Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | SCIENTIFIC OFFICER/H at NATIONAL CENTER FOR COMPOSITIONAL CHARACTERISATION OF MATERIALS,Β  India

Shekhar Raparthi is a Scientific Officer / H at the National Centre for Compositional Characterisation of Materials (NCCCM), BARC, Hyderabad. With over three decades of expertise in analytical chemistry, he specializes in trace and ultra-trace characterization of metals, alloys, and high-purity materials. His pioneering work in glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry has significantly advanced compositional analysis. Holding a Ph.D. in Chemistry from JNTU, Hyderabad (2008), he has published extensively in reputed international journals and served as a peer reviewer. Currently leading the ultra-trace analysis section at NCCCM since 2023, he is an esteemed member of India Society for Mass Spectrometry (ISMAS) and Indian Society of Analytical Science (ISAS). His contributions to spectrometric techniques have practical applications in industrial and nuclear material characterization, making him a respected figure in analytical and green chemistry research.

Professional Profile :Β  Β  Β  Β  Β 

ScopusΒ Β 

Summary of Suitability for Award:

Dr. Shekhar Raparthi is a highly accomplished researcher specializing in trace and ultra-trace characterization of materials using mass and spectrometric techniques. With over 32 publications in high-impact journals, an h-index of 14, and 631 citations, he has made significant contributions to analytical chemistry. His pioneering research includes the development of infrared spectroscopic methods, glow discharge quadrupole mass spectrometry (GD-QMS), and novel electrolyte cathode discharge atomic emission spectrometric sources. These innovations have advanced material characterization techniques, benefiting the scientific community and industries dealing with high-purity materials, metals, and alloys. Dr. Raparthi’s extensive research contributions, innovative methodologies, and commitment to advancing analytical chemistry make him an ideal candidate for the “Best Researcher Award.” His work has been recognized through numerous international publications, and his role as the head of the ultra-trace analysis section at NCCCM, BARC, further solidifies his impact in the field.

πŸŽ“Education:

Shekhar Raparthi pursued his M.Sc. in Chemistry from the University of Hyderabad in 1993, where he developed a strong foundation in analytical chemistry. Following this, he underwent a one-year orientation program at BARC in 1994, gaining specialized training in advanced compositional characterization techniques. His academic journey culminated in a Ph.D. in Chemistry from Jawaharlal Nehru Technological University (JNTU), Hyderabad, in 2008. His doctoral research focused on the development of advanced mass spectrometric methodologies for the ultra-trace analysis of metals and high-purity materials. Over the years, he has continuously expanded his expertise through research, peer-reviewed publications, and participation in international analytical chemistry conferences. His educational background has been instrumental in his ability to innovate in trace and ultra-trace analysis techniques, making significant contributions to the field of analytical chemistry.

🏒Work Experience:

Shekhar Raparthi began his professional career in 1994 as a Scientific Officer/C at NCCCM, BARC, Hyderabad, specializing in the compositional characterization of various materials. Over the past 30 years, he has developed novel analytical methodologies for metals, alloys, and high-purity materials using mass spectrometric and spectroscopic techniques. His expertise includes glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry, contributing to advancements in trace and ultra-trace analysis. His work has been widely recognized, leading to 32 publications in reputed international journals. Since 2023, he has been heading the ultra-trace analysis section at NCCCM, overseeing critical research in compositional characterization. He is also an active peer reviewer for international journals. With extensive experience in spectrometric techniques, Shekhar Raparthi plays a key role in material characterization for nuclear, industrial, and high-tech applications.

πŸ…Awards:Β 

Shekhar Raparthi has received several accolades for his significant contributions to analytical chemistry and mass spectrometry. His infrared spectroscopic method for oxygen quantification in TiClβ‚„ was widely appreciated in the titanium industry, earning him recognition in the field. His research on glow discharge quadrupole mass spectrometry and matrix volatilization methodologies for ultra-trace characterization of high-purity germanium has been published in top international journals, including Analytical Chemistry. His expertise in trace element analysis has made him a valuable asset to BARC and the Indian scientific community. As a distinguished member of ISMAS and ISAS, he actively contributes to the advancement of analytical sciences in India. While he has not listed specific awards, his impactful research, numerous peer-reviewed publications, and leadership in ultra-trace analysis solidify his reputation as a leading scientist in compositional characterization.

πŸ”¬Research Focus:

Shekhar Raparthi’s research revolves around trace and ultra-trace characterization of materials using advanced mass spectrometric and spectroscopic techniques. His work plays a crucial role in ensuring the purity and compositional accuracy of metals, alloys, and high-purity materials. He has pioneered glow discharge quadrupole mass spectrometry (GD-QMS) for detecting impurities at ultra-trace levels. Additionally, his development of matrix volatilization methodologies has enhanced the characterization of high-purity germanium, a material critical in semiconductor and radiation detection applications. His innovations in electrolyte cathode discharge atomic emission spectrometry (ECD-AES) have improved the sensitivity and precision of trace element analysis. His research significantly contributes to nuclear, industrial, and advanced material applications, ensuring high accuracy in material compositional studies. As the head of the ultra-trace analysis section at NCCCM, his expertise in **

Publication Top Notes:

In-situ Ti–Ir and ammonium thiocyanate modifiers for improvement of sensitivity of Sc to sub parts per billion levels and its accurate quantification in coal fly ash and red mud by GFAAS

Hydrophobicity induced graphene oxide based dispersive micro solid phase extraction of strontium from seawater and groundwater prior to GFAAS determination

Direct determination of ultra-trace sodium in reactor secondary coolant waters and other waters by electrolyte cathode discharge atomic emission spectrometry

Citation Count: 1

 

Prof. Mohammad Gholinejad | Organic Chemistry | Best Researcher Award

Prof. Mohammad Gholinejad | Organic Chemistry | Best Researcher AwardΒ 

Prof. Mohammad Gholinejad | Organic Chemistry | Associate Professor of Chemistry at IASBS, Iran

Dr. Mohammad Gholinejad is an Associate Professor of Organic Chemistry at the Institute for Advanced Studies in Basic Sciences (IASBS), Iran, he specializes in catalysis, organic synthesis, and nanomaterials. He completed his Ph.D. from Shiraz University under the supervision of Prof. Habib Firouzabadi, focusing on palladium, copper, iron, and silver nanoparticles in carbon-carbon and carbon-heteroatom bond formation. He undertook a sabbatical at the University of Alicante, Spain, with Prof. Carmen Najera, working on phosphane-free Suzuki-Miyaura coupling. With an h-index of 36 and over 3,400 citations, Dr. Gholinejad has significantly contributed to the field of homogeneous and heterogeneous catalysis. His expertise extends to TGA, GC, NMR, and XPS techniques. He actively teaches advanced organic chemistry and heterocyclic chemistry, mentoring numerous students. His work bridges fundamental research and practical applications, making him a key figure in modern catalysis.

Professional Profile :Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β 

Google Scholar

Orcid

Scopus

Summary of Suitability for Award:

Dr. Mohammad Gholinejad is a highly accomplished researcher in the field of organic chemistry, specializing in catalysis, nanoparticle applications, and green chemistry. With an h-index of 36 and over 3,400 citations, his research contributions have significantly impacted the scientific community. His expertise in palladium, copper, iron, and silver nanoparticles for carbon-carbon and carbon-heteroatom bond formation reactions has led to innovative methodologies that are both efficient and environmentally friendly. He has held a prestigious sabbatical position at the University of Alicante, Spain, and currently serves as an Associate Professor at the Institute for Advanced Studies in Basic Sciences (IASBS). His extensive publication record, leadership in advanced organic chemistry courses, and hands-on experience with instrumental techniques further highlight his research excellence. Given his outstanding research output, impact on organic synthesis, and contributions to sustainable chemistry, Dr. Gholinejad is a highly suitable candidate for the “Best Researcher Award.” His work exemplifies innovation, academic excellence, and real-world application, making him a strong contender for this recognition.

πŸŽ“Education:

Dr. Mohammad Gholinejad obtained his Ph.D. in Organic Chemistry from Shiraz University, Iran (2008-2012), where he investigated carbon-carbon and carbon-heteroatom bond formation using metal nanoparticles. His research introduced efficient catalytic systems for environmentally friendly organic transformations. His M.Sc. in Organic Chemistry (2006-2008) at Shiraz University focused on phosphinite ligands in organic synthesis. He earned his B.Sc. in Applied Chemistry from the University of Tabriz (2002-2006). In 2010, Dr. Gholinejad pursued a sabbatical at the University of Alicante, Spain, under Prof. Carmen Najera, working on phosphane-free Suzuki-Miyaura coupling. His academic journey has shaped his expertise in catalytic systems, green chemistry, and ligand design. His research integrates experimental and theoretical chemistry, leading to numerous high-impact publications. His strong analytical background and mastery of spectroscopic techniques have enhanced his contributions to organic synthesis and catalysis, making him a leading researcher in the field.

🏒Work Experience:

Dr. Mohammad Gholinejad is an Associate Professor at IASBS, Iran, where he has been engaged in research and teaching for over a decade. His teaching portfolio includes Advanced Organic Chemistry (Structure and Mechanisms), Organic Reactions and Synthesis, Heterocyclic Chemistry, and New Discussions in Organic Chemistry. His research focuses on designing novel catalytic systems using palladium, copper, and iron nanoparticles for sustainable organic transformations. He has extensive expertise in TGA, GC, NMR, and XPS, essential for analyzing catalytic reactions. During his sabbatical at the University of Alicante, Spain, he collaborated with Prof. Carmen Najera on phosphane-free Suzuki-Miyaura coupling in aqueous media. His work has led to numerous high-impact publications in prestigious journals. He actively supervises M.Sc. and Ph.D. students, contributing to the development of young researchers. His role at IASBS has been instrumental in advancing research on green and heterogeneous catalysis.

πŸ…Awards:Β 

Dr. Mohammad Gholinejad has received numerous prestigious awards and honors in recognition of his outstanding contributions to the field of organic chemistry. His work in catalysis and green chemistry has been widely acknowledged, earning him accolades from both national and international scientific communities. He has been recognized for his high-impact publications in reputed journals, reflecting his significant influence in the domain of sustainable chemical methodologies. His sabbatical at the University of Alicante, Spain, is a testament to his global research collaborations and expertise. Additionally, he has been honored with research grants and funding awards, enabling him to advance studies in nanoparticle catalysis and environmentally friendly synthetic processes. As an Associate Professor at the Institute for Advanced Studies in Basic Sciences (IASBS), he has received institutional recognition for his exemplary research, mentorship, and contributions to academic excellence. His achievements establish him as a leading researcher in organic synthesis and catalysis.

πŸ”¬Research Focus:

Dr. Mohammad Gholinejad’s research primarily focuses on the development of novel catalytic systems for organic transformations, particularly using palladium, copper, iron, and silver nanoparticles. His work has significantly advanced carbon-carbon and carbon-heteroatom bond formation reactions, leading to more efficient and environmentally sustainable chemical processes. By integrating nanotechnology with catalysis, he has contributed to the design of innovative, recyclable catalytic systems that minimize waste generation and reduce reliance on hazardous reagents. His expertise extends to green chemistry, where he develops eco-friendly methodologies for organic synthesis, emphasizing the use of non-toxic solvents, reusable catalysts, and sustainable reaction conditions. His pioneering research in heterogeneous catalysis has implications for pharmaceuticals, materials science, and industrial chemistry. Additionally, his work on functionalized nanomaterials has potential applications in energy storage and biomedical fields. Through high-impact publications and global collaborations, Dr. Gholinejad continues to drive advancements in synthetic methodologies, enhancing the efficiency and sustainability of modern chemistry.

Publication Top Notes:

Title: Magnetite (Fe₃Oβ‚„) Nanoparticles‐Catalyzed Sonogashira–Hagihara Reactions in Ethylene Glycol under Ligand‐Free Conditions
Authors: H. Firouzabadi, N. Iranpoor, M. Gholinejad, J. Hoseini
Citations: 174
Year: 2011

Title: One‐Pot Thioetherification of Aryl Halides Using Thiourea and Alkyl Bromides Catalyzed by Copper (I) Iodide Free from Foul‐Smelling Thiols in Wet Polyethylene Glycol (PEG 200)
Citations: 164

Title: Highly Efficient Three-Component Coupling Reaction Catalyzed by Gold Nanoparticles Supported on Periodic Mesoporous Organosilica with Ionic Liquid Framework
Citations: 154

Title: Palladium Nanoparticles Supported on Agarose as Efficient Catalyst and Bioorganic Ligand for C–C Bond Formation via Solventless Mizoroki–Heck Reaction and Sonogashira–Hagihara Reaction
Citations: 107

Title: Synthesis and Characterization of Magnetic Copper Ferrite Nanoparticles and Their Catalytic Performance in One-Pot Odorless Carbon-Sulfur Bond Formation Reactions
Citations: 98

Title: 2-Aminophenyl Diphenylphosphinite as a New Ligand for Heterogeneous Palladium-Catalyzed Heck–Mizoroki Reactions in Water in the Absence of Any Organic Co-Solvent
Citations: 93

Title: Copper Nanoparticles Supported on Agarose as a Bioorganic and Degradable Polymer for Multicomponent Click Synthesis of 1,2,3-Triazoles under Low Copper Loading in Water
Citations: 89

Title: Nitro Group Reduction and Suzuki Reaction Catalysed by Palladium Supported on Magnetic Nanoparticles Modified with Carbon Quantum Dots Generated from Glycerol and Urea
Citations: 83

Title: Copper Nanoparticles Supported on Starch Microparticles as a Degradable Heterogeneous Catalyst for Three-Component Coupling Synthesis of Propargylamines
Citations: 83

Title: Palladium Nanoparticles Supported on Agarose-Functionalized Magnetic Nanoparticles of Fe₃Oβ‚„ as a Recyclable Catalyst for C–C Bond Formation via Suzuki–Miyaura, Heck–Mizoroki Reactions
Citations: 77

Title: Recyclable Palladium-Catalyzed Sonogashira–Hagihara Coupling of Aryl Halides Using 2-Aminophenyl Diphenylphosphinite Ligand in Neat Water under Copper-Free Condition
Citations: 77

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R ,Inorganic Chemistry, GOVERNMENT POLYTECHNIC COLLEGE, EZHUKONE, KOLLAM, KERALA, India

Dr. Minitha R. is an Associate Professor with over 14 years of teaching and 15 years of research experience in chemistry. She holds an M.Sc., M.Phil., NET, UGC-JRF, and Ph.D. Her expertise spans organic, coordination, supramolecular, and inorganic chemistry. She has served in key academic roles, including NSS Programme Officer and Chief Superintendent of Examinations. A dedicated researcher, Dr. Minitha has guided students and undertaken projects like developing a chemosensor for metal ion detection. She has organized multiple national seminars and actively participates in international conferences and workshops.

Professional Profile :Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β 

Orcid

ScopusΒ Β 

Summary of Suitability for Award:

Dr. Minitha R., an accomplished Associate Professor with 15 years of research experience, has significantly contributed to the field of Inorganic Chemistry, particularly in Coordination Chemistry, Supramolecular Chemistry, and Organic Chemistry. With a strong publication record, she has authored several impactful research papers in highly reputed journals, covering diverse topics such as metal complexes, chemosensors, molecular structures, and spectroscopic studies. Dr. Minitha R. is an exceptional candidate for the “Best Researcher Award,” given her proven research excellence, scholarly contributions, and leadership in the scientific community. Her extensive work in metal-based coordination complexes, chemosensors, and supramolecular chemistry, along with her active role in mentoring and academic leadership, makes her a highly deserving nominee.

πŸŽ“Education:

Dr. Minitha R. holds a Ph.D. in Chemistry and has qualified for the NET and UGC-JRF. She completed her M.Sc. and M.Phil. in Chemistry, demonstrating academic excellence throughout. Her education provided her with a strong foundation in inorganic chemistry, particularly in complex synthesis, supramolecular interactions, and chemosensing applications. Her academic journey was driven by a passion for molecular recognition, ligand design, and structural chemistry. She has actively participated in seminars and workshops to enhance her knowledge and keep up with evolving research trends.

🏒Work Experience:

With 14 years of teaching and 15 years of research experience, Dr. Minitha R. has handled Organic, Inorganic, and Physical Chemistry courses. She has successfully guided research scholars, fostering innovations in supramolecular and coordination chemistry. Apart from teaching, she has played key roles as an NSS Programme Officer, Nature Club Coordinator, Chief Superintendent of Examinations, and Young Innovators Programme Facilitator. She has also organized national seminars and workshops on emerging trends in chemistry, enhancing academic collaboration and knowledge dissemination.

πŸ…Awards:Β 

Dr. Minitha R. has been recognized for her outstanding contributions to academia and research. She served as the NSS Programme Officer (2021-2022), demonstrating her commitment to student welfare and community service. As the Nature Club Coordinator (2019-2020), she played a crucial role in promoting environmental awareness. Her leadership extended to being the Chief Superintendent of Examinations (2020-2021), ensuring smooth academic assessments. Additionally, she facilitated the Young Innovators Programme (2019), fostering creativity and scientific curiosity among students. Her research endeavors were supported by a KSCSTE-funded M.Sc. student project, where she developed a chemosensor for metal ion detection. These roles reflect her dedication to education, research, and institutional development.

πŸ”¬Research Focus:

Dr. Minitha R. specializes in Inorganic Chemistry, with a keen interest in Organic Chemistry, Coordination Chemistry, and Supramolecular Chemistry. Her research explores the synthesis and characterization of novel metal complexes, particularly those with biological and chemosensory applications. She has contributed significantly to the development of pyrazolylhydrazone-based metal complexes, dioxo molybdenum(VI) compounds, and benzothiazolium salts. Her work also extends to fluorescent hydrazones and ruthenium(II) complexes, emphasizing their structural and functional properties. Additionally, her studies on five-coordinate Zn(II) complexes highlight their potential in nonlinear optical applications. Through her research, she aims to bridge the gap between fundamental chemistry and real-world applications, particularly in materials science, catalysis, and medicinal chemistry.

Publication Top Notes:

Formation of dicyano ruthenium(II) complex mediated by triethylamine via deprotonation of hydrazonochroman-2,4-dione
Synthesis, spectroscopic and biological studies of metal complexes of an ONO donor pyrazolylhydrazone – Crystal structure of ligand and Co(II) complex
Studies of some dioxo molybdenum(VI) complexes of a polydentate ligand
One pot synthesis of 1–(3–methyl–4H–benzo[1,4]thiazin–2–yl)-ethanone and its antimicrobial properties
Β Synthesis, spectral, and magnetic studies of benzothiazolium tetrachlorocuprate salts: crystal structure and semiconducting behavior of bis[2-(4-methoxyphenyl)benzothiazolium] tetrachlorocuprate(II)
Fluorescent coumarin-based hydrazone: Synthesis, crystal structure, and spectroscopic studies
FT-IR, FT-Raman and computational study of 1H-2,2-dimethyl-3H-phenothiazin-4[10H]-one
Synthesis, crystal structure, spectral analysis, and NLO studies of five-coordinate Zn(II) complexes of hydrazochromandione
Β Chemosensing study of 1,4-Benzothiazine generated from acetylacetone

 

Dr. Frank Alexis | Materials Chemistry | Best Researcher Award

Dr. Frank Alexis | Materials Chemistry | Best Researcher Award

Dr. Frank Alexis , Universidad San Francisco de Quito , Ecuador

Dr. Frank Alexis is a Full Professor in the Department of Chemical Engineering at Universidad San Francisco de Quito, Ecuador. With a Ph.D. in Materials Science Engineering from Nanyang Technological University, his career spans academia, research, and industry. Renowned for his expertise in nanotechnology, drug delivery, and biomaterials, Dr. Alexis has contributed significantly to science, with 138 publications and over 11,300 citations. As a mentor and innovator, he has founded companies, guided minority students, and influenced global research through his work as an editor and reviewer for prestigious journals.

Professional Profile:

Orcid

Scopus

Summary of Suitability for Award:

Dr. Frank Alexis is an exemplary candidate for the “Best Researcher Awards,” combining academic brilliance, impactful research, and inspirational mentorship. His multidisciplinary innovations, global recognition, and dedication to advancing science make him a highly deserving contender for this honor. Dr. Frank Alexis is an accomplished researcher and educator with exceptional contributions to materials science, bioengineering, and nanotechnology. His diverse expertise spans academia, industry, and editorial roles, demonstrating a well-rounded career in advancing science and mentoring future researchers. Dr.Β  FrankΒ  Alexis has 138 publications with over 11,315 citations, showcasing the global impact of his work.

πŸŽ“Education:

Dr. Frank Alexis holds a Ph.D. in Materials Science Engineering from Nanyang Technological University (Singapore), a Master’s degree in Materials Science and Interfaces from Technological University of Montpellier (France), and a Bachelor’s degree in Chemistry from the same institution. His academic journey reflects a blend of international education, encompassing advanced training in materials science, chemistry, and interdisciplinary applications pivotal for his pioneering contributions to nanotechnology and drug delivery systems.

🏒Work Experience:

Dr. Alexis has held prominent academic positions globally, including Full Professor roles at Universidad San Francisco de Quito and Yachay Tech in Ecuador. He served as Vice Chancellor of Research and Innovation at Yachay Tech and a tenured Associate Professor of Bioengineering at Clemson University. His industry experience spans roles at Stericoat Inc., LEK Consulting, Polymed Inc., and GearJump Technologies. Additionally, he contributed to groundbreaking biomaterials research at MIT and Brigham and Women’s Hospital, shaping the fields of nanomedicine and drug delivery.

πŸ…Awards:Β 

Dr. Alexis has received numerous accolades, including recognition as a Top 2% Researcher globally in nanotechnology and chemistry and Best Researcher by CEDIA. His inventive contributions have earned him awards like Best Inventor and Best Academic Invention. A mentor to minority students, he received the PEER & WISE Mentorship Award and recognition from Nature Biotechnology as a Top Translational Junior Faculty. His honors reflect his profound impact on research, mentorship, and innovation.

πŸ”¬Research Focus:

Dr. Alexis specializes in nanotechnology, biomaterials, and drug delivery systems, focusing on designing advanced materials for healthcare and environmental applications. His interdisciplinary research spans the development of sensors, biodegradable polymers, and functional nanomaterials. His work integrates chemistry, biology, and engineering to tackle challenges in medical diagnostics, therapeutic delivery, and sustainable technologies.

Publication Top Notes:

  • Colorimetric sensor for copper and lead using silver nanoparticles functionalized with fluoresceinamine isomerΒ 
    • Citations: 1
  • Photochromic sensing of La³⁺ and Lu³⁺ ions using poly(caprolactone) fibers doped with spiropyran dyes
    • Citations: 2
  • Synergistic Antibacterial Properties of Silver Nanoparticles and Its Reducing Agent from Cinnamon Bark Extract
    • Citations: 1
  • Water soluble spiropyran for Hg²⁺ sensing in water
    • Citations: 3
  • Users’ opinion about synthetic, bio- and nano-biopesticides
    • Citations: 3

 

 

 

 

 

 

Prof. Junfa Zhu | Surface Chemistry Award | Best Scholar Award

Prof. Junfa Zhu | Surface Chemistry Award | Best Scholar AwardΒ 

Prof. Junfa Zhu ,University of Science and Technology of China ,China

Dr. Junfa Zhu is a Chair Professor at the National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China (USTC). He earned his Ph.D. in Physical Chemistry from USTC in 1999. His postdoctoral and research tenure included positions at Johannes-Kepler-UniversitΓ€t Linz (Austria), Friedrich-Alexander-UniversitΓ€t Erlangen-NΓΌrnberg (Germany), and the University of Washington (USA). Returning to USTC in 2006 under the “Hundred Talent Program” by the Chinese Academy of Sciences, Dr. Zhu has been pivotal in advancing surface science research. His work emphasizes in-situ surface chemistry, functional material interfaces, and synchrotron radiation techniques. With over 460 peer-reviewed publications, including Nature Communications and J. Am. Chem. Soc., his contributions have garnered 40,000+ citations and an impressive H-index of 102. As an editor for Surface Science Reports and other journals, Dr. Zhu also manages two soft X-ray spectroscopy endstations at NSRL, facilitating cutting-edge scientific investigations.

Professional Profile:

OrcidΒ 

Scopus

Summary of Suitability for Award:

Dr. Junfa Zhu is an exemplary candidate for the “Best Scholar Award” due to his outstanding contributions to the field of surface science and material chemistry. With over 460 peer-reviewed publications in top-tier journals like Nature Communications, J. Am. Chem. Soc., and Angew. Chem. Int. Ed., his work has garnered more than 40,000 citations, achieving an impressive H-index of 102. Dr. Zhu’s research has significantly advanced the understanding of in-situ surface chemistry, functional material interfaces, and synchrotron radiation techniques. Dr. Junfa Zhu exemplifies the qualities of an outstanding scholar: exceptional research productivity, international recognition, and substantial contributions to scientific advancements.

πŸŽ“Education:

Dr. Junfa Zhu completed his Ph.D. in Physical Chemistry at the University of Science and Technology of China (USTC), where he focused on advanced surface science methodologies. His academic foundation provided him with the expertise to investigate the intricate behaviors of chemical interactions and surface properties. Postdoctoral research at prestigious institutions further expanded his knowledge base. At Johannes-Kepler-UniversitΓ€t Linz in Austria, he explored experimental physics, while his tenure at Friedrich-Alexander-UniversitΓ€t Erlangen-NΓΌrnberg in Germany deepened his specialization in physical chemistry. His research at the University of Washington in the United States provided him with hands-on experience in studying surface and interface structures in functional materials. This rigorous academic and research training equipped Dr. Junfa Zhu with interdisciplinary skills and a profound understanding of cutting-edge surface science techniques, laying the groundwork for his distinguished career in synchrotron radiation and material chemistry.

🏒Work Experience:

Dr. Junfa Zhu has cultivated an illustrious career that spans international institutions and interdisciplinary research. His postdoctoral appointments in Austria, Germany, and the United States honed his expertise in experimental physics, physical chemistry, and material science. He joined the University of Science and Technology of China as a professor, bringing global perspectives and advanced methodologies to his role. At the National Synchrotron Radiation Laboratory, he oversees two state-of-the-art soft X-ray spectroscopy endstations, enabling groundbreaking studies in surface chemistry and material interfaces. As an editor for influential journals, including Surface Science Reports, Dr. JunfaΒ  Zhu contributes to advancing scientific dialogue in his field. His leadership and extensive collaborations have positioned him as a key figure in bridging fundamental research with real-world applications, further cementing his role as a leader in the scientific community and a catalyst for innovation in surface science.

πŸ…Awards:

Dr. Junfa Zhu has earned numerous accolades for his extraordinary contributions to surface science and material chemistry. His recognition under prestigious programs highlights his research excellence and potential to drive innovation in scientific discovery. He has received the National Science Fund for Distinguished Young Scholars, an acknowledgment of his groundbreaking studies in surface and interface chemistry. Designated as a Highly Cited Researcher, his extensive publications and remarkable citation impact underscore his global influence. As an editor for journals like Surface Science Reports, he has been acknowledged for his thought leadership in the academic community. Additionally, his role in managing state-of-the-art synchrotron facilities reflects his technical expertise and commitment to advancing experimental methodologies. These accolades, combined with his extensive contributions to high-impact journals, affirm Dr. JunfaΒ  Zhu’s exceptional standing as a leader in the scientific community and a recipient of numerous prestigious honors.

πŸ”¬Research Focus:

Dr. Junfa Zhu’s research revolves around the innovative study of surface chemistry and functional materials using advanced experimental techniques. His work focuses on in-situ investigations of chemical reactions at surfaces, unraveling the complex interactions that govern material properties. He specializes in the structural and chemical analysis of interfaces in functional materials, which has implications for catalysis, nanotechnology, and material design. Leveraging advanced synchrotron radiation tools, Dr. Junfa Zhu explores atomic-level phenomena, providing critical insights into dynamic surface processes. His leadership in managing soft X-ray spectroscopy facilities enables cutting-edge experiments that bridge fundamental science and applied technology. His research has advanced the understanding of material behaviors under operational conditions, driving innovation in sustainable energy, electronic devices, and catalytic systems. Through interdisciplinary collaboration and a focus on real-time surface studies, Dr. JunfaΒ  Zhu has made transformative contributions to the fields of material science and surface chemistry.

Publication Top Notes:

  • “Recent progress on surface chemistry II: Property and characterization”
    Β  Citations: 3
  • “Recent progress on surface chemistry I: Assembly and reaction”
    Β  Citations: 3
  • “Recent progress in on-surface synthesis of nanoporous graphene materials”
    Β  Citations: 1
  • “Dualistic insulator states in 1T-TaS2 crystals”
    Β  Citations: 1
  • “Substrate-modulation effect in on-surface synthesis”

 

 

 

Hesham Alsoghier | Chemistry | Best Researcher Award

Dr. Hesham Alsoghier | Chemistry | Best Researcher Award-

Doctorate at South Valley University Egypt, Chemistry

Hesham Mohammed Alsoghier is a dedicated chemist specializing in bio-organic and bio-inorganic chemistry with a focus on the synthesis and characterization of metal coordination compounds and organic ligands. With a robust educational background from South Valley University and international research experience, Hesham’s expertise spans spectrophotometric, computational, and analytical chemistry. His current research aims to explore innovative approaches for Alzheimer’s disease treatment through novel bifunctional compounds.

Author Metrics

Scopus Profile

ORCID Profile

Hesham’s research contributions are reflected in several high-impact publications. His work, published in reputable journals, includes studies on the spectral behavior of azo compounds, potential anti-Alzheimer’s agents, and the structural features of chemical tautomers. Metrics such as citations, h-index, and journal impact factors underscore his influence and recognition in the field.

  • Citations: 104 citations across 91 documents
  • Documents: 12 publications
  • h-index: 5

Education

Hesham completed his B.Sc. in Chemistry with honors from South Valley University, followed by a Master’s degree in Inorganic and Computational Chemistry from the same institution. His academic journey continued with a Ph.D. from South Valley University, focusing on the spectral behavior of azo benzothiazole derivatives. Additionally, he pursued advanced studies in Bio-Inorganic Chemistry at Instituto Superior TΓ©cnico, Universidade de Lisboa, and participated in an international master’s program at Adam Mickiewicz University.

Research Focus

Hesham’s research primarily revolves around the synthesis and characterization of bio-organic and bio-inorganic compounds, particularly their applications in disease treatment and metal coordination chemistry. His work includes spectral investigations, computational studies, and bioactivity assessments of novel chemical compounds. His current research is dedicated to developing bifunctional compounds with potential therapeutic benefits for Alzheimer’s disease.

Professional Journey

Beginning as a Teaching Assistant at South Valley University, Hesham’s career has progressed to his current role as a Lecturer Assistant, where he continues to contribute to both teaching and research. His professional journey includes significant research stints in Portugal and Poland, where he expanded his expertise in bio-inorganic chemistry and photochemistry. His role involves not only academic responsibilities but also active participation in research projects and collaborations.

Honors & Awards

Hesham has received several accolades for his academic and research achievements. Notable honors include recognition for his exceptional contributions to research in bio-inorganic chemistry and his successful completion of advanced international programs. These awards reflect his commitment to excellence in both teaching and research.

Publications Noted & Contributions

Hesham’s publication record includes several influential papers in high-impact journals. Key contributions include studies on the optical properties of azo dyes, the development of anti-Alzheimer’s agents, and investigations into chemical tautomerism. His work has been presented at international conferences and has significantly contributed to advancements in his field.

“Green electro-organic synthesis of a novel catechol derivative based on o-benzoquinone nucleophilic addition”

  • Journal: New Journal of Chemistry
  • Year: 2023
  • DOI: 10.1039/D2NJ04530C
  • Contributors: Mohamed Abd-Elsabour, Hytham F. Assaf, Ahmed M. Abo-Bakr, Abdulrahman G. Alhamzani, Mortaga M. Abou-Krisha, Aamal A. Al-Mutairi, Hesham M. Alsoghier

“A novel organic semiconductor 4-phenylthiazol-2-yl-(phenylhydrazono) acetonitrile (PTPA) thin films: synthesis, optical and electrical properties”

  • Journal: Scientific Reports
  • Date: August 10, 2023
  • DOI: 10.1038/s41598-023-39027-3
  • Contributors: Amr Attia Abuelwafa, Sahar Elnobi, M. AmΓ©lia Santos, Hesham M. Alsoghier

“Molecular docking, modeling, semiempirical calculations studies and in vitro evaluation of new synthesized pyrimidin-imide derivatives”

  • Journal: Journal of Molecular Structure
  • Year: 2022
  • DOI: 10.1016/j.molstruc.2021.131548
  • EID: 2-s2.0-85115989286
  • Contributors: Abo-Bakr, A.M., Alsoghier, H.M., Abdelmonsef, A.H.

“A Novel Electrochemical Sensor for Detection of Nicotine in Tobacco Products Based on Graphene Oxide Nanosheets Conjugated with (1,2-Naphthoquinone-4-Sulphonic Acid) Modified Glassy Carbon Electrode”

  • Journal: Nanomaterials
  • Date: July 9, 2022
  • DOI: 10.3390/nano12142354
  • Contributors: M. Abd-Elsabour, Hesham M. Alsoghier, Abdulrahman G. Alhamzani, Mortaga M. Abou-Krisha, Tarek A. Yousef, Hytham F. Assaf

“A novel alternative methods for decalcification of water resources using green agro-ashes”

  • Journal: Molecules
  • Year: 2021
  • DOI: 10.3390/molecules26226777
  • Contributors: El-Nahas, S., Arafat, A.S., Din, H.S.E., Alhamzani, A.G., Abou-Krisha, M.M., Alsoghier, H.M.

Research Timeline

From 2008 to 2012, Hesham conducted research for his Master’s thesis, focusing on the spectral investigations of azo compounds. This foundational work laid the groundwork for his subsequent studies. Between 2012 and 2013, he expanded his expertise through advanced studies in photochemistry at Adam Mickiewicz University, where he deepened his understanding of surface electro radiation and photo-chemistry. During 2014 to 2015, Hesham engaged in significant research at Instituto Superior TΓ©cnico, where he worked on the synthesis and characterization of bifunctional compounds aimed at Alzheimer’s disease treatment. Following this, from 2015 to 2018, he completed his Ph.D. research at South Valley University, investigating the spectral behavior of azo benzothiazole derivatives. Since 2018, he has continued his research at South Valley University, focusing on bio-organic and bio-inorganic chemistry, advancing his work on novel chemical compounds with potential therapeutic applications.

Collaborations and Projects

Hesham has collaborated with leading researchers and institutions, including partnerships with Instituto Superior TΓ©cnico, Universidade de Lisboa, and Adam Mickiewicz University. His collaborative projects focus on the development of novel chemical compounds and their applications in medicine. He has also participated in various research initiatives and workshops, contributing to advancements in his field through collaborative efforts.

Strengths of the Best Researcher Award for Dr. Hesham Alsoghier:

Innovative Research Focus: Dr. Hesham Alsoghier’s research on bifunctional compounds for Alzheimer’s disease treatment is highly innovative and relevant. His focus on addressing significant medical challenges showcases a commitment to impactful scientific work.

High-Impact Publications: The inclusion of his research in reputable journals such as Scientific Reports and New Journal of Chemistry demonstrates the high quality and relevance of his work. His publications cover a range of cutting-edge topics, from organic semiconductors to electrochemical sensors.

International Collaboration: Dr. Alsoghier’s experience working with institutions like Instituto Superior TΓ©cnico and Adam Mickiewicz University highlights his ability to collaborate effectively with leading researchers worldwide. This enhances the global impact of his work.

Diverse Expertise: His background in bio-organic and bio-inorganic chemistry, along with expertise in computational and analytical techniques, provides a strong foundation for tackling complex research problems. This multidisciplinary approach enriches his research contributions.

Recognition and Awards: The receipt of the Best Researcher Award and other honors underscores Dr. Alsoghier’s excellence in research and his contributions to advancing knowledge in his field. These accolades reflect his dedication and impact.

Areas for Improvement:

Citations and h-Index: While Dr. Alsoghier has made significant contributions, his citation count and h-index indicate room for growth. Increasing visibility and impact through strategic collaborations and higher-profile publications could enhance these metrics.

Publication Quantity: With 12 publications, Dr. Alsoghier’s output is notable but could be expanded. Publishing more frequently in high-impact journals could further establish his research presence and influence.

Research Scope Diversification: While his focus on Alzheimer’s disease is promising, exploring additional areas or applications within bio-organic and bio-inorganic chemistry could broaden the scope and impact of his research.

Grant Acquisition: Strengthening efforts in securing research grants and funding could support more extensive and ambitious projects. This could involve applying for larger grants or participating in collaborative grant proposals.

Public Engagement and Outreach: Increasing involvement in public outreach activities and science communication could enhance the visibility of his research and its societal relevance. Engaging with broader audiences through seminars, public talks, or media could also raise awareness of his work.

Conclusion:

Dr. Hesham Alsoghier is a distinguished chemist whose innovative research and high-impact publications underscore his significant contributions to bio-organic and bio-inorganic chemistry. His international collaborations and recognition through awards highlight his commitment and excellence in the field. To further enhance his impact, focusing on increasing citation metrics, expanding publication output, diversifying research scope, securing additional funding, and engaging with the public could be beneficial. Overall, Dr. Alsoghier’s achievements and ongoing research efforts demonstrate his potential to continue making substantial advancements in chemistry and related fields.

Charles Perrin | Chemistry and Materials Science | Best Researcher Award

Prof Dr. Charles Perrin | Chemistry and Materials Science | Best Researcher Award

Β Professor at Distinguished Professor Emeritus of UCSD, United States

Professor Dr. Charles L. Perrin, born on July 22, 1938, in Pittsburgh, PA, is a distinguished professor emeritus at UC San Diego, where he has served since 1964. πŸŽ“ He holds an A.B. summa cum laude in Chemistry from Harvard College (1959) and a Ph.D. in Organic Chemistry from Harvard University (1963). πŸ’ Married to Marilyn Heller Perrin, they have two sons. πŸ‘¨β€πŸ‘©β€πŸ‘¦β€πŸ‘¦ Dr. Perrin’s career is marked by numerous awards, including the Alfred P. Sloan Foundation Fellowship, the ACS James Flack Norris Award, and multiple teaching excellence awards at UCSD. πŸ… His research in physical-organic chemistry encompasses molecular structure, reaction mechanisms, NMR methods, and hydrogen bonding. πŸ§ͺ He has authored over 190 scientific articles and has made significant contributions, such as the synthesis of malonic anhydrides and elucidating proton exchange mechanisms in amides. πŸ“š Dr. Perrin has also served as a consultant, expert witness, and editorial board member, and has chaired and organized various scientific conferences. πŸŒπŸ”¬

Professional Profile:

EducationπŸŽ“

Professor Dr. Charles L. Perrin’s education is rooted in his outstanding academic achievements. πŸŽ“ He graduated summa cum laude with an A.B. in Chemistry from Harvard College in 1959. πŸ›οΈ He then pursued a Ph.D. in Organic Chemistry under the guidance of Frank H. Westheimer at Harvard University, completing it in 1963. πŸ“œ Following his doctorate, he was awarded an NSF Post-Doctoral Fellowship to work with Andrew Streitwieser, Jr., at the University of California, Berkeley, further solidifying his expertise in the field. πŸ”¬

 

Professional Experience πŸ“š

Professor Dr. Charles L. Perrin has had a distinguished professional career at UC San Diego, where he began as an Assistant Professor of Chemistry in 1964. πŸ‘¨β€πŸ« He was promoted to Associate Professor in 1971 and became a full Professor in 1980. 🌟 In 2018, he was honored as a Distinguished Professor Emeritus and was recalled to active service. πŸŽ“ Over the decades, he has made significant contributions to physical-organic chemistry, published over 190 scientific articles, and received numerous prestigious awards. πŸ… Dr. Perrin has also served as a consultant, expert witness, and member of several editorial boards, and has chaired and organized key scientific conferences, solidifying his reputation as a leading figure in his field. 🌍

Research Interest πŸ”

Professor Dr. Charles L. Perrin’s research interests lie in the realm of physical-organic chemistry, focusing on the molecular structure and mechanisms of organic reactions. πŸ§ͺ His work includes the study of malonic anhydrides, NMR methods for chemical kinetics, and proton exchange kinetics in amides and related compounds. πŸ”„ He delves into solvation and hydrogen bonding, stereoelectronic control in the cleavage of tetrahedral intermediates and acyl shifts, as well as kinetic and equilibrium isotope effects. πŸ”¬ Dr. Perrin also explores the symmetry of hydrogen bonds, anomeric effects, conformational analysis, and steric hindrance to ionic solvation, alongside nonradical reactions of p-benzyne diradicals and the chemistry of resulting “naked” aryl anions. 🌐 πŸ§¬πŸ’»

Award and Honor🌟 

Professor Dr. Charles L. Perrin has received numerous awards and honors throughout his distinguished career. πŸ… He was elected to Phi Beta Kappa at Harvard College in 1958 and received an Alfred P. Sloan Foundation Fellowship in 1967-69. 🌟 He was honored with a Special HEW Research Fellowship at GΓΆteborgs Universitet in Sweden (1972-73) and was named a Fellow of the American Association for the Advancement of Science in 1984. πŸ”¬ Dr. Perrin has been recognized for his teaching excellence with multiple awards from UCSD, including the Revelle College Excellence in Teaching Awards (1977, 1993) and the UCSD Chancellor’s Associates’ Faculty Excellence Award for Teaching in 2001. πŸŽ“ He received the prestigious ACS James Flack Norris Award in Physical Organic Chemistry in 2015 and was named the Distinguished Scientist Award of the ACS San Diego Section in 2017. 🌍 Additionally, he has held various visiting professorships and lectureships worldwide, further cementing his status as a leading figure in his field. 🌐

 

Research Skills πŸ”¬Β 

Professor Dr. Charles L. Perrin possesses exceptional research skills in physical-organic chemistry. πŸ§ͺ He is adept at utilizing NMR methods for chemical kinetics and developing innovative techniques such as variable-temperature NMR and magnetization-transfer and 2D-NMR methods for multisite kinetics. πŸ”„ His expertise includes synthesizing complex molecules like malonic anhydrides and elucidating reaction mechanisms at the molecular level. πŸ”¬ Dr. Perrin has a keen ability to investigate proton exchange kinetics, solvation, hydrogen bonding, and stereoelectronic effects, making significant contributions to understanding the fundamental principles governing organic reactions. 🌟 His work also includes the application of isotopic perturbation and kinetic isotope effects, showcasing his comprehensive analytical and experimental capabilities. 🌐

 

AchievementsΒ πŸ… πŸ†

Professor Dr. Charles L. Perrin has made numerous groundbreaking achievements in physical-organic chemistry. πŸ§ͺ He recognized the generality of ipso substitution and introduced the related terminology. πŸ“š He authored the textbook “Mathematics for Chemists” and ACS Audio Courses on “Probability and Statistics for Chemists” and “Calculus for Chemists.” πŸ”¬ His work elucidated the mechanisms of proton exchange in amides, peptides, and proteins, and he synthesized malonic anhydrides, classic molecules sought for 70 years. πŸ”„ Dr. Perrin developed innovative NMR methods, discovered a chain mechanism for proton exchange, and made significant advancements in understanding the Curtin-Hammett Principle. 🌐 He critically assessed stereoelectronic control, evaluated the anomeric effect, and measured the rate of NH4+ rotation within its solvent cage. πŸ” His research demonstrated the nonexistence of the reverse anomeric effect, elucidated the symmetry of hydrogen bonds, and developed an accurate NMR titration method. 🌟 He also discovered new reactions involving p-benzyne and demonstrated nonadditivity of secondary deuterium isotope effects on basicities.

 

PublicationsπŸ“–πŸ“š

Symmetry of Hydrogen Bonds: Application of NMR Method of Isotopic Perturbation and Relevance of Solvatomers

  • Publication: Molecules, 2023, 28(11), 4462 πŸ“„
  • Author: Perrin, C.L.
  • Citations: 1 πŸ”¬

My First Publication

  • Publication: Journal of Physical Or
  • ganic Chemistry, 2022, 35(11), e4302 πŸ“„
  • Author: Perrin, C.L.
  • Citations: 0 🚫

The Complete Mechanism of an Aldol Condensation in Water

  • Publication: Physical Chemistry Chemical Physics, 2022, 24(31), pp. 18978–18982 πŸ“„
  • Authors: Perrin, C.L., Kim, J.
  • Citations: 1 πŸ”¬

Nucleophilic Addition of Enolates to 1,4-Dehydrobenzene Diradicals Derived from Enediynes: Synthesis of Functionalized Aromatics

  • Publication: ACS Omega, 2022, 7(26), pp. 22930–22937 πŸ“„
  • Authors: Shrinidhi, A., Perrin, C.L.
  • Citations: 2 πŸ”¬πŸ”¬

Malonic Anhydrides, Challenges from a Simple Structure

  • Publication: Journal of Organic Chemistry, 2022, 87(11), pp. 7006–7012 πŸ“„
  • Author: Perrin, C.L.
  • Citations: 0 🚫

Glossary of Terms Used in Physical Organic Chemistry (IUPAC Recommendations 2021)

  • Publication: Pure and Applied Chemistry, 2022, 94(4), pp. 353–534 πŸ“„
  • Authors: Perrin, C.L., Agranat, I., Bagno, A., Uggerud, E., Williams, I.H.
  • Citations: 19 πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬

Ipso

  • Publication: Journal of Organic Chemistry, 2021, 86(21), pp. 14245–14249 πŸ“„
  • Author: Perrin, C.L.
  • Citations: 6 πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬

Comment on β€œTopography of the Free Energy Landscape of Claisen-Schmidt Condensation: Solvent and Temperature Effects on the Rate-Controlling Step” by N. D. Coutinho, H. G. Machado, V. H. Carvalho-Silva and W. A. da Silva

  • Publication: Physical Chemistry Chemical Physics, 2021, 23(38), pp. 22199–22201 πŸ“„
  • Author: Perrin, C.L.
  • Citations: 1 πŸ”¬

Cyclohexeno[3,4]cyclodec-1,5-diyne-3-ene: A Convenient Enediyne

  • Publication: Organic Letters, 2021, 23(17), pp. 6911–6915 πŸ“„
  • Authors: Shrinidhi, A., Perrin, C.L.
  • Citations: 2 πŸ”¬πŸ”¬

Enthalpic and Entropic Contributions to the Basicity of Cycloalkylamines

  • Publication: Chemical Science, 2020, 11(32), pp. 8489–8494 πŸ“„
  • Authors: Perrin, C.L., Shrinidhi, A.
  • Citations: 3 πŸ”¬πŸ”¬πŸ”¬