience in organic chemistry, specializing in catalysis, and two years of teaching experience. She is currently a Ph.D. researcher at IIT Roorkee, working on process chemistry, where she investigates novel catalytic methodologies for organic synthesis. Her research involves designing transition-metal complexes for oxidation reactions and developing regio selective synthetic strategies. She has published multiple research articles in internationally recognized journals, highlighting her contributions to the field. Apart from research, she has two years of experience as an academic tutor, mentoring undergraduate and postgraduate students in organic chemistry. She has assisted in research activities, manuscript writing, and conference presentations. Her expertise extends to coding for computational chemistry applications, bridging experimental and theoretical approaches. Apurva’s proactive nature and strong communication skills enable her to collaborate effectively, making significant contributions to both research and academic training.

🏅Awards: 

Apurva Singh has received multiple accolades for her outstanding research contributions. In 2024, she was awarded the Poster Award at the Indian Academy of Sciences Meeting and Lecture Workshop held at IIT Roorkee, recognizing her innovative work in catalysis and organic synthesis. In the same year, she won another Poster Award at the 2nd International Conference on Molecules to Materials at NIT Hamirpur, further establishing her expertise in the field. These awards highlight her ability to present complex scientific findings effectively and her dedication to advancing research. Her work has been widely appreciated for its significance in developing new catalytic methodologies, and she continues to be an active participant in scientific conferences and symposiums. Apurva’s achievements reflect her commitment to excellence in research and academia, positioning her as a promising scientist in the field of organic chemistry.

🔬Research Focus:

Apurva Singh’s research focuses on organic synthesis and catalysis, with a strong emphasis on developing novel transition-metal complexes for oxidation reactions. She explores homogeneous and heterogeneous catalysis to improve reaction efficiency and selectivity, mimicking enzymatic processes for sustainable chemistry. Her work includes the design of μ-chlorido-bridged dimanganese(II) complexes to replicate galactose oxidase enzyme activity, offering applications in oxidation and aldol reactions. She is also engaged in Fenton free radical reactions for regio selective synthesis of complex molecules. Her recent studies on organocatalytic synthesis of bioactive pyrazoline and pyrimidine derivatives contribute to medicinal chemistry by targeting bacterial enzymes like thymidine kinase in Staphylococcus aureus. Apurva is particularly interested in the intersection of chemistry and artificial intelligence, leveraging computational tools to predict reaction mechanisms and optimize catalyst design. Her multidisciplinary approach bridges fundamental chemistry with emerging technologies, driving innovation in organic synthesis and process chemistry.

Publication Top Notes:

1. Nickel(II)-hydrazineylpyridine catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones via a Fenton free radical reaction

Authors: Not provided in the given data

Year: 2025

Journal: Organic & Biomolecular Chemistry

2. Oxidative Cyclization Reactions Catalyzed by Designed Transition-Metal Complexes: A New Strategy for the Synthesis of Flavone, Quinolone, and Benzofuran Derivatives

Authors: Not provided in the given data

Year: 2023

Journal: Synthesis

3. Designed μ-Chlorido-bridged dimanganese(II) complexes to mimic the activity of galactose oxidase enzyme: Application in the dehydrogenative oxidation of alcohol and aldol reaction

Authors: Not provided in the given data

4. Organocatalytic synthesis of novel pyrazoline and pyrimidine derivatives as potent thymidine kinase inhibitors targeting Staphylococcus aureus

Authors: M.I. Issa Alahmdi

Year: 2025

 

 

Shadi Asgari | Chemistry and Materials Science | Best Researcher Award

Dr.Shadi Asgari | Chemistry and Materials Science | Best Researcher Award

Postdo of Alzahar University, Iran

Shadi Asgari, an accomplished Iranian chemist, was born on September 30, 1989. She holds a B.Sc. in Applied Chemistry from Isfahan University of Technology and an M.Sc. in Polymer Chemistry from the University of Isfahan, where she excelled under Dr. Gholam Ali Koohmareh’s supervision. Her academic journey culminated with a Ph.D. in Organic/Polymer Chemistry from Sharif University of Technology, supervised by Prof. Ali Pourjavadi, and included a visiting Ph.D. stint at the Technical University of Denmark. Asgari has held various research and teaching roles, including postdoctoral positions at the University of Tehran and Alzahra University, and a visiting scholar role at Hong Kong Baptist University. Her expertise spans organic/inorganic synthesis, nanomaterials, and drug delivery systems, with a strong focus on practical applications in quality control and R&D. Recognized for her academic excellence, she has received prestigious awards such as the Ministry of Science Scholarship and the Iran Science Elites Federation Grant.

Professional Profile:

Education

Shadi Asgari, an Iranian chemist, has a robust educational background with a B.Sc. in Applied Chemistry from Isfahan University of Technology and an M.Sc. in Polymer Chemistry from the University of Isfahan, where she was supervised by Dr. Gholam Ali Koohmareh. She earned her Ph.D. in Organic/Polymer Chemistry from Sharif University of Technology under Prof. Ali Pourjavadi and also conducted research as a visiting Ph.D. student at the Technical University of Denmark. Professionally, Asgari has held roles as a research assistant, quality control expert, teaching assistant, and postdoctoral researcher at prestigious institutions such as the University of Tehran and Alzahra University. Her research interests include the synthesis of organic/inorganic compounds, nanomaterials, drug delivery systems, and nanocomposites. She has received notable awards, including the Ministry of Science Scholarship and the Iran Science Elites Federation Grant. Asgari’s research skills encompass various spectroscopic and analytical techniques, such as FT-IR, UV-Vis, HPLC, and Raman spectroscopy.

Professional Experience

Shadi Asgari has amassed diverse professional experience in both academic and industrial settings. She began her career as a research assistant at the University of Isfahan, contributing to significant projects under Dr. Gholam Ali Koohmareh’s supervision. Following this, she prepared for and excelled in Iran’s competitive Ph.D. entrance exam. In the industrial sector, she worked as a quality control expert at Maral Charm Pishtaz Isfahan, focusing on ensuring product standards. Her academic roles have included serving as a teaching assistant for organic chemistry courses at Sharif University of Technology and supervising student research projects at Tehran University of Medical Science. As a postdoctoral researcher, she conducted advanced studies at the University of Tehran and Alzahra University, working on cutting-edge projects in chemistry and nanotechnology. Additionally, she has experience as an R&D expert at Pishgaman Fanavari Daricheh Company, where she specialized in toner component characterization and lithography for printing technologies.

Research Interest

Shadi Asgari’s research interests are deeply rooted in the fields of organic and polymer chemistry, with a particular focus on the synthesis and application of nanomaterials. She is passionate about exploring innovative drug delivery systems, aiming to enhance the efficacy and targeting of anticancer therapies through the development of pH-sensitive nanocarriers and mesoporous silica-based nanocarriers. Her work also delves into the synergistic effects of combining various therapeutic agents, such as doxorubicin and curcumin, as well as Ag nanoparticles and vancomycin, for improved treatment outcomes. Additionally, Asgari is interested in the broader applications of nanotechnology, including photocatalysis, piezocatalysis, and the development of advanced nanocomposites. Her research is characterized by a strong interdisciplinary approach, integrating material science with cutting-edge techniques in spectroscopy and analytical chemistry to innovate and solve complex problems in medicine and technology.

Award and Honor

Shadi Asgari has been recognized for her academic excellence and contributions to the field of chemistry through several prestigious awards and honors. In 2016, she achieved the notable distinction of ranking 8th among approximately 5000 contestants in Iran’s highly competitive Ph.D. examination. This accomplishment underscores her dedication and intellectual prowess. In 2019, Asgari was awarded the Ministry of Science, Research and Technology’s Scholarship of Iran for her sabbatical leave, facilitating her advanced research abroad.

Research Skills

Shadi Asgari possesses a diverse and extensive array of research skills that underpin her contributions to the fields of organic and polymer chemistry. Proficient in a wide range of spectroscopic and analytical techniques, including Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), and photoluminescence spectroscopy (PL), she demonstrates a thorough understanding of molecular structures and interactions. Asgari’s expertise extends to high-performance liquid chromatography (HPLC) for precise compound analysis, as well as microscopy techniques such as tabletop scanning electron microscopy (SEM) for detailed imaging of nanostructures. Additionally, her proficiency in electrospinning devices enables the fabrication of nanofibers with tailored properties for various applications. Furthermore, Asgari is skilled in thermal analysis techniques such as thermogravimetric analysis (TGA) and possesses experience in surface characterization methods like contact angle measurements. Her proficiency in these research skills empowers her to conduct innovative studies and contribute significantly to the advancement of knowledge in her field.

Publications

  • Title: FcLR-Chitosan/Pullulan nanofibers: Boosted antibacterial activity and decreased cytotoxicity
    Authors: Asgari, S., Mohammadi Ziarani, G., Badiei, A., Jahromi, M., Najafabadi, B.M.
    Journal: Materials Today Communications, 2024, 39
    Citations: 0
  • Title: Zr-UiO-66, ionic liquid (HMIM+TFSI−), and electrospun nanofibers (polyacrylonitrile): All in one as a piezo-photocatalyst for degradation of organic dye
    Authors: Asgari, S., Mohammadi Ziarani, G., Badiei, A., Vasseghian, Y.
    Journal: Chemical Engineering Journal, 2024, 487
    Citations: 0
  • Title: Electron/hole piezocatalysis in chemical reactions
    Authors: Asgari, S., Mohammadi Ziarani, G., Badiei, A., Iravani, S.
    Journal: Materials Advances, 2023, 4(23), pp. 6092–6117
    Citations: 0
  • Title: Reducing energy consumption in operation and demolition phases by integrating multi-objective optimization with LCA and BIM
    Authors: Asgari, S., Haghir, S., Noorzai, E.
    Journal: Energy Efficiency, 2023, 16(6), 54
    Citations: 2
  • Title: Enhanced photocatalytic activity of modified black phosphorus-incorporated PANi/PAN nanofibers
    Authors: Asgari, S., Mohammadi Ziarani, G., Badiei, A., Iravani, S., Mohajer, F.
    Journal: RSC Advances, 2023, 13

Madhukar Hemamalini | Chemistry and Materials Science | Best Researcher Award

Dr. Madhukar Hemamalini | Chemistry and Materials Science | Best Researcher Award

Assistant Professor of Mother Teresa Women’s University, India

Madhukar Hemamalini is a distinguished figure known for his contributions in the field of nanotechnology and material science. With a robust academic background, including a Ph.D. in Nanoscience, Hemamalini has made significant strides in advancing our understanding of nanoscale materials and their applications. His work is characterized by innovative approaches to solving complex problems in energy storage, drug delivery, and environmental sustainability. Hemamalini has published extensively in renowned peer-reviewed journals, showcasing groundbreaking research that has garnered widespread recognition. In addition to his research, he is an esteemed educator, inspiring the next generation of scientists through his teaching and mentorship. Hemamalini’s dedication to excellence and his visionary outlook have established him as a leader in the scientific community, earning him numerous accolades and invitations to speak at international conferences. His contributions continue to drive forward the frontiers of nanotechnology, promising impactful advancements in various high-tech industries.

Professional Profile:

Education Profile:

Madhukar Hemamalini pursued his academic journey in Chemistry with fervor and dedication, culminating in notable achievements. He obtained his Ph.D. in Chemistry from Bharathidasan University, India, in October 2006, marking a significant milestone in his academic pursuit. Prior to this, he completed his Master of Science (M.Sc.) degree in Chemistry from Bharathidasan University in August 2000, and his Bachelor of Science (B.Sc.) degree in Chemistry from Holycross College, Bharathidasan University, India, in August 1998. These foundational educational experiences equipped him with a solid understanding of chemical principles and laid the groundwork for his subsequent academic and research endeavors.

Professional Experience

Madhukar Hemamalini has accumulated a diverse and rich professional experience spanning academia and research. Beginning as an Assistant Professor at R. M. K. Engineering College in 2012, he later transitioned to Veltech Multitech Engineering College as an Associate Professor before assuming his current role as an Assistant Professor at Mother Teresa Women’s University in 2015. Throughout his tenure, he has demonstrated a steadfast commitment to education, contributing significantly to the academic growth of students in the field of Chemistry. Alongside his teaching responsibilities, Hemamalini has actively engaged in research, holding post-doctoral fellowships at prestigious institutions such as Universiti Sains Malaysia and the Institute of Molecular and Cell Biology, Singapore. His professional journey underscores his dedication to both advancing scientific knowledge through research and nurturing the next generation of scholars through effective teaching and mentorship.

Research Interest

Madhukar Hemamalini has accumulated a diverse and rich professional experience spanning academia and research. Beginning as an Assistant Professor at R. M. K. Engineering College in 2012, he later transitioned to Veltech Multitech Engineering College as an Associate Professor before assuming his current role as an Assistant Professor at Mother Teresa Women’s University in 2015. Throughout his tenure, he has demonstrated a steadfast commitment to education, contributing significantly to the academic growth of students in the field of Chemistry. Alongside his teaching responsibilities, Hemamalini has actively engaged in research, holding post-doctoral fellowships at prestigious institutions such as Universiti Sains Malaysia and the Institute of Molecular and Cell Biology, Singapore. His professional journey underscores his dedication to both advancing scientific knowledge through research and nurturing the next generation of scholars through effective teaching and mentorship.

Award and Honor:

Madhukar Hemamalini has accumulated a diverse and rich professional experience spanning academia and research. Beginning as an Assistant Professor at R. M. K. Engineering College in 2012, he later transitioned to Veltech Multitech Engineering College as an Associate Professor before assuming his current role as an Assistant Professor at Mother Teresa Women’s University in 2015. Throughout his tenure, he has demonstrated a steadfast commitment to education, contributing significantly to the academic growth of students in the field of Chemistry. Alongside his teaching responsibilities, Hemamalini has actively engaged in research, holding post-doctoral fellowships at prestigious institutions such as Universiti Sains Malaysia and the Institute of Molecular and Cell Biology, Singapore. His professional journey underscores his dedication to both advancing scientific knowledge through research and nurturing the next generation of scholars through effective teaching and mentorship.

Research Skills:

Madhukar Hemamalini possesses a diverse range of research skills that underscore his proficiency in various scientific domains. With expertise in X-ray crystallography, he is adept at using software like CCP4 Suit, COOT, PyMOL, SHELXS, SIR92, WinGX, PLATON, PLUTON, ORTEP, POVRAY, MERCURY, and CHEMDRAW for structure solution, refinement, and molecular graphics. His molecular biology skills include cloning using LIC and In-Fusion methods, transformation, protein expression, gel electrophoresis, Western blotting, pyrene-actin assays, dynamic light scattering (DLS), protein purification (AKTA), and crystallization (both manual and robotic). Additionally, he demonstrates proficiency in chemistry synthesis techniques for bioorganic and bioinorganic molecules and spectroscopic methods such as IR, UV, NMR, and spectrofluorimetry. Hemamalini’s comprehensive skill set enables him to conduct sophisticated research across multiple disciplines, contributing significantly to his scientific endeavors.

Publications

    1. 10-Bromo-N,N-diphenylanthracen-9-amine
      • Authors: Sureshkumar, K., Khamrang, T., Hemamalini, M., Saravanan, D., Antony, G.J.M.
      • Journal: IUCrData
      • Year: 2024
      • Volume: 9
      • Issue: Pt 3
      • Article ID: x240207
    2. A novel Cadmium metal-organic framework with exceptional nonlinear optical properties: Unveiling anisotropic charge transport and optical limiting behavior
      • Authors: Catherine Paul, A., Hemamalini, M., Mustaqim Rosli, M., …, Alwani Zainuri, D., Abdul Razak, I.
      • Journal: Results in Chemistry
      • Year: 2024
      • Volume: 7
      • Article ID: 101277
    3. 4-Amino-3,5-dichloropyridinium 3-hydroxypicolinate monohydrate
      • Authors: Ashokan, A., Nehru, J., Chakkarapani, N., …, Rajakannan, V., Hemamalini, M.
      • Journal: IUCrData
      • Year: 2023
      • Volume: 8
      • Article ID: x230821
    4. (2,4-Dichlorobenzylidene)[2-(1H-indol-3-yl)ethyl]-amine
      • Authors: Murugan, S., Paul, A.C., Khamrang, T., …, Rajakannan, V., Hemamalini, M.
      • Journal: IUCrData
      • Year: 2023
      • Volume: 8
      • Article ID: x230780
    5. Synthesis, optical and thermal analysis of p-Bromo chalcone derivatives: A theoretical and experimental studies
      • Authors: Nehru, J., Chakkarapani, N., Rajakannan, V., …, Maheshwari, S.U., Hemamalini, M.
      • Journal: Journal of Molecular Structure
      • Year: 2023
      • Volume: 1286
      • Article ID: 135591
    6. In vitro contraceptive activities, molecular docking, molecular dynamics, MM-PBSA, non-covalent interaction and DFT studies of bioactive compounds from Aegle marmelos. Linn., leaves
      • Authors: Gunasekaran, P., Velmurugan, Y., Arputharaj, D.S., …, Hemamalini, M., Venkatachalam, R.
      • Journal: Frontiers in Chemistry
      • Year: 2023
      • Volume: 11
      • Article ID: 1096177
    7. Structure Prediction and Binding Site Analysis of Human Sperm Hyaluronidases
      • Authors: Gunasekaran, P., Hemamalini, M., Venkatachalam, R.
      • Journal: International Journal of Infertility and Fetal Medicine
      • Year: 2022
      • Volume: 13
      • Issue: 3
      • Pages: 96–100
    8. Synthesis of 3-Methoxy-6- [(2, 4, 6-trimethyl-phenylamino)-methyl]-phenol Schiff base characterized by spectral, in-silco and in-vitro studies
      • Authors: Murugan, S., Nehru, J., Arputharaj, D.S., …, Rajakannan, V., Hemamalini, M.
      • Journal: Heliyon
      • Year: 2022
      • Volume: 8
      • Issue: 8
      • Article ID: e10070
    9. Chemical Synthesis, X-ray Crystallography, Hirshfeld Surface Analysis, and Molecular Docking Studies of (E)-2-(((3-Bromophenyl)imino)methyl)-5-(diethylamino)phenol Schiff Base
      • Authors: Hemamalini, M., Kestek, İ., Çınar, E.B., …, Josekavitha, S., Rajakannan, V.
      • Journal: Crystallography Reports
      • Year: 2021
      • Volume: 66
      • Issue: 6
      • Pages: 1023–1030
    10. Synthesis, crystal structure, Hirshfeld surface analysis, In-Silico assessment of druggability and molecular docking studies of Schiff base compound
      • Authors: Dege, N., Aydın, A.S., Ağar, E., …, Hemamalini, M., Rajakannan, V.
      • Journal: Chemical Data Collections
      • Year: 2020
      • Volume: 25
      • Article ID: 100320