Assoc. Prof. Dr. Yun Zhang | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Yun Zhang | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Yun Zhang  , Environmental Chemistry , Faculty at  Lanzhou University , China

Dr. Yun Zhang is an Associate Professor at Lanzhou University, China, with extensive expertise in environmental chemistry and nanomaterials. She earned her Ph.D. from Lanzhou University and the University of Vienna, specializing in porous chelating adsorbents and ionic liquids. Dr. Zhang has held academic positions at Lanzhou University and conducted postdoctoral research at Georgia Institute of Technology. Her research bridges environmental science and materials chemistry, focusing on the development of advanced nanostructures for pollutant detection and removal. Dr. Zhang has led several national and provincial research projects on catalysts and adsorbents for environmental remediation. Her contributions are recognized with multiple prestigious awards, including the International Postdoctoral Exchange Fellowship. She is also an active peer reviewer for leading journals such as Chemosphere and Journal of Hazardous Materials. Her innovative work on SERS-based pollutant detection and polymer-nanoparticle composites continues to impact sustainable environmental solutions.

Professional Profile : 

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Yun Zhang’s academic journey, marked by international collaboration, advanced research on nanostructured materials for environmental remediation, and successful leadership in funded projects, makes her a highly suitable candidate for a “Best Researcher Award.” Her work is innovative, globally relevant, and reflects a consistent trajectory of excellence and contribution to both fundamental and applied science. She exemplifies the qualities of a researcher who translates high-impact science into real-world environmental solutions. Dr. Yun Zhang fulfills the criteria expected of a “Best Researcher Award” recipient. Her research record demonstrates scientific innovation, international recognition, and societal relevance. Based on her proven capabilities, scholarly achievements, and impactful contributions to environmental chemistry and nanotechnology, she is strongly recommended as a deserving nominee for the “Best Researcher Award”.

🎓Education:

Dr. Yun Zhang completed her Ph.D. in Environmental Chemistry (2008–2011) through a joint program between Lanzhou University and the University of Vienna, where she focused on porous chelating adsorbents and ionic liquids for environmental applications. Prior to that, she earned her Master’s degree in Environmental Chemistry (2005–2008) from Lanzhou University, with research centered on atmospheric particles, PAHs, and analytical methods like GC-MS. Her undergraduate training in Environmental Science (2001–2005), also from Lanzhou University, laid a solid foundation in environmental monitoring and pollution analysis. The interdisciplinary nature of her academic training—spanning inorganic chemistry, environmental science, and polymer technology—has equipped her with a comprehensive approach to tackling modern environmental challenges through material innovation and chemical analysis.

🏢Work Experience:

Dr. Yun Zhang currently serves as an Associate Professor in the Department of Environmental Science at Lanzhou University, a role she has held since December 2019. She began her academic career as a Lecturer in the Institute of Polymer Science & Engineering at the same university from 2010 to 2016. From 2016 to 2018, she expanded her international research experience during a postdoctoral fellowship in Materials Science and Engineering at Georgia Institute of Technology, USA, where she developed expertise in nanostructured materials for pollutant sensing and degradation. Returning to Lanzhou University, she resumed teaching and research as a Lecturer (2018–2019) before her promotion. Dr. Zhang’s career reflects a dynamic blend of teaching, mentoring, and high-impact research across material science, environmental remediation, and nanotechnology. Her interdisciplinary experience has enabled her to lead cutting-edge research projects and mentor emerging scholars in environmental chemistry.

🏅Awards: 

Dr. Yun Zhang has received several prestigious awards recognizing her academic excellence and international research contributions. In 2015, she was selected for the International Postdoctoral Exchange Fellowship Project (2016–2018), supporting her research tenure at Georgia Tech. She earned the Bao Gang Education Scholarship in 2011, acknowledging her outstanding academic record. That same year, she also received the Scholarship Award for Excellent Doctoral Student, highlighting her impactful contributions during her Ph.D. studies. Earlier, in 2010, she was honored with a joint doctoral scholarship by the CSC (China Scholarship Council) and FWF (Austrian Science Fund), which facilitated her research at the University of Vienna. These accolades reflect not only her commitment to scientific excellence but also her capacity to contribute meaningfully to global research collaborations. Dr. Zhang’s recognition at national and international levels demonstrates her status as a leading figure in environmental chemistry and materials science.

🔬Research Focus:

Dr. Yun Zhang’s research integrates environmental chemistry, materials science, and nanotechnology to develop advanced solutions for pollution control. She specializes in the precise synthesis of noble metal nanostructures such as Ag nanocubes and Ag@Pt-Rh core-frame nanocrystals, which are employed in sensitive detection and catalytic degradation of organic pollutants using surface-enhanced Raman spectroscopy (SERS). Her work also explores polymer-nanoparticle composite adsorbents for the extraction of heavy metals, as well as the application of ionic liquids (ILs) in micro-pollutant removal. A distinctive feature of her research is the atomic layer deposition (ALD) technique, which enables controlled nanomaterial design for environmental applications. Her interdisciplinary projects are supported by competitive grants, emphasizing applied innovations for antibiotic degradation, mercury detection, and bimetallic catalysis. Through the integration of chemistry and environmental science, Dr. Zhang addresses pressing ecological challenges while advancing fundamental research in nanomaterials.

Publication Top Notes:

1. A Specific Time Lag Regulation of Soil Moisture Across Layers on Soil Salinization in the Northeast Tibetan Plateau Agroecosystem

2. Differential Quantitative Analysis of Carbon Emission Efficiency of Gansu Manufacturing Industry in 2030

3. Multi-Scenario Land Use/Cover Change and Its Impact on Carbon Storage Based on the Coupled GMOP-PLUS-InVEST Model in the Hexi Corridor, Chin

4. Hydrothermal Conditions in Deep Soil Layer Regulate the Interannual Change in Gross Primary Productivity in the Qilian Mountains Area, China

5. Syntheses, Plasmonic Properties, and Catalytic Applications of Ag–Rh Core-Frame Nanocubes and Rh Nanoboxes with Highly Porous Walls

6. Thiazole Orange-Modified Carbon Dots for Ratiometric Fluorescence Detection of G-Quadruplex and Double-Stranded DNA

7. Enriching Silver Nanocrystals with a Second Noble Metal

8. Observing the Overgrowth of a Second Metal on Silver Cubic Seeds in Solution by Surface-Enhanced Raman Scattering

9. Pt–Ag Cubic Nanocages with Wall Thickness Less Than 2 nm and Their Enhanced Catalytic Activity Toward Oxygen Reduction

10. Fabrication of Magnetic Alginate Beads with Uniform Dispersion of CoFe₂O₄ by the Polydopamine Surface Functionalization for Organic Pollutants Removal

11. Facile One-Pot Assembly of Adhesive Phenol/Fe³⁺/PEI Complexes for Preparing Magnetic Hybrid Microcapsules

 

 

Assist. Prof. Dr. Jonghyun Eun | Polymer Chemistry | Best Researcher Award

Assist. Prof. Dr. Jonghyun Eun | Polymer Chemistry | Best Researcher Award

Assist. Prof. Dr. Jonghyun Eun , Polymer Chemistry , Professor at Kumoh National Institute of Technology, South Korea

Dr. Jong-Hyun Eun is an Assistant Professor in the Department of Materials Design Engineering at Kumoh National Institute of Technology, Republic of Korea. With a strong background in textile engineering and advanced fiber materials, he specializes in carbon fiber technologies, piezoelectric nanofibers, and composite materials. He earned his integrated Master’s and Ph.D. from Yeungnam University under the mentorship of Prof. Joon-Seok Lee. His postdoctoral research journey included positions at Arizona State University and Yeungnam University, where he advanced his expertise in carbon fiber reinforced plastics (CFRPs), graphene-metal composites, and electrospun nanofibers. Dr. Eun has hands-on experience in fabricating and analyzing high-performance composites and energy harvesting materials, making him a rising researcher in the field. He also contributes actively to teaching, mentoring students in textile and fashion materials design. His recent publications highlight innovations in hydrogen storage, nanofiber processing, and sustainable composite development.

Professional Profile : 

Google Scholar

Orcid 

Summary of Suitability for Award:

Dr. Jong-Hyun Eun demonstrates a strong and dynamic research profile with focused expertise in carbon fiber technology, composite materials, piezoelectric nanofibers, and textile engineering—areas that are highly relevant to both academic advancement and industrial applications. His research is deeply interdisciplinary, integrating materials science, nanotechnology, and energy harvesting, aligning well with global trends in sustainable and smart materials. Dr. Jong-Hyun Eun is highly suitable for nomination for the “Best Researcher Award”. He brings together innovative research, technical excellence, and cross-disciplinary impact. His rapid trajectory from graduate studies to international postdoctoral work and faculty appointment, combined with a productive publication record and active teaching, makes him a strong contender. His ongoing contributions in composite materials and energy harvesting nanofibers address current scientific and technological challenges, fulfilling the criteria for excellence in research.

🎓Education:

Dr. Jong-Hyun Eun holds an integrated Master’s and Doctoral degree in Textile Engineering and Technology from Yeungnam University (2015–2021), where he conducted research under Prof. Joon-Seok Lee. His doctoral work focused on the development of polyethylene-based carbon fibers and composite materials. Prior to that, he completed a B.S. in Fiber and New Materials Design Engineering (2009–2015) at the same university, also under Prof. Lee’s guidance. Throughout his academic journey, Dr. Eun built a solid foundation in textile science, polymer engineering, and nanotechnology. His studies covered a range of topics from sulfonation processes under hydrostatic pressure to advanced electrospinning systems. His rigorous academic training has equipped him with both theoretical knowledge and extensive laboratory experience, paving the way for impactful research in fiber engineering and sustainable composite technologies.

🏢Work Experience:

Dr. Jong-Hyun Eun’s professional experience spans academia and cutting-edge research in fiber science and materials engineering. He currently serves as an Assistant Professor at Kumoh National Institute of Technology. Previously, he was a Postdoctoral Researcher at Arizona State University (2021–2023), focusing on material design and composite innovation. Before that, he held a postdoctoral position at Yeungnam University (2021), continuing his work in textile engineering. During his graduate studies, he also taught various courses at Korea Polytechnic, such as high-tech fiber, woven fabric formation, and textile material analysis. His hands-on experience includes fabricating carbon fiber composites through various molding techniques, developing piezoelectric nanofibers via electrospinning, and analyzing graphene-metal composites. Dr. Eun’s diverse research roles and teaching responsibilities have allowed him to bridge material science with real-world applications.

🏅Awards: 

While specific awards are not listed in the profile provided, Dr. Jong-Hyun Eun’s academic and professional achievements reflect a career of high distinction. Earning competitive postdoctoral positions at prestigious institutions like Arizona State University and Yeungnam University speaks to his expertise and scholarly recognition. His continuous collaboration with renowned Professor Joon-Seok Lee and multiple first-author publications in high-impact journals such as Scientific Reports, Materials & Design, and International Journal of Hydrogen Energy highlight his contributions to materials science and textile engineering. His role as a lead contributor in cutting-edge research on carbon fibers and composite materials demonstrates his leadership and innovation. As his career progresses, he is poised to receive further accolades in recognition of his impactful research and teaching in advanced materials engineering.

🔬Research Focus:

Dr. Jong-Hyun Eun’s research is centered on advanced fiber and composite materials, with a strong focus on sustainability and performance. His expertise includes carbon fiber development from polyethylene, toughening mechanisms in carbon fiber reinforced plastics (CFRPs), and mechanical/impact resistance analysis. He is also deeply engaged in developing piezoelectric nanofiber energy harvesting devices using electrospinning techniques, aiming at efficient wearable energy solutions. Additionally, his research extends to graphene-metal composites, exploring their structural and thermal properties. Through multidisciplinary approaches, Dr. Eun investigates reaction mechanisms, interfacial behavior, and processing-structure-property relationships in fiber-reinforced materials. His work is driven by a commitment to innovation in energy materials, lightweight composites, and next-generation textile engineering, making significant contributions to both academia and industry.

Publication Top Notes:

Effect of MWCNT content on the mechanical and piezoelectric properties of PVDF nanofibers
Citations: 83

Effect of low melting temperature polyamide fiber-interlaced carbon fiber braid fabric on the mechanical performance and fracture toughness of CFRP laminates
Citations: 32

Evaluation of carbon fiber and p-aramid composite for industrial helmet using simple cross-ply for protecting human heads
Authors: S. Kim, J. Lee, C. Roh, J. Eun, C. Kang
Citations: 32

Study on polyethylene-based carbon fibers obtained by sulfonation under hydrostatic pressure
Citations: 14

Effect of the viscosity of polyvinyl chloride resin and weaving structures of polyester fabric on the off-axis mechanical properties of PVC coated fabric
Citations: 9

Study on the NCO index and base knitted fabric substrates on the thermal, chemical, and mechanical properties of solvent-less formulations polyurethane artificial leather
Citations: 8

A study on mechanical properties and thermal properties of UHMWPE/MWCNT composite fiber with MWCNT content and draw ratio
Citations: 7

Effect of fabricating temperature on the mechanical properties of spread carbon fiber fabric composites
Citations: 7

Effect of toughened polyamide-coated carbon fiber fabric on the mechanical performance and fracture toughness of CFRP
Citations: 6

Effect of toughened polyamide/carbon fiber interlace braid fabric on the mechanical performance of CFRP laminates
Citations: 2

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R ,Inorganic Chemistry, GOVERNMENT POLYTECHNIC COLLEGE, EZHUKONE, KOLLAM, KERALA, India

Dr. Minitha R. is an Associate Professor with over 14 years of teaching and 15 years of research experience in chemistry. She holds an M.Sc., M.Phil., NET, UGC-JRF, and Ph.D. Her expertise spans organic, coordination, supramolecular, and inorganic chemistry. She has served in key academic roles, including NSS Programme Officer and Chief Superintendent of Examinations. A dedicated researcher, Dr. Minitha has guided students and undertaken projects like developing a chemosensor for metal ion detection. She has organized multiple national seminars and actively participates in international conferences and workshops.

Professional Profile :                       

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Minitha R., an accomplished Associate Professor with 15 years of research experience, has significantly contributed to the field of Inorganic Chemistry, particularly in Coordination Chemistry, Supramolecular Chemistry, and Organic Chemistry. With a strong publication record, she has authored several impactful research papers in highly reputed journals, covering diverse topics such as metal complexes, chemosensors, molecular structures, and spectroscopic studies. Dr. Minitha R. is an exceptional candidate for the “Best Researcher Award,” given her proven research excellence, scholarly contributions, and leadership in the scientific community. Her extensive work in metal-based coordination complexes, chemosensors, and supramolecular chemistry, along with her active role in mentoring and academic leadership, makes her a highly deserving nominee.

🎓Education:

Dr. Minitha R. holds a Ph.D. in Chemistry and has qualified for the NET and UGC-JRF. She completed her M.Sc. and M.Phil. in Chemistry, demonstrating academic excellence throughout. Her education provided her with a strong foundation in inorganic chemistry, particularly in complex synthesis, supramolecular interactions, and chemosensing applications. Her academic journey was driven by a passion for molecular recognition, ligand design, and structural chemistry. She has actively participated in seminars and workshops to enhance her knowledge and keep up with evolving research trends.

🏢Work Experience:

With 14 years of teaching and 15 years of research experience, Dr. Minitha R. has handled Organic, Inorganic, and Physical Chemistry courses. She has successfully guided research scholars, fostering innovations in supramolecular and coordination chemistry. Apart from teaching, she has played key roles as an NSS Programme Officer, Nature Club Coordinator, Chief Superintendent of Examinations, and Young Innovators Programme Facilitator. She has also organized national seminars and workshops on emerging trends in chemistry, enhancing academic collaboration and knowledge dissemination.

🏅Awards: 

Dr. Minitha R. has been recognized for her outstanding contributions to academia and research. She served as the NSS Programme Officer (2021-2022), demonstrating her commitment to student welfare and community service. As the Nature Club Coordinator (2019-2020), she played a crucial role in promoting environmental awareness. Her leadership extended to being the Chief Superintendent of Examinations (2020-2021), ensuring smooth academic assessments. Additionally, she facilitated the Young Innovators Programme (2019), fostering creativity and scientific curiosity among students. Her research endeavors were supported by a KSCSTE-funded M.Sc. student project, where she developed a chemosensor for metal ion detection. These roles reflect her dedication to education, research, and institutional development.

🔬Research Focus:

Dr. Minitha R. specializes in Inorganic Chemistry, with a keen interest in Organic Chemistry, Coordination Chemistry, and Supramolecular Chemistry. Her research explores the synthesis and characterization of novel metal complexes, particularly those with biological and chemosensory applications. She has contributed significantly to the development of pyrazolylhydrazone-based metal complexes, dioxo molybdenum(VI) compounds, and benzothiazolium salts. Her work also extends to fluorescent hydrazones and ruthenium(II) complexes, emphasizing their structural and functional properties. Additionally, her studies on five-coordinate Zn(II) complexes highlight their potential in nonlinear optical applications. Through her research, she aims to bridge the gap between fundamental chemistry and real-world applications, particularly in materials science, catalysis, and medicinal chemistry.

Publication Top Notes:

Formation of dicyano ruthenium(II) complex mediated by triethylamine via deprotonation of hydrazonochroman-2,4-dione
Synthesis, spectroscopic and biological studies of metal complexes of an ONO donor pyrazolylhydrazone – Crystal structure of ligand and Co(II) complex
Studies of some dioxo molybdenum(VI) complexes of a polydentate ligand
One pot synthesis of 1–(3–methyl–4H–benzo[1,4]thiazin–2–yl)-ethanone and its antimicrobial properties
 Synthesis, spectral, and magnetic studies of benzothiazolium tetrachlorocuprate salts: crystal structure and semiconducting behavior of bis[2-(4-methoxyphenyl)benzothiazolium] tetrachlorocuprate(II)
Fluorescent coumarin-based hydrazone: Synthesis, crystal structure, and spectroscopic studies
FT-IR, FT-Raman and computational study of 1H-2,2-dimethyl-3H-phenothiazin-4[10H]-one
Synthesis, crystal structure, spectral analysis, and NLO studies of five-coordinate Zn(II) complexes of hydrazochromandione
 Chemosensing study of 1,4-Benzothiazine generated from acetylacetone

 

Ica Manas-Zloczower | Chemistry | Best Researcher Award

Prof. Ica Manas-Zloczower | Chemistry| Best Researcher Award

Professor at Case Western Reserve University, United States

Ica Manas-Zloczower is a distinguished university professor at Case Western Reserve University, specializing in macromolecular science and chemical engineering. With a career spanning over four decades, she has made significant contributions to the fields of polymer processing, advanced materials, and energy solutions. Her extensive research and leadership roles have positioned her as a prominent figure in both academia and professional societies.

Author Metrics

Google Scholar Profile

Scopus Profile

ORCID Profile

Throughout her career, Ica Manas-Zloczower has published numerous research articles in high-impact journals, contributing significantly to the scientific community. Her work is widely cited, reflecting her influence and expertise in polymer science. Metrics such as citation indices and h-index highlight her prolific output and the impact of her research on advancing knowledge in her field.

  • Total Citations: 5,873
  • Total Documents: 236
  • h-index: 43

Education

Ica earned her Doctor of Science from the Technion – Israel Institute of Technology, where she focused on chemical engineering. Her academic journey began at the Polytechnic Institute in Jassy, Romania, where she received both her B.S. and M.S. degrees. This solid educational foundation has underpinned her subsequent achievements in research and teaching.

Research Focus

Her research primarily centers on polymer processing, recycling technologies, and the development of advanced materials. Ica is particularly interested in mechanochemical methods for the recycling of thermosetting polymers and the enhancement of thermomechanical properties of polymer composites. This focus not only addresses critical environmental issues but also pushes the boundaries of material science.

Professional Journey

Ica’s professional journey includes roles as an assistant professor, associate professor, and now as a distinguished university professor at Case Western Reserve University. She has served as the Associate Dean of Faculty Development and has held leadership positions in several professional organizations, including the International Polymer Processing Society. Her academic and administrative roles demonstrate her commitment to fostering growth in engineering education.

Honors & Awards

Ica has received numerous accolades for her teaching, research, and service. Notable honors include the 2017 Society of Plastics Engineers Fred E. Schwab Education Award and the 2012 George S. Whitby Award for Distinguished Teaching and Research. Her recognition as a Fellow of the Society of Plastics Engineers underscores her contributions to the field.

Publications Noted & Contributions

Ica has authored and co-authored a plethora of articles in leading journals, contributing vital research on topics like polymer recycling and mechanical properties of materials. Her editorial roles in several journals further amplify her impact, as she shapes the discourse in polymer science and engineering. Notable publications include works on vitrimerization and thermomechanical properties of polymers, reflecting her innovative research approach.

Improving Performance of TPU by Controlled Crosslinking of Soft Segments

Journal: Polymer Engineering & Science
Publication Date: August 2024
DOI: 10.1002/pen.26826
Contributors: Lucivan P. Barros Junior, Lucio R. de Souza, Rasoul Rahimzadeh, Ica Manas‐Zloczower
This article explores innovative methods to enhance the performance of thermoplastic polyurethane (TPU) by controlling the crosslinking of its soft segments. The findings contribute to optimizing TPU properties for various applications, particularly in areas requiring enhanced mechanical performance and durability.

A Mechanochemical Approach to Recycle Thermosets Containing Carbonate and Thiourethane Linkages

Journal: Polymer
Publication Date: April 2024
DOI: 10.1016/j.polymer.2024.126877
Contributors: Rasoul Rahimzadeh, Yazhe Han, Ica Manas-Zloczower
This research presents a mechanochemical method for recycling thermosetting polymers with carbonate and thiourethane linkages. The study addresses the critical issue of polymer waste, proposing a viable recycling technique that could significantly impact sustainability in polymer usage.

Thermomechanical Performance of Thermoplastic Polyurethane–Poly(tetrafluoroethylene) Fibril Nanocomposites

Journal: ACS Applied Polymer Materials
Publication Date: July 14, 2023
DOI: 10.1021/acsapm.3c00738
Contributors: Maya Pishvar, Mehrad Amirkhosravi, Ica Manas-Zloczower
This article investigates the thermomechanical properties of nanocomposites made from TPU and poly(tetrafluoroethylene) (PTFE) fibrils. The research contributes to the understanding of composite behavior, highlighting the potential for developing advanced materials with superior mechanical properties.

Porous Hydrogels: Present Challenges and Future Opportunities

Journal: Langmuir
Publication Date: February 14, 2023
DOI: 10.1021/acs.langmuir.2c02253
Contributors: Reza Foudazi, Ryan Zowada, Ica Manas-Zloczower, Donald L. Feke
This publication reviews the current challenges in developing porous hydrogels while identifying future research directions. It serves as a comprehensive resource for researchers in the field, fostering innovation in hydrogel applications.

Thermomechanical Properties of Cross-Linked EVA: A Holistic Approach

Journal: ACS Applied Polymer Materials
Publication Date: February 10, 2023
DOI: 10.1021/acsapm.2c01928
Contributors: Kimberly Miller McLoughlin, Amin Jamei Oskouei, Michelle K. Sing, Alireza Bandegi, Sarah Mitchell, Jayme Kennedy, Thomas G. Gray, Ica Manas-Zloczower
This article presents a comprehensive analysis of the thermomechanical properties of cross-linked ethylene-vinyl acetate (EVA). By utilizing a holistic approach, the study enhances understanding of the relationship between processing conditions and material performance.

Research Timeline

Over the years, Ica’s research has evolved, with early work focusing on basic polymer processing principles and later expanding into advanced recycling technologies and material characterization. This timeline illustrates her adaptability and foresight in addressing emerging challenges in materials science, making significant contributions to both academia and industry.

Conclusion

Ica Manas-Zloczower’s career is marked by a dedication to research, teaching, and professional service in the field of macromolecular science and engineering. Her contributions not only advance scientific understanding but also inspire future generations of engineers. As she continues to push the boundaries of polymer science, her legacy will undoubtedly influence the direction of research and education in the field.

Bienvenu Mbanga | Chemistry | Environmental Chemistry Award

Dr. Bienvenu Mbanga | Chemistry | Environmental Chemistry Award

Doctorate at Nelson Mandela university, South Africa

Bienvenu Mbanga is a dynamic and driven professional with a PhD in Chemistry from the University of Johannesburg. He is recognized for his expertise in nanomaterial development, water analysis, and environmental chemistry. His career spans research, teaching, and mentorship roles, showcasing his commitment to advancing scientific knowledge and fostering collaborations within academia and beyond. His interdisciplinary approach underscores his dedication to addressing environmental challenges through innovative research and practical solutions.

Author Metrics

Scopus Profile

ORCID Profile

Google Scholar Profile

Citations: Since 2019, Bienvenu Mbanga’s work has been cited 222 times in scholarly literature, reflecting the impact and reach of his research within the academic community.

h-index: As of 2019 and continuing into the present, Bienvenu Mbanga has an h-index of 7. This metric indicates that he has published at least 7 papers that have each received at least 7 citations.

i10-index: Bienvenu Mbanga’s i10-index, which counts the number of publications with at least 10 citations, remains at 4 since 2019. This metric gives insight into the impact of his research in terms of highly cited publications.

Education

Bienvenu Mbanga’s educational journey is anchored by degrees from the University of Johannesburg, including a PhD in Chemistry (2021), a Masters (2016), a BSc Honours (2014), and a Bachelors in Science (2013) from the University of South Africa. His academic foundation in chemistry and mathematics has been pivotal in deepening his expertise through specialized research and academic pursuits, shaping his career in environmental science and analytical chemistry.

Research Focus

Bienvenu Mbanga’s research is centered on pioneering solutions in environmental sustainability, focusing on the development of nanomaterials for water treatment, analysis of water quality and environmental pollutants, and the application of advanced analytical techniques to environmental samples. His research underscores a commitment to addressing critical environmental challenges through rigorous scientific inquiry and practical applications in pollution control and resource management.

Professional Journey

Bienvenu Mbanga’s professional journey encompasses roles such as a Postdoctoral Fellow at Nelson Mandela University (since 2022), where he conducts innovative research in agricultural waste and wastewater treatment. His prior experiences include teaching and facilitating chemistry at high schools and contributing to research projects as a Research Assistant and Lecturer at the University of Johannesburg. These roles highlight his versatility and dedication to research, education, and community engagement.

Honors & Awards

Bienvenu Mbanga has garnered recognition for his contributions to science and education, including serving as a judge for prestigious scientific competitions, being selected among the 100 Brightest Minds in Africa, and participating in mentorship programs and international seminars. These accolades underscore his influence and impact in the scientific community, reflecting his leadership and commitment to professional development in science and education.

Publications Noted & Contributions

Bienvenu Mbanga’s scholarly contributions are extensive, encompassing significant research findings published in reputable journals and presented at international conferences. His publications focus on nanomaterial synthesis, water chemistry, and environmental sciences, contributing to advancements in scientific knowledge and addressing environmental challenges through innovative methodologies and practical applications.

Estimation of energy demand and carbon emissions for the road transport sector: A case study of Douala, Cameroon

Authors: FD Bissai, BGF Mbanga, CA Mezoue, S Nguiya

Published in: Hybrid Advances, Volume 6, 100187, 2024

Application of Metallic Oxide Coated Carbon Nanoparticles in Adsorption of heavy metals and Reusability for Latent Fingerprint Detection: A Review

Authors: BG Fouda-Mbanga, OP Onotu, CI Olushuyi, YB Nthwane, B Nyoni, …

Published in: Hybrid Advances, 100248, 2024

A comprehensive review of heavy metals (Pb2+, Cd2+, Ni2+) removal from wastewater using low-cost adsorbents and possible revalorisation of spent adsorbents

Authors: YB Nthwane, BG Fouda-Mbanga, M Thwala, K Pillay

Published in: Environmental Technology, 1-17, 2024

The Potential of Agricultural Waste Chars as Low-Cost Adsorbents for Heavy Metal Removal From Water

Authors: B Nyoni, BG Fouda-Mbanga, BM Hlabano-Moyo, YB Nthwane, B Yalala, …

Published in: Biosorption Processes for Heavy Metal Removal, 244-270, 2024

Analysis Driving Factors of Energy Consumption in the Road Transport Sector of the City in Douala, Cameroon

Authors: FD Bissai, BGF Mbanga, CA Mezoue, S Nguiya

Published in: Preprints, 2023

These publications highlight Bienvenu Mbanga’s research interests and contributions, focusing on topics such as energy demand and carbon emissions in road transport, applications of nanomaterials in heavy metal adsorption, and the use of agricultural waste for environmental remediation. His work demonstrates a commitment to addressing environmental challenges and advancing scientific knowledge in these critical areas.

Research Timeline

Bienvenu Mbanga’s research trajectory illustrates a progressive engagement in scientific inquiry, from early roles as a research assistant focusing on soil and plant analysis to his current position as a postdoctoral fellow specializing in agricultural and wastewater treatment. His career path reflects a commitment to excellence in research and an interdisciplinary approach to tackling pressing environmental issues through collaborative and innovative research projects.

Collaborations and Projects

Bienvenu Mbanga has actively collaborated on projects aimed at developing sustainable solutions in water treatment and pollution control, partnering with academic institutions and industry stakeholders. His projects emphasize the application of nanotechnology and advanced analytical techniques to address environmental challenges, contributing significantly to global efforts in environmental sustainability and resource management.

Impact and Innovation

Bienvenu Mbanga’s research has made a profound impact on environmental science and sustainability by innovating in nanomaterial development and water treatment technologies. His work not only addresses current environmental challenges but also lays the groundwork for future innovations in pollution control and sustainable resource management, contributing to global efforts towards a more sustainable and environmentally conscious future.

Mentorship

Bienvenu Mbanga is dedicated to mentoring the next generation of scientists, actively guiding undergraduate and postgraduate students in research methodologies, academic writing, and professional development. His mentorship extends to participation in educational programs aimed at nurturing young talent and fostering a passion for science and environmental stewardship, reflecting his commitment to shaping future leaders in the fields of chemistry and environmental science.

Aayasha Negi | Chemistry | Women Researcher Award

Dr. Aayasha Negi | Chemistry | Women Researcher Award

 Doctorate at IFTM university, India

Dr. Aayasha Negi is currently an Assistant Professor of Chemistry at IFTM University in Moradabad, Uttar Pradesh, India. She holds a Ph.D. in Chemistry from Hemwati Nandan Bahuguna Garhwal University, Uttarakhand, specializing in Nanosciences. Her research primarily focuses on synthesizing nanoparticles using green methods derived from medicinal plants. Dr. Negi is dedicated to advancing the fields of nanotechnology and environmental engineering through her extensive research and academic contributions.

Author Metrics:

Google Scholar Profile

Dr. Aayasha Negi has established a strong presence in the academic community with numerous publications in reputed journals and contributions to book chapters. Her research papers are indexed in well-known databases such as SCI (Science Citation Index), Scopus, and UGC-CARE, showcasing her scholarly impact and recognition in the field of chemistry and nanotechnology.

  • Citations (Since 2019): Dr. Aayasha Negi has accumulated 44 citations since 2019, indicating the number of times her published works have been referenced by other researchers during this period.
  • h-index (Since 2019): The h-index is 4, which means Dr. Negi has published at least 4 papers that have each been cited at least 4 times.
  • i10-index (Since 2019): The i10-index is 0, suggesting that none of her papers since 2019 have received 10 or more citations.

Education:

Dr. Negi completed her education with distinction, starting with a strong academic foundation in Uttarakhand. She earned a Ph.D. in Chemistry from HNB Garhwal University, Uttarakhand, in 2022. Prior to her doctoral studies, she completed her B.Sc. in Physical Sciences and M.Sc. in Chemistry from SGRR PG College and MKP PG College in Dehradun, respectively.

Research Focus:

Dr. Aayasha Negi’s research focuses on the synthesis and application of nanoparticles, particularly using green chemistry approaches involving medicinal plants. Her work includes the evaluation of nanoparticles for antibacterial, antifungal, and photocatalytic properties, as well as their potential in environmental remediation and biomedical applications. She utilizes advanced characterization techniques such as XRD, UV-Visible spectroscopy, SEM, TEM, and DLS to study nanomaterial properties in depth.

Professional Journey:

Dr. Negi’s professional journey began as an Assistant Professor at IFTM University, Moradabad, where she currently teaches and conducts research. Her career is marked by a commitment to teaching and mentoring students while simultaneously contributing significantly to scientific research. She actively participates in international conferences, presenting her work and collaborating with peers to advance knowledge in nanoscience and chemistry.

Honors & Awards:

Throughout her career, Dr. Aayasha Negi has received recognition for her research contributions. Notably, she has won Best Paper Awards at international conferences focused on green chemistry and material characterization. These accolades underscore her impact and leadership in her field.

Publications Noted & Contributions:

Dr. Negi has authored and co-authored numerous research papers published in esteemed journals such as Springer, Elsevier, and Scientific Reports: Nature. Her contributions span various aspects of nanoscience, including nanoparticle synthesis, biomedical applications, environmental remediation, and materials science. Additionally, she has contributed chapters to prestigious books on green materials and nanobiotechnology.

Citrus medica mediated Ag-doped MgO nanocomposites as green adsorbent and its catalytic performance in the rapid treatment of water contaminants

Authors: S Ringwal, A Negi, AS Bartwal, SC Sati

Journal: Nanotechnology for Environmental Engineering

Pages: 1-8

Year: 2024

Zinc Sulphide Nanoparticles as a Bacteriostatic and Invigorated Catalytic Tool for Multiple Dye Degradation: An Approach Towards Environment Remediation

Authors: A Negi, R Gangwar, DS Negi

Book Chapter: Nano-biotechnology for Waste Water Treatment: Theory and Practices

Pages: 303-314

Year: 2022

Development and characterization of fly ash enriched epoxy coatings for corrosion protection in deep sea water

Authors: M Pandey, S Mehtab, MGH Zaidi, A Negi, P Joshi, M Aziz, M Pandey

Journal: Surface and Coatings Technology

Volume: 485

Pages: 130882

Year: 2024

Plant-mediated Z-scheme ZnO/TiO2-NCs for antibacterial potential and dye degradation: experimental and DFT study

Authors: A Negi, S Ringwal, M Pandey, M Taha Yassin

Journal: Scientific Reports

Volume: 14 (1)

Pages: 7955

Year: 2024

Visible light-induced dye degradation potential of green synthesized nanoparticles: an approach toward polluted water treatment

Authors: A Negi, RK Vishwakarma, DS Negi

Book Chapter: Green Approaches in Medicinal Chemistry for Sustainable Drug Design

Pages: 223-231

Year: 2024

Research Timeline:

Over the years, Dr. Negi’s research has evolved from fundamental studies in nanomaterial synthesis to applied research in environmental and biomedical applications. Her timeline includes significant milestones such as attending and presenting at international conferences, publishing impactful research papers, and securing funding for collaborative projects.

Collaborations and Projects:

Dr. Aayasha Negi actively collaborates with researchers nationally and internationally on interdisciplinary projects. Her collaborations focus on integrating nanotechnology with biotechnology and environmental science to develop sustainable solutions. She participates in projects aimed at advancing the understanding and applications of nanoparticles in diverse fields, from water treatment to biomedical therapeutics.

This structured breakdown provides a comprehensive overview of Dr. Aayasha Negi’s academic journey, research contributions, professional achievements, and collaborative endeavors in the field of chemistry and nanotechnology.

Farahnaz Behbahani | Organic chemistry | Best Researcher Award

Prof. Farahnaz Behbahani | Organic chemistry | Best Researcher Award

 Academician of Karaj branch, Iran

Dr. Farahnaz Kargar Behbahani is an esteemed academic in the field of organic chemistry, currently serving as an Associate Professor and board member at the Department of Chemistry, Karaj Branch, Islamic Azad University 🏢. She holds a B.S. in Pure Chemistry 🎓 and an M.S. in Organic Chemistry 🎓 from Razi University, Kermanshah, and a Ph.D. in Organic Chemistry 🎓 from Alzahra University, Tehran. With extensive expertise in areas such as Organic Chemistry (I, II, III) 🧪, Organic Physical Chemistry ⚗️, Bioorganic Chemistry 🔬, and Phytochemistry 🌿, Dr. Behbahani has made significant contributions to the academic community. She has authored and co-authored several books and chapters 📚, including works on the production and uses of Iron (III) Phosphate in organic synthesis, advances in chemistry research, and greener synthesis of organic compounds. Her teaching portfolio spans B.S., M.S., and Ph.D. courses, highlighting her dedication to education and research in chemistry. Dr. Behbahani’s scholarly achievements and educational contributions have solidified her reputation as a leading figure in her field 🌟.

Professional Profile:

Education🎓

Dr. Farahnaz Kargar Behbahani has an impressive educational background in the field of chemistry. She earned her B.S. degree in Pure Chemistry from Razi University, Kermanshah 🎓, where she also completed her M.S. in Organic Chemistry 🎓. Dr. Behbahani further advanced her expertise by obtaining a Ph.D. in Organic Chemistry from Alzahra University, Tehran 🎓. Her solid academic foundation has enabled her to excel in both teaching and research, making significant contributions to the field of organic chemistry 🧪🔬.

 

Professional Experience 📚

Dr. Farahnaz Kargar Behbahani is an accomplished Associate Professor and board member at the Department of Chemistry, Karaj Branch, Islamic Azad University 🏢. With a rich background in organic chemistry, she has taught a variety of courses across B.S., M.S., and Ph.D. levels, including Organic Chemistry (I, II, III) 🧪, Organic Physical Chemistry ⚗️, Bioorganic Chemistry 🔬, and Phytochemistry 🌿. Dr. Behbahani has authored and co-authored several notable books and chapters 📚, focusing on topics such as Iron (III) Phosphate production and its applications, advances in chemistry research, and greener synthesis of organic compounds. Her professional experience is marked by her dedication to both education and research, making her a prominent figure in the academic community 🌟.

Research Interest 🔍

Dr. Farahnaz Kargar Behbahani’s research interests lie primarily in the realm of organic chemistry, with a particular focus on organic synthesis 🧪, bioorganic chemistry 🔬, and phytochemistry 🌿. She explores the application of spectroscopy in organic compounds 🔍, aiming to innovate and improve methods for the separation and identification of these compounds. Additionally, Dr. Behbahani is dedicated to studying heterocyclic chemistry 🔄 and the chemistry and technology of leather 🧴. Her research also delves into greener synthesis techniques, contributing to sustainable practices in organic chemistry. Through her extensive research, she has made significant advancements in the field, enriching the scientific community with her findings and publications 📚.

Award and Honor🏆

Dr. Farahnaz Kargar Behbahani has been recognized with several awards and honors that underscore her significant contributions to the field of organic chemistry 🏆. Her dedication to research and education has earned her accolades from prestigious institutions, reflecting her excellence in scientific innovation and academic leadership 🌟. Dr. Behbahani’s achievements in the application of spectroscopy, organic synthesis 🧪, and greener synthesis techniques 🌱 have been particularly celebrated, highlighting her commitment to advancing sustainable practices in chemistry. These honors not only acknowledge her professional accomplishments but also inspire her ongoing efforts to push the boundaries of chemical research and education 📚.

 

Research Skills🌟

Dr. Farahnaz Kargar Behbahani possesses a robust set of research skills in organic chemistry, characterized by her expertise in organic synthesis 🧪 and bio organic chemistry 🔬. She is proficient in the application of spectroscopy for analyzing organic compounds 🔍, enabling precise identification and separation techniques. Dr. Behbahani is skilled in heterocyclic chemistry 🔄 and phytochemistry 🌿, contributing to her diverse research portfolio. Her ability to innovate in the field of greener synthesis techniques underscores her commitment to sustainable scientific practices 🌱. Additionally, her work in the chemistry and technology of leather 🧴 highlights her versatile research capabilities. These skills, combined with her extensive publication record 📚, establish Dr. Behbahani as a leading researcher in her field 🌟.

Publications
  • Catalytic Aromatization of Hantzsch 1,4-Dihydropyridines by Ferric Perchlorate in Acetic Acid
    • 📚 Authors: M.M. Heravi, F.K. Behbahani, H.A. Oskooie, R.H. Shoar
    • 📅 Year: 2005
    • 🔢 Citations: 164
    • 📖 Journal: Tetrahedron Letters 46 (16), 2775-2777
  • H14 [NaP5W30O110]: A Heteropoly Acid Catalyzed Acetylation of Alcohols and Phenols in Acetic Anhydride
    • 📚 Authors: M.M. Heravi, F.K. Behbahani, F.F. Bamoharram
    • 📅 Year: 2006
    • 🔢 Citations: 100
    • 📖 Journal: Journal of Molecular Catalysis A: Chemical 253 (1-2), 16-19
  • Selective and Efficient Alcoholyses of Allylic, Secondary-and Tertiary Benzylic Alcohols in the Presence of Iron (III)
    • 📚 Authors: P. Salehi, N. Iranpoor, F.K. Behbahani
    • 📅 Year: 1998
    • 🔢 Citations: 98
    • 📖 Journal: Tetrahedron 54 (5-6), 943-948
  • A Facile, Mild and Efficient One-Pot Synthesis of 2-Substituted Indole Derivatives Catalyzed by Pd(PPh3)2Cl2
    • 📚 Authors: H.A. Oskooie, M.M. Heravi, F.K. Behbahani
    • 📅 Year: 2007
    • 🔢 Citations: 83
    • 📖 Journal: Molecules 12 (7), 1438-1446
  • Mild and Efficient Tetrahydropyranylation of Alcohols and Dehydropyranylation of THP Ethers Catalyzed by Ferric Perchlorate
    • 📚 Authors: M.M. Heravi, F.K. Behbahani, H.A. Oskooie, R.H. Shoar
    • 📅 Year: 2005
    • 🔢 Citations: 73
    • 📖 Journal: Tetrahedron Letters 46 (15), 2543-2545
  • Catalytic Acetylation of Alcohols and Phenols with Ferric Perchlorate in Acetic Acid
    • 📚 Authors: M.M. Heravi, F.K. Behbahani, R.H. Shoar, H.A. Oskooie
    • 📅 Year: 2006
    • 🔢 Citations: 53
    • 📖 Journal: Catalysis Communications 7 (3), 136-139
  • Ferric Perchlorate: An Efficient Reagent for Regio- and Stereoselective Alcoholysis and Hydrolysis of Epoxides
    • 📚 Authors: P. Salehi, B. Seddighi, M. Irandoost, F.K. Behbahani
    • 📅 Year: 2000
    • 🔢 Citations: 47
    • 📖 Journal: Synthetic Communications 30 (16), 2967-2973
  • Solventless Synthesis of 2-Aryl-1-Arylmethyl-1H-1,3-Benzimidazoles Catalyzed by Fe(ClO4)3 at Room Temperature
    • 📚 Authors: H.A. Oskooie, M.M. Heravi, A. Sadnia, F.K. Behbahani, F. Jannati
    • 📅 Year: 2007
    • 🔢 Citations: 43
    • 📖 Journal: Chinese Chemical Letters 18 (11), 1357-1360
  • On Water CuSO4.5H2O-Catalyzed Synthesis of 2-Amino-4H-Chromenes
    • 📚 Authors: F.K. Behbahani, S. Maryam
    • 📅 Year: 2013
    • 🔢 Citations: 41
    • 📖 Journal: J. Korean Chem. Soc 57 (3), 357-360
  • Anhydrous FePO4: A Green and Cost-Effective Catalyst for the One-Pot Three Component Synthesis of 2,4,5-Triarylated Imidazoles
    • 📚 Authors: F.K. Behbahani, T. Yektanezhad, A.R. Khorrami
    • 📅 Year: 2010
    • 🔢 Citations: 39
    • 📖 Journal: Heterocycles 81 (10), 2313
  • An Efficient Synthesis of 2-Arylbenzimidazoles from o-Phenylenediamines and Arylaldehydes Catalyzed by Fe/CeO2–ZrO2 Nano Fine Particles
    • 📚 Authors: F.K. Behbahani, P. Ziaei, Z. Fakhroueian, N. Doragi
    • 📅 Year: 2011
    • 🔢 Citations: 37
    • 📖 Journal: Monatshefte für Chemie-Chemical Monthly 142, 901-906
  • Acetylation of Alcohols, Phenols and Salicylic Acid by Heteropoly Acids in Acetic Anhydride: A Green and Eco-Friendly Protocol for Synthesis of Acetyl Salicylic Acid (Aspirin)
    • 📚 Authors: M.M. Heravi, F.K. Behbahani, F.F. Bamoharram
    • 📅 Year: 2007
    • 🔢 Citations: 36
    • 📖 Journal: Arkivoc 16, 123-131
  • Catalytic Synthesis of 2,3-Dihydro-1H-1,5-Benzodiazepines by Ferric Perchlorate
    • 📚 Authors: M.M. Heravi, V. Zadsirjan, F.K. Behbahani, H.A. Oskooie
    • 📅 Year: 2006
    • 🔢 Citations: 35
    • 📖 Journal: Journal of Molecular Catalysis A: Chemical 259 (1-2), 201-204
  • Recent Developments in the Synthesis and Applications of Dihydropyrimidin-2(1H)-ones and Thiones
    • 📚 Authors: B. Mohammadi, F.K. Behbahani
    • 📅 Year: 2018
    • 🔢 Citations: 34
    • 📖 Journal: Molecular Diversity 22, 405-446
  • Fe(ClO4)3·6H2O: A Mild and Efficient Catalyst for One-Pot Three Component Synthesis of β-Acetamido Carbonyl Compounds under Solvent-Free Conditions
    • 📚 Authors: M.M. Heravi, F.K. Behbahani, M. Daraie, H.A. Oskooie
    • 📅 Year: 2009
    • 🔢 Citations: 32
    • 📖 Journal: Molecular Diversity 13, 375-378

Shadi Asgari | Chemistry and Materials Science | Best Researcher Award

Dr.Shadi Asgari | Chemistry and Materials Science | Best Researcher Award

Postdo of Alzahar University, Iran

Shadi Asgari, an accomplished Iranian chemist, was born on September 30, 1989. She holds a B.Sc. in Applied Chemistry from Isfahan University of Technology and an M.Sc. in Polymer Chemistry from the University of Isfahan, where she excelled under Dr. Gholam Ali Koohmareh’s supervision. Her academic journey culminated with a Ph.D. in Organic/Polymer Chemistry from Sharif University of Technology, supervised by Prof. Ali Pourjavadi, and included a visiting Ph.D. stint at the Technical University of Denmark. Asgari has held various research and teaching roles, including postdoctoral positions at the University of Tehran and Alzahra University, and a visiting scholar role at Hong Kong Baptist University. Her expertise spans organic/inorganic synthesis, nanomaterials, and drug delivery systems, with a strong focus on practical applications in quality control and R&D. Recognized for her academic excellence, she has received prestigious awards such as the Ministry of Science Scholarship and the Iran Science Elites Federation Grant.

Professional Profile:

Education

Shadi Asgari, an Iranian chemist, has a robust educational background with a B.Sc. in Applied Chemistry from Isfahan University of Technology and an M.Sc. in Polymer Chemistry from the University of Isfahan, where she was supervised by Dr. Gholam Ali Koohmareh. She earned her Ph.D. in Organic/Polymer Chemistry from Sharif University of Technology under Prof. Ali Pourjavadi and also conducted research as a visiting Ph.D. student at the Technical University of Denmark. Professionally, Asgari has held roles as a research assistant, quality control expert, teaching assistant, and postdoctoral researcher at prestigious institutions such as the University of Tehran and Alzahra University. Her research interests include the synthesis of organic/inorganic compounds, nanomaterials, drug delivery systems, and nanocomposites. She has received notable awards, including the Ministry of Science Scholarship and the Iran Science Elites Federation Grant. Asgari’s research skills encompass various spectroscopic and analytical techniques, such as FT-IR, UV-Vis, HPLC, and Raman spectroscopy.

Professional Experience

Shadi Asgari has amassed diverse professional experience in both academic and industrial settings. She began her career as a research assistant at the University of Isfahan, contributing to significant projects under Dr. Gholam Ali Koohmareh’s supervision. Following this, she prepared for and excelled in Iran’s competitive Ph.D. entrance exam. In the industrial sector, she worked as a quality control expert at Maral Charm Pishtaz Isfahan, focusing on ensuring product standards. Her academic roles have included serving as a teaching assistant for organic chemistry courses at Sharif University of Technology and supervising student research projects at Tehran University of Medical Science. As a postdoctoral researcher, she conducted advanced studies at the University of Tehran and Alzahra University, working on cutting-edge projects in chemistry and nanotechnology. Additionally, she has experience as an R&D expert at Pishgaman Fanavari Daricheh Company, where she specialized in toner component characterization and lithography for printing technologies.

Research Interest

Shadi Asgari’s research interests are deeply rooted in the fields of organic and polymer chemistry, with a particular focus on the synthesis and application of nanomaterials. She is passionate about exploring innovative drug delivery systems, aiming to enhance the efficacy and targeting of anticancer therapies through the development of pH-sensitive nanocarriers and mesoporous silica-based nanocarriers. Her work also delves into the synergistic effects of combining various therapeutic agents, such as doxorubicin and curcumin, as well as Ag nanoparticles and vancomycin, for improved treatment outcomes. Additionally, Asgari is interested in the broader applications of nanotechnology, including photocatalysis, piezocatalysis, and the development of advanced nanocomposites. Her research is characterized by a strong interdisciplinary approach, integrating material science with cutting-edge techniques in spectroscopy and analytical chemistry to innovate and solve complex problems in medicine and technology.

Award and Honor

Shadi Asgari has been recognized for her academic excellence and contributions to the field of chemistry through several prestigious awards and honors. In 2016, she achieved the notable distinction of ranking 8th among approximately 5000 contestants in Iran’s highly competitive Ph.D. examination. This accomplishment underscores her dedication and intellectual prowess. In 2019, Asgari was awarded the Ministry of Science, Research and Technology’s Scholarship of Iran for her sabbatical leave, facilitating her advanced research abroad.

Research Skills

Shadi Asgari possesses a diverse and extensive array of research skills that underpin her contributions to the fields of organic and polymer chemistry. Proficient in a wide range of spectroscopic and analytical techniques, including Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), and photoluminescence spectroscopy (PL), she demonstrates a thorough understanding of molecular structures and interactions. Asgari’s expertise extends to high-performance liquid chromatography (HPLC) for precise compound analysis, as well as microscopy techniques such as tabletop scanning electron microscopy (SEM) for detailed imaging of nanostructures. Additionally, her proficiency in electrospinning devices enables the fabrication of nanofibers with tailored properties for various applications. Furthermore, Asgari is skilled in thermal analysis techniques such as thermogravimetric analysis (TGA) and possesses experience in surface characterization methods like contact angle measurements. Her proficiency in these research skills empowers her to conduct innovative studies and contribute significantly to the advancement of knowledge in her field.

Publications

  • Title: FcLR-Chitosan/Pullulan nanofibers: Boosted antibacterial activity and decreased cytotoxicity
    Authors: Asgari, S., Mohammadi Ziarani, G., Badiei, A., Jahromi, M., Najafabadi, B.M.
    Journal: Materials Today Communications, 2024, 39
    Citations: 0
  • Title: Zr-UiO-66, ionic liquid (HMIM+TFSI−), and electrospun nanofibers (polyacrylonitrile): All in one as a piezo-photocatalyst for degradation of organic dye
    Authors: Asgari, S., Mohammadi Ziarani, G., Badiei, A., Vasseghian, Y.
    Journal: Chemical Engineering Journal, 2024, 487
    Citations: 0
  • Title: Electron/hole piezocatalysis in chemical reactions
    Authors: Asgari, S., Mohammadi Ziarani, G., Badiei, A., Iravani, S.
    Journal: Materials Advances, 2023, 4(23), pp. 6092–6117
    Citations: 0
  • Title: Reducing energy consumption in operation and demolition phases by integrating multi-objective optimization with LCA and BIM
    Authors: Asgari, S., Haghir, S., Noorzai, E.
    Journal: Energy Efficiency, 2023, 16(6), 54
    Citations: 2
  • Title: Enhanced photocatalytic activity of modified black phosphorus-incorporated PANi/PAN nanofibers
    Authors: Asgari, S., Mohammadi Ziarani, G., Badiei, A., Iravani, S., Mohajer, F.
    Journal: RSC Advances, 2023, 13