Assoc. Prof. Dr. Yue-Jin Liu | Organic Chemistry | Green Chemistry Award

Assoc. Prof. Dr. Yue-Jin Liu | Organic Chemistry | Green Chemistry Award

Assoc. Prof. Dr. Yue-Jin Liu | Organic Chemistry | Hubei University ,China

Dr. Yue-Jin Liu is an Associate Professor at Hubei University, specializing in organic chemistry and catalytic transformations. His research primarily focuses on developing novel methodologies for inert chemical bond activation, particularly carbon-hydrogen (C–H) bond functionalization. Dr. Liu has made significant contributions to the field by designing innovative strategies for multi-component reactions, paving the way for more efficient synthesis of biologically active molecules and functional organic compounds. His recent work on ruthenium-catalyzed remote C–H functionalization of naphthalenes has been widely recognized. Dr. Liu has published in leading journals such as Chemical Science, contributing valuable insights to the scientific community. Despite his intensive academic engagements, he continues to explore new synthetic strategies that promote sustainable and green chemistry approaches. Dr. Liu’s dedication to advancing organic synthesis has established him as an emerging expert in the field, with an ever-growing impact on modern synthetic methodologies.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Yue-Jin Liu’s research focuses on developing novel organic synthesis methods with an emphasis on C–H bond activation, a key aspect of green chemistry. His work on ruthenium-catalyzed three-component reactions enables efficient, modular, and atom-economical synthesis of multifunctional naphthalenes. This aligns with green chemistry principles by minimizing waste, reducing the need for hazardous reagents, and enhancing reaction efficiency. His catalyst-driven methodologies promote sustainable chemical transformations, making his research highly relevant to the Green Chemistry Award category. Dr. Yue-Jin Liu’s contributions to sustainable organic synthesis through C–H activation strategies make him a strong contender for the “Green Chemistry Award”. His work reduces environmental impact by utilizing direct functionalization approaches, avoiding toxic reagents, and increasing efficiency in organic synthesis. These advancements have significant implications for eco-friendly chemical manufacturing, supporting global sustainability goals.

🎓Education:

Dr. Yue-Jin Liu pursued his higher education in organic chemistry, focusing on advanced synthesis and catalysis. He obtained his Bachelor’s, Master’s, and Ph.D. degrees from prestigious institutions where he specialized in carbon-hydrogen bond activation and synthetic methodologies. His doctoral research laid the foundation for his career, emphasizing transition-metal-catalyzed organic transformations. During his academic journey, Dr. Liu worked under the guidance of renowned chemists, gaining expertise in molecular design, reaction mechanisms, and green synthetic approaches. Throughout his education, he engaged in multiple research projects that contributed to the development of new catalytic systems. His commitment to innovation and excellence in organic synthesis has led him to a successful career in academia, where he continues to mentor students and advance research in C–H activation. His strong academic background serves as the backbone of his contributions to the field of organic and medicinal chemistry.

🏢Work Experience:

Dr. Yue-Jin Liu currently serves as an Associate Professor at Hubei University, where he focuses on organic synthesis and catalysis. With years of experience in developing new methodologies for carbon-hydrogen bond activation, he has contributed significantly to green chemistry and efficient molecular synthesis. His expertise extends to transition-metal catalysis, multi-component reactions, and synthetic applications in biologically active molecules. Dr. Liu has led several research projects, including the ruthenium-catalyzed three-component tandem remote C–H functionalization of naphthalenes, which has enhanced the efficiency of modular synthesis. Beyond academia, he actively collaborates with researchers worldwide, contributing to high-impact publications in Chemical Science. His commitment to teaching and mentoring young researchers has shaped the next generation of scientists in organic chemistry. Dr. Liu’s extensive experience in synthetic methodologies continues to drive forward the boundaries of modern organic transformations.

🏅Awards: 

Dr. Yue-Jin Liu’s groundbreaking work in organic synthesis and catalysis has earned him recognition in the scientific community. His research on C–H activation strategies has been cited extensively, reflecting his contributions to green chemistry and innovative molecular synthesis. In 2025, he was nominated for the Green Synthesis Award for his pioneering work on ruthenium-catalyzed multi-component reactions. His publications in top-tier journals like Chemical Science have solidified his reputation as an emerging leader in organic chemistry. Despite his focus on fundamental research, Dr. Liu’s methodologies have practical applications in pharmaceutical synthesis and materials chemistry, earning him academic accolades. He continues to strive for excellence, pushing the boundaries of modern synthetic techniques and contributing to sustainable chemical transformations. His commitment to innovation and environmental responsibility has positioned him as a rising figure in green and sustainable chemistry.

🔬Research Focus:

Dr. Yue-Jin Liu’s research is dedicated to developing novel strategies for carbon-hydrogen (C–H) bond activation, aiming to create efficient, sustainable, and selective organic transformations. His work emphasizes multi-component reactions (MCRs), enabling the synthesis of complex molecular frameworks with high atom economy. A significant part of his research involves ruthenium-catalyzed tandem remote C–H functionalization, which facilitates the modular and concise synthesis of multifunctional naphthalenes. His studies contribute to green chemistry, reducing the need for harsh reagents and wasteful synthetic steps. Dr. Liu also explores transition-metal catalysis and ligand-controlled selectivity, expanding the scope of synthetic methodologies for biologically active compounds. His innovative approaches have potential applications in drug discovery, materials science, and fine chemical production. By integrating computational chemistry and experimental design, he continuously seeks to enhance reaction efficiency, selectivity, and sustainability in modern organic synthesis.

Publication Top Notes:

Cobalt(II)-Catalyzed Selective C2–H Heck Reaction of Native (N–H) Indoles Enabled by Salicylaldehyde Ligand

Salicylaldehyde-Enabled Co(II)-Catalyzed Oxidative C–H Alkenylation of Indoles with Olefins

Ruthenium-Catalyzed Three-Component Tandem Remote C–H Functionalization of Naphthalenes: Modular and Concise Synthesis of Multifunctional Naphthalenes

Mild C−H Alkoxylation of Aromatic Amides Catalyzed by Salicylaldehyde‐Co(II) Complexes

Cobalt/Salicylaldehyde-Enabled C–H Alkoxylation of Benzamides with Secondary Alcohols under Solvothermal Conditions

Salicylaldehyde-Cobalt(II)-Catalyzed C–H Alkoxylation of Indoles with Secondary Alcohols

Selective Synthesis of Sulfonamides and Sulfenamides from Sodium Sulfinates and Amines

Rapid Modular Synthesis of Indole Ethers via Dehydrogenative Cross-Coupling Reaction of Indoles and Alcohols

Remote C5-Selective Functionalization of Naphthalene Enabled by P–Ru–C Bond-Directed δ-Activation

Ru(II)-Catalyzed P(III)-Assisted C8-Alkylation of Naphthphosphines

Ruthenium-Catalyzed Meta-Difluoromethylation of Arene Phosphines Enabled by 1,3-Dione

Salicylaldehyde-Promoted Cobalt-Catalyzed C–H/N–H Annulation of Indolyl Amides with Alkynes: Direct Synthesis of a 5-HT3 Receptor Antagonist Analogue

 

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R ,Inorganic Chemistry, GOVERNMENT POLYTECHNIC COLLEGE, EZHUKONE, KOLLAM, KERALA, India

Dr. Minitha R. is an Associate Professor with over 14 years of teaching and 15 years of research experience in chemistry. She holds an M.Sc., M.Phil., NET, UGC-JRF, and Ph.D. Her expertise spans organic, coordination, supramolecular, and inorganic chemistry. She has served in key academic roles, including NSS Programme Officer and Chief Superintendent of Examinations. A dedicated researcher, Dr. Minitha has guided students and undertaken projects like developing a chemosensor for metal ion detection. She has organized multiple national seminars and actively participates in international conferences and workshops.

Professional Profile :                       

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Minitha R., an accomplished Associate Professor with 15 years of research experience, has significantly contributed to the field of Inorganic Chemistry, particularly in Coordination Chemistry, Supramolecular Chemistry, and Organic Chemistry. With a strong publication record, she has authored several impactful research papers in highly reputed journals, covering diverse topics such as metal complexes, chemosensors, molecular structures, and spectroscopic studies. Dr. Minitha R. is an exceptional candidate for the “Best Researcher Award,” given her proven research excellence, scholarly contributions, and leadership in the scientific community. Her extensive work in metal-based coordination complexes, chemosensors, and supramolecular chemistry, along with her active role in mentoring and academic leadership, makes her a highly deserving nominee.

🎓Education:

Dr. Minitha R. holds a Ph.D. in Chemistry and has qualified for the NET and UGC-JRF. She completed her M.Sc. and M.Phil. in Chemistry, demonstrating academic excellence throughout. Her education provided her with a strong foundation in inorganic chemistry, particularly in complex synthesis, supramolecular interactions, and chemosensing applications. Her academic journey was driven by a passion for molecular recognition, ligand design, and structural chemistry. She has actively participated in seminars and workshops to enhance her knowledge and keep up with evolving research trends.

🏢Work Experience:

With 14 years of teaching and 15 years of research experience, Dr. Minitha R. has handled Organic, Inorganic, and Physical Chemistry courses. She has successfully guided research scholars, fostering innovations in supramolecular and coordination chemistry. Apart from teaching, she has played key roles as an NSS Programme Officer, Nature Club Coordinator, Chief Superintendent of Examinations, and Young Innovators Programme Facilitator. She has also organized national seminars and workshops on emerging trends in chemistry, enhancing academic collaboration and knowledge dissemination.

🏅Awards: 

Dr. Minitha R. has been recognized for her outstanding contributions to academia and research. She served as the NSS Programme Officer (2021-2022), demonstrating her commitment to student welfare and community service. As the Nature Club Coordinator (2019-2020), she played a crucial role in promoting environmental awareness. Her leadership extended to being the Chief Superintendent of Examinations (2020-2021), ensuring smooth academic assessments. Additionally, she facilitated the Young Innovators Programme (2019), fostering creativity and scientific curiosity among students. Her research endeavors were supported by a KSCSTE-funded M.Sc. student project, where she developed a chemosensor for metal ion detection. These roles reflect her dedication to education, research, and institutional development.

🔬Research Focus:

Dr. Minitha R. specializes in Inorganic Chemistry, with a keen interest in Organic Chemistry, Coordination Chemistry, and Supramolecular Chemistry. Her research explores the synthesis and characterization of novel metal complexes, particularly those with biological and chemosensory applications. She has contributed significantly to the development of pyrazolylhydrazone-based metal complexes, dioxo molybdenum(VI) compounds, and benzothiazolium salts. Her work also extends to fluorescent hydrazones and ruthenium(II) complexes, emphasizing their structural and functional properties. Additionally, her studies on five-coordinate Zn(II) complexes highlight their potential in nonlinear optical applications. Through her research, she aims to bridge the gap between fundamental chemistry and real-world applications, particularly in materials science, catalysis, and medicinal chemistry.

Publication Top Notes:

Formation of dicyano ruthenium(II) complex mediated by triethylamine via deprotonation of hydrazonochroman-2,4-dione
Synthesis, spectroscopic and biological studies of metal complexes of an ONO donor pyrazolylhydrazone – Crystal structure of ligand and Co(II) complex
Studies of some dioxo molybdenum(VI) complexes of a polydentate ligand
One pot synthesis of 1–(3–methyl–4H–benzo[1,4]thiazin–2–yl)-ethanone and its antimicrobial properties
 Synthesis, spectral, and magnetic studies of benzothiazolium tetrachlorocuprate salts: crystal structure and semiconducting behavior of bis[2-(4-methoxyphenyl)benzothiazolium] tetrachlorocuprate(II)
Fluorescent coumarin-based hydrazone: Synthesis, crystal structure, and spectroscopic studies
FT-IR, FT-Raman and computational study of 1H-2,2-dimethyl-3H-phenothiazin-4[10H]-one
Synthesis, crystal structure, spectral analysis, and NLO studies of five-coordinate Zn(II) complexes of hydrazochromandione
 Chemosensing study of 1,4-Benzothiazine generated from acetylacetone

 

Dr. Hongjian Qin | Organic Chemistry | Best Researcher Award

Dr. Hongjian Qin | Organic Chemistry | Best Researcher Award

Dr. Hongjian Qin , Shanghai Institute of Materia Medica, CAS , China

Dr. Hongjian Qin is an accomplished researcher in sustainable and green chemistry, with expertise in drug process development and medicinal administration. He earned his Ph.D. in Organic Chemistry from the Chinese Academy of Sciences, being recognized as an Excellent Graduate in 2024. Dr. Hongjian Qin’s contributions to the field span over three years, emphasizing environmentally friendly pharmaceutical synthesis and active pharmaceutical ingredient (API) development. Currently serving as Research Director at Topharman Company Limited, he continues to advance innovative solutions in drug development. His work includes mentoring students, enhancing resource recovery, and participating in COVID-19 research. With numerous impactful publications, Dr. Hongjian Qin is a dedicated professional committed to promoting sustainability and advancing solutions for global environmental challenges.

Professional Profile:

Scopus 

Summary of Suitability for Award:

Dr. Hongjian Qin is an exemplary candidate for the “Best Researcher Awards,” with a distinguished career in sustainable and green chemistry. His pioneering research in eco-friendly pharmaceutical synthesis has significantly contributed to reducing industrial waste and enhancing process efficiency, aligning with global sustainability objectives. Dr. Hongjian Qin’s innovative work on ligand-free catalysis, large-scale API production, and impurity profiling reflects his expertise in developing practical solutions for complex challenges in organic chemistry and medicinal chemistry. Dr. Hongjian Qin’s research excellence, innovative contributions, and global impact make him a highly deserving candidate for the “Best Researcher Awards.” His work not only addresses critical scientific challenges but also fosters sustainable practices in drug development, making a lasting impact on both academia and industry.

🎓Education:

Dr. Hongjian Qin holds a Ph.D. in Organic Chemistry from the Chinese Academy of Sciences , specializing in process development of drug substances and medicinal administration. His doctoral work was conducted at the Key Laboratory of Plant Resources and Chemistry in Arid Regions, showcasing expertise in sustainable pharmaceutical synthesis. He completed a Master of Engineering in Organic Chemistry from Guangxi University, focusing on the process development of drug substances. Dr. Qin’s academic journey began with a Bachelor of Science in Organic Chemistry from Guangxi University . His educational foundation combines rigorous theoretical knowledge with practical applications, preparing him to address complex challenges in green and sustainable chemistry.

🏢Work Experience:

Dr. Hongjian Qin’s professional journey spans over a decade, focusing on pharmaceutical synthesis and sustainable chemistry. As Research Director at Topharman Company Limited (2024–present), he spearheads innovations in active pharmaceutical ingredients (APIs) and emphasizes good manufacturing practices (GMP). Previously, as a Research Assistant at the Shanghai Institute of Materia Medica (2021–2024), he supported COVID-19 research projects, trained students, and enhanced pharmaceutical waste recovery techniques. At the Xinjiang Engineering Research Centre for Key Technologies and Processes of Ethnomedicine (2015–2021), Dr. Hongjian Qin led projects on sustainable API production and industrial resource recovery. His experiences reflect a blend of academic research and industrial application, driving advancements in pharmaceutical science.

🏅Awards: 

Dr. Hongjian Qin has received numerous accolades for his contributions to sustainable chemistry. He was honored as an Excellent Graduate in 2024 by the University of Chinese Academy of Sciences for his outstanding academic achievements during his Ph.D. studies. His work on sustainable pharmaceutical synthesis earned him recognition at various national and international conferences. Dr. Hongjian Qin has been instrumental in developing innovative processes for drug substances, garnering appreciation from industrial partners. Additionally, his mentorship roles and administrative contributions at research institutions have been commended, underscoring his commitment to advancing science and education.

🔬Research Focus:

Dr. Hongjian Qin’s research focuses on sustainable and green chemistry, particularly in the process development of drug substances. He has worked extensively on optimizing synthesis methods for pharmaceutical intermediates, reducing waste, and improving efficiency in drug manufacturing. His innovative approaches emphasize the use of eco-friendly reagents and catalysts, aligning with global sustainability goals. His recent work includes developing ligand-free copper-catalyzed cyclization methods, novel iron-catalyzed cross-coupling reactions, and efficient large-scale processes for active pharmaceutical ingredients (APIs). Dr. Hongjian Qin is dedicated to advancing environmentally responsible techniques in pharmaceutical synthesis, ensuring both industrial viability and ecological preservation.

Publication Top Notes:

1. Direct Esterification of Amides by the Dimethylsulfate-Mediated Activation of Amide C–N Bonds

Authors: Qin, H.; Han, Z.; Bonku, E.M.; Shen, J.; Aisa, H.A.

Year: 2024

Citations: 0

2. An Alternative Approach to Synthesize Sildenafil via Improved Copper-Catalyzed Cyclization

Authors: Odilov, A.; Gong, X.; Qin, H.; Yang, F.; Shen, J.

Year: 2024

Citations: 0

3. Impurity Study of Tecovirimat (Open Access)

Authors: Bonku, E.M.; Qin, H.; Odilov, A.; Wang, X.; Shen, J.

Year: 2024

Citations: 1

4. Improved and Ligand-Free Copper-Catalyzed Cyclization for an Efficient Synthesis of Benzimidazoles from o-Bromoarylamine and Nitriles (Open Access)

Authors: Bonku, E.M.; Qin, H.; Odilov, A.; Aisa, H.A.; Shen, J.

Year: 2024

Citations: 2

5. Direct Reductive N-Alkylation of Amines with Carboxylic Esters

Authors: Zhang, Y.; Bonku, E.M.; Yang, X.; Shen, J.; Qin, H.

Year: 2024 (In Press)

Citations: 0

6. Iron-Catalyzed Cross-Coupling Reactions of Alkyl Grignard Reagents with Alkenyl Carbonate

Authors: Qin, H.; Yang, X.; Mintah Bonku, E.; Shen, J.; Akber Aisa, H.

Year: 2024 (In Press)

Citations: 0

7. A Review of the Synthetic Strategies Toward the Antiviral Drug Tecovirimat (Review Article)

Authors: Bonku, E.M.; Qin, H.; Odilov, A.; Zhu, F.; Shen, J.

Year: 2024 (In Press)

Citations: 0

8. An Improved Iodine-Catalyzed Aromatization Reaction and Its Application in the Synthesis of a Key Intermediate of Cannabidiol

Authors: Abduahadi, S.; Bonku, E.M.; Qin, H.; Aisa, H.A.; Shen, J.

Year: 2024 (In Press)

Citations: 0

9. Optimized Synthesis of the Key Intermediate of Telmisartan via the Cyclization of 2-Bromoarylamine with n-Butyronitrile

Authors: Qin, H.; Mintah Bonku, E.; Odilov, A.; Zhu, F.; Aisa, H.A.

Year: 2023

Citations: 1

10. Efficient Large-Scale Process for Tecovirimat via Reactive Distillation for the Preparation of Cycloheptatriene

Authors: Bonku, E.M.; Qin, H.; Odilov, A.; Guma, S.D.; Shen, J.

Year: 2023

Citations: 4

 

 

 

 

 

Assist. Prof. Dr. Che-Sheng Hsu | Organic Chemistry | Best Researcher Award

Assist. Prof. Dr. Che-Sheng Hsu | Organic Chemistry | Best Researcher Award 

Assist. Prof. Dr. Che-Sheng Hsu , Fu Jen Catholic University , Taiwan

Che-Sheng Hsu is an Assistant Professor at Fu Jen Catholic University, New Taipei City, Taiwan. He specializes in organic synthetic methodologies and natural product synthesis, focusing on developing innovative approaches for high-performance chemistry. With a strong dedication to research, he has contributed significantly to the field by introducing novel iodide-umpolung catalysis systems and efficient methods for synthesizing polysubstituted vinyl sulfones. Known for his commitment to advancing molecular construction techniques, Che-Sheng aims to achieve sustainable and efficient chemical processes. His work has been published in indexed journals, reflecting the impact of his innovative research in organic synthesis.

Professional Profile: 

Orcid 

Summary of Suitability for Award:

Dr. Che-Sheng Hsu is a suitable candidate for the “Best Researcher Award” due to his groundbreaking research in organic synthesis and demonstrated potential for future contributions. His dedication to advancing high-efficiency chemistry through sustainable methodologies is commendable and positions him as an emerging leader in the field. Despite limited professional accolades so far, his innovative work lays a strong foundation for recognition and continued excellence in research. Dr. Che-Sheng Hsu demonstrates significant promise and dedication to advancing organic chemistry. His innovative contributions to organic synthetic methodologies, particularly his discovery of a novel iodide-umpolung catalysis system and efficient synthesis of poly substituted vinyl sulfones, highlight his potential for impactful research.

🎓Education:

Dr. Che-Sheng Hsu completed his undergraduate and postgraduate studies in Chemistry, specializing in organic synthesis. His academic journey is marked by rigorous training in advanced chemical methodologies and a focus on sustainable synthesis. He pursued his doctoral research, emphasizing the development of innovative reaction mechanisms, particularly in iodine reagent-based chemistry. Throughout his academic career, Che-Sheng demonstrated exceptional analytical skills and a keen interest in discovering new chemical reactions, paving the way for his future contributions to organic synthesis. His education has provided a robust foundation for his current research endeavors and academic contributions.

🏢Work Experience:

Dr. Che-Sheng Hsu has served as an Assistant Professor at Fu Jen Catholic University since the beginning of his academic career. With a specialization in organic synthetic methodologies, he combines teaching with active research to guide students and contribute to the field. His work includes the discovery of a novel iodide-umpolung catalysis system and the development of efficient synthetic routes for poly substituted vinyl sulfones. Despite being relatively new in the field, he is committed to advancing research through collaboration and innovation, leveraging his expertise to make meaningful scientific contributions.

🏅Awards:

Dr. Che-Sheng Hsu, an emerging researcher in the field of organic chemistry, has earned recognition for his innovative contributions to synthetic methodologies. While he is at an early stage in his career and has not yet received formal awards, his groundbreaking research in developing a novel iodide-umpolung catalysis system and efficient methods for synthesizing poly substituted vinyl sulfones has garnered appreciation from peers and experts in the field. His publication in a reputed indexed journal highlights the quality and relevance of his work. Dr. Che-Sheng Hsu’s commitment to advancing high-performance and sustainable chemical processes reflects his potential for achieving notable accolades in the future. With his focus on impactful research, he is poised to become a recognized leader in organic synthesis, and his work lays the foundation for achieving honors that acknowledge his contributions to science and innovation.

🔬Research Focus:

Dr. Che-Sheng  Hsu’s research centers on organic synthesis, with an emphasis on high-efficiency reaction mechanisms. He focuses on utilizing iodine reagents to construct complex molecules through innovative methods. His research has led to the development of a novel iodide-umpolung catalysis system, which enables the synthesis of poly substituted vinyl sulfones with remarkable performance. By exploring sustainable and efficient chemical processes, he contributes to advancing the field of organic chemistry. His work seeks to balance innovative research with practical applications, ensuring that his findings are both impactful and accessible for further scientific exploration.

Publication Top Notes:

Iodide-umpolung catalytic system for non-traditional amide coupling from nitroalkanes and amines

 

 

 

 

 

 

Assist. Prof. Dr Maryam Khajenoori | Green Extraction Award | Best Researcher Award

Assist. Prof. Dr Maryam Khajenoori | Green Extraction Award | Best Researcher Award

Assist. Prof. Dr Maryam Khajenoori , Semnan University , Iran 

Dr. Maryam Khajenoori is an Assistant Professor of Chemical Engineering at Semnan University, Iran. she is a specialist in subcritical water extraction (SWE) and chemical process engineering. Dr. Khajenoori’s academic career centers around sustainable separation processes and nanoparticle synthesis, with extensive research in solubility analysis, green extraction methods, and thermodynamic modeling. She is an accomplished educator, guiding students through advanced engineering mathematics, mass transfer, and environmental biotechnology. A published author in renowned journals, Dr. Khajenoori’s expertise extends to practical applications in chemical engineering and sustainable energy. She is proficient in multiple programming languages and specialized software, utilizing her technical skills to advance both academic research and applied chemical engineering processes.

Professional Profile: 

Google Scholar

Scopus 

Summary of Suitability for Award:

Dr. Maryam Khajenoori’s combination of academic excellence, significant research contributions, and focus on sustainability makes her a strong contender for the “Best Researcher Awards.” Her research on subcritical water extraction and related sustainable chemical processes is not only innovative but also has practical implications for industries like pharmaceuticals, food, and environmental engineering. Given her proven track record of influential publications, successful projects, and teaching roles, she is highly deserving of this recognition. Her work is set to continue making an important impact in both academic and industrial spheres, reaffirming her status as a leading researcher in the field.

🎓Education:

Dr. Khajenoori holds a Ph.D. in Chemical Engineering from Semnan University, specializing in the thermodynamics and kinetics of chemical reactors. She obtained her M.Sc. in Chemical Engineering with a focus on Separation Processes from the same institution , by  following her B.Sc. in Chemical Engineering (Polymer Branch) from Isfahan University of Technology (IUT) . Her foundational education includes a diploma in Mathematics and Physics from Dehkhoda High School in Kashan, Isfahan, Iran. Her academic journey has been marked by a rigorous focus on chemical processes, separation techniques, and sustainable engineering methodologies, paving the way for her research interests in green extraction and solubility of bioactive compounds.

🏢Work Experience:

Dr. Khajenoori has diverse teaching experience at Semnan University, covering subjects such as advanced mass transfer, environmental biotechnology, unit operations, and engineering mathematics. She has also instructed in specialized labs and workshops, including MATLAB, Aspen, and Hysys, to equip students with practical skills. Additionally, her research projects include studies on the thermokinetics of SWE for her Ph.D., superheated water extraction in her M.Sc., and pollutant studies in groundwater from her undergraduate studies. She has also completed numerous projects in CO2 capture, computational fluid dynamics, and molecular dynamics, applying her expertise in both teaching and research for sustainable chemical engineering solutions.

🏅Awards:

Dr. Khajenoori has earned recognition for her research contributions, particularly in the areas of subcritical water extraction and solubility analysis. Her pioneering work on SWE of essential oils has garnered international attention, and she has been invited to present her findings at leading scientific conferences. She has also been recognized within Semnan University for her dedication to both teaching and research, receiving accolades for her contributions to environmental biotechnology and sustainable chemical engineering practices. Additionally, her efforts in green extraction methods have placed her at the forefront of sustainable engineering, further affirming her as a respected figure in the field.

🔬Research Focus:

Dr. Khajenoori’s research primarily explores sustainable and green extraction methods, particularly subcritical water extraction (SWE) for bioactive compounds. Her interests extend to the solubility of valuable compounds like curcumin in SWE conditions, nanoparticle synthesis using environmentally friendly techniques, and pollution treatment processes. She has conducted extensive studies on thermodynamic modeling and the effect of SWE on various essential oils, aiming to optimize extraction efficiency and purity. Through her focus on sustainable practices, Dr. Khajenoori contributes to advancements in eco-friendly chemical engineering and supports the development of alternative extraction techniques to reduce environmental impact.

Publication Top Notes:

  •  Subcritical water extraction
     Citations: 144
  • Proposed models for subcritical water extraction of essential oils
    Citations: 103
  • Mass Transfer: Advances in Sustainable Energy and Environment Oriented Numerical Modeling
    Citations: 71
  •  Subcritical water extraction of essential oils from Zataria multiflora Boiss
    Citations: 63
  • Extraction of Curcumin and Essential Oil from Curcuma longa L. by Subcritical Water via Response Surface Methodology
    Citations: 58

 

 

 

 

Dr. samira abozeid | Inorganic Chemistry Award | Best Researcher Award

Dr. samira abozeid | Inorganic Chemistry Award | Best Researcher Award

Dr. samira abozeid,mansoura university,Egypt

Dr. Samira Abozeid is a dedicated Lecturer and Assistant Professor in the Chemistry Department at Mansoura University, Egypt. With a strong academic background, she earned her Ph.D. in Chemistry from the State University of New York at Buffalo, complemented by an MSc and BSc from Mansoura University. Dr. Abozeid specializes in synthesizing metal complexes for applications in MRI contrast agents and drug delivery systems using innovative nanotechnology. Her commitment to academic excellence is evident through her extensive research contributions, collaborative efforts, and participation in various national and international projects. Additionally, she has been recognized with several awards for her outstanding research and teaching, showcasing her dedication to advancing the field of chemistry and contributing to educational initiatives.

Professional Profile:

Google Scholar

Scopus

Orcid

Summary of Suitability for Award:

Dr. Samira Mohammed Abozeid exemplifies the qualities and achievements that make her a suitable candidate for the “Best Researcher Award.” With a Ph.D. in Chemistry from the State University of New York at Buffalo, she has made significant contributions to the field, particularly in synthesizing metal complexes for MRI contrast agents and drug delivery systems. Her publication record, which includes 18 articles in high-impact journals, underscores her prolific research output and the relevance of her work in advancing medical applications of chemistry.

🎓Education:

Dr. Samira Abozeid holds an impressive academic portfolio. She completed her Bachelor’s and Master’s degrees in Chemistry at Mansoura University, Egypt, where she developed a solid foundation in chemical sciences. Dr. Abozeid then pursued her Ph.D. at the State University of New York at Buffalo, specializing in the synthesis of metal complexes and their applications in medical imaging and drug delivery. Her doctoral research significantly contributed to the understanding of MRI contrast agents, showcasing her capability to conduct high-level research. Throughout her academic journey, she has maintained a focus on integrating theoretical knowledge with practical applications, which has enriched her teaching methodologies and research approach. Dr. Abozeid’s education has equipped her with the skills to excel in both academia and research, fostering a commitment to innovation in chemistry.

🏢Work Experience:

Dr. Samira Abozeid has garnered extensive experience in academia and research throughout her career. Currently serving as a Lecturer and Assistant Professor at both Mansoura University and New Mansoura University, she plays a pivotal role in educating and mentoring students in chemistry. Dr. Abozeid has completed three significant research projects focused on the synthesis and characterization of metal complexes for MRI applications and drug delivery systems. With 18 published articles in esteemed journals and a citation index reflecting her impactful research contributions, she has established herself as a leading figure in her field. Furthermore, she has engaged in consultancy projects related to chemistry and has participated in multiple collaborative research efforts, both nationally and internationally, which have enriched her research perspective and facilitated knowledge exchange. Dr. Abozeid’s commitment to research excellence is complemented by her active involvement in professional memberships and initiatives aimed at bridging academic research with industry applications.

🏅Awards:

Dr. Samira Abozeid has received several prestigious awards and recognitions throughout her academic career. Among her notable accolades is the Egyptian Government Scholarship, which allowed her to pursue her studies at the State University of New York at Buffalo from 2016 to 2018. Additionally, she was honored with the James T. Grey, Jr. Fellowship in Summer 2020, which acknowledges outstanding research contributions. Dr. Abozeid also received the Mattern-Tyler Teaching Award and the Speyer Fellowship in Fall 2020, reflecting her excellence in both teaching and research. In 2023, she was awarded a competitively funded research project at Mansoura University, highlighting her commitment to advancing scientific knowledge. Furthermore, she has been recognized for delivering the Best Specialized Lecture at multiple conferences, showcasing her ability to communicate complex scientific ideas effectively. These honors underline her significant contributions to the field of chemistry and her dedication to academic excellence.

🔬Research Focus:

Dr. Samira Abozeid’s research focuses primarily on the synthesis and application of metal complexes, particularly in the development of MRI contrast agents and drug delivery systems. Her innovative approach involves utilizing nanoparticles and liposomes to enhance the effectiveness and biocompatibility of these complexes. Dr. Abozeid’s work emphasizes the importance of transition metal complexes in medical applications, providing novel insights into their structural properties and potential therapeutic uses. Her ongoing projects include the development of more effective and safer MRI probes, which can significantly improve diagnostic imaging capabilities. Additionally, she collaborates with national and international research groups to explore energy-related applications of metal complexes. Through her research, Dr. Abozeid aims to bridge the gap between chemistry and medicine, contributing to advancements in nanotechnology and its practical implications for healthcare. Her commitment to innovation and excellence continues to shape her contributions to the scientific community.

Publication Top Notes:

  • Two New Inner-Sphere Pt(II) Thiosemicarbazone Schiff Base Complexes Immobilized into Magnetic Nanoparticles: Synthesis, Characterization, and Biological Investigations
  • A Novel Fluorescent Probe Based Imprinted Polymer-Coated Magnetite for the Detection of Imatinib Leukemia Anti-Cancer Drug Traces in Human Plasma Samples
  • Fe(III) T1 MRI Probes Containing Phenolate or Hydroxypyridine-Appended Triamine Chelates and a Coordination Site for Bound Water
    • Citations: 5 citations.
  • Co(II) Complexes of Tetraazamacrocycles Appended with Amide or Hydroxypropyl Groups as ParaCEST Agents
    • Citations: 3 citations.
  • Comparison of Phosphonate, Hydroxypropyl and Carboxylate Pendants in Fe(III) Macrocyclic Complexes as MRI Contrast Agents
    • Citations: 18 citations.

 

 

 

 

Dr. Seyed Mohammad Amini | Green Chemistry Award | Best Researcher Award

Dr. Seyed Mohammad Amini | Green Chemistry Award | Best Researcher Award

Dr. Seyed Mohammad Amini | Iran University of Medical Sciences | Iran

Seyed Mohammad Amini, Ph.D., is a dedicated scientist and Assistant Professor at the Radiation Biology Research Center, Iran University of Medical Sciences, specializing in medical nanotechnology. Born on February 1, 1986, he has over a decade of experience in research and development, particularly in biopharmaceuticals, nanotechnology for drug delivery, and imaging. His work has led to innovations in nanoparticle-based formulations for cancer diagnostics and therapy, including pioneering techniques in hyperthermia and photodynamic therapy. Dr. Amini’s contributions extend to clinical radiology with hands-on expertise in CT and MRI systems. He is fluent in Persian, Kurdish, and English and actively contributes to interdisciplinary projects involving teams of scientists worldwide.

Professional Profile:

Google Scholar

Orcid

Scopus

Summary of Suitability for Award:

Dr. Seyed Mohammad Amini stands as a highly qualified candidate for the “Best Researcher Award” due to his extensive expertise and contributions across several interdisciplinary fields within nanomedicine and biomedical applications. With a Ph.D. and M.Sc. in Medical Nanotechnology from Tehran University of Medical Sciences, he has amassed over 12 years of research and development experience in biopharmaceutical drug development, drug delivery systems, and radiological technology. Dr. Amini’s unique cross-functional research has demonstrated excellence in both theoretical and applied sciences, especially in his innovative work on metal and metal oxide nanostructures, which are pivotal in radiation therapy, photodynamic therapy, and hyperthermia for cancer treatment.

🎓Education:

Dr. Amini completed his Ph.D. in Medical Nanotechnology from Tehran University of Medical Sciences (2012-2017), where he specialized in nanoliposomal formulations for controlled cancer drug delivery, supervised by distinguished professors such as Dr. Sharmin Kharrazi and Prof. Jaafari. His Master’s degree (2010-2012) in Medical Nanotechnology from the same university included developing gold nanoparticles for enhanced photodynamic cancer treatment. His academic journey began with a Bachelor’s degree in Radiology (2008-2010) at Tehran University of Medical Sciences, where he gained foundational knowledge in imaging systems and radiology practice. His academic achievements include ranking among the top candidates in national entrance exams for each degree level in Iran.

🏢Work Experience:

With 12 years of extensive R&D experience, Dr. Amini has developed expertise in biopharmaceutical nanotechnology and medical imaging, holding a position as Assistant Professor at the Radiation Biology Research Center, Iran University of Medical Sciences, since 2017. His research spans across drug delivery systems, synthesis of biogenic nanoparticles, and biosensors for targeted drug delivery, along with four years of practical experience as a radiology technologist. Notable projects include developing gold nanoparticles for photodynamic therapy and metal oxide nanoparticles for antimicrobial and theranostic applications. He has contributed significantly to the field of medical nanotechnology with over 50 peer-reviewed publications, patents, and collaborative research grants, proving his capability to lead interdisciplinary teams and communicate effectively across scientific fields.

🏅Awards:

Dr. Amini’s academic excellence is demonstrated by his achievements, such as ranking first in the 2014 Comprehensive Exam for Ph.D. students in Medical Nanotechnology and being awarded the honor of excellence for his M.Sc. thesis by the Iranian Nanotechnology Initiative Council. He ranked second nationally in Iran’s Ph.D. entrance exam in 2012 and has consistently placed highly in national competitions, including the National Nano Competition (7th place, 2012). Dr. Amini’s contributions to medical nanotechnology, specifically in nanoformulations for cancer treatment, have earned him multiple awards and patents for innovative theranostic systems, showcasing his impact in nanomedicine.

🔬Research Focus:

Dr. Amini’s research expertise spans five main areas: nanotechnology for radiotherapy, hyperthermia treatments, photodynamic therapy, green synthesis of nanoparticles, and theranostic applications. He leads pioneering work in developing multifunctional nanoparticles for cancer therapy, including nanostructures for precise thermal and photodynamic treatment. His contributions to biogenic metal nanoparticles for radiosensitization and antimicrobial purposes have furthered the capabilities of non-toxic, plant-based nanomaterial synthesis. Additionally, Dr. Amini has contributed to biosensor innovation by bioconjugating nanostructures with biomolecules for targeted diagnostics and treatments. His research aims to bridge diagnostic and therapeutic applications with nanoparticle-enabled platforms to achieve safer, more effective cancer therapies.

Publication Top Notes:

  1. “Preparation of antimicrobial metallic nanoparticles with bioactive compounds”
    • Citations: 146
  2. “Metal nanoparticles synthesis through natural phenolic acids”
    • Citations: 107
  3. “Evaluation of size, morphology, concentration, and surface effect of gold nanoparticles on X-ray attenuation in computed tomography”
    • Citations: 74
  4. “Safety of nanotechnology in food industries”
    • Citations: 73
  5. “Expression analysis of circulating plasma long noncoding RNAs in colorectal cancer: The relevance of lncRNAs ATB and CCAT1 as potential clinical hallmarks”

 

 

 

Mr. Anil kumar Gautam | Green Synthesis Award | Material Chemistry Award

Mr. Anil kumar Gautam | Green Synthesis Award | Material Chemistry Award

Mr. Anil kumar Gautam | Babasaheb Bhimrao Ambedkar University lucknow  |India

Dr. Anil K. Gautam, born in 1987, is a dynamic researcher specializing in nanochemistry, currently pursuing a Ph.D. at Babasaheb Bhimrao Ambedkar University, Lucknow. With a strong foundation in synthetic organic chemistry, he has pioneered innovative methodologies for green synthesis of nanoparticles. His research focuses on the anticancer and antibacterial properties of various nanocomposites derived from natural extracts. A committed lifelong learner, Dr. Gautam actively participates in national and international conferences, presenting his groundbreaking findings. Fluent in English and Hindi, he balances his professional endeavors with personal commitments, living in Lucknow with his family. His dedication to sustainable practices and innovative research reflects a deep commitment to advancing the field of chemistry.

Professional Profile:

Orcid 

Summary of Suitability for Award:

Mr. Anil kumar Gautam is highly suitable for the Material Chemistry Award due to their innovative approach to sustainable nanomaterial synthesis, strong technical expertise, and impactful research contributions. Their focus on environmentally friendly practices and their active engagement in the scientific community align well with the award’s objectives.

🎓Education:

Dr. Anil K. Gautam holds a Ph.D. in Chemistry from Babasaheb Bhimrao Ambedkar University, Lucknow, where he is focused on the “Green Synthesis of Nanomaterials and Evaluation of its Cytotoxicity.” His academic journey began with a Master’s in Chemistry from Dr. Shakuntala Misra National Rehabilitation University, Lucknow, where he honed his expertise in organic synthesis. Prior to that, he earned a Bachelor of Science degree from Christian P.G. College, Lucknow, solidifying his foundational knowledge in scientific principles. Dr. Gautam’s educational background reflects a strong commitment to understanding and innovating within the field of chemistry, particularly in nanotechnology. His ongoing research continues to contribute significantly to his academic institution and the broader scientific community.

🏢Work Experience:

Dr. Anil K. Gautam has extensive research experience during his Ph.D. at Babasaheb Bhimrao Ambedkar University, focusing on the development of new synthetic methodologies in nanochemistry. He has led several innovative projects, including the green synthesis of CeO2/CeCu/CuO nanocomposites and their evaluation for anticancer and antibacterial properties. Dr. Gautam’s experience encompasses the preparation of plant extracts and the characterization of synthesized nanomaterials through advanced techniques such as XRD, FTIR, SEM, and HPLC. He has also contributed to multiple oral presentations at prestigious conferences, showcasing his research findings on various nanomaterials. His collaborative approach and rigorous analytical skills have positioned him as a valuable asset in research settings, driving forward the exploration of sustainable chemistry and its applications.

🏅Awards:

Dr. Anil K. Gautam’s contributions to the field of chemistry have been recognized through various accolades throughout his academic career. His innovative research on green synthesis of nanomaterials has garnered him invitations to present at international conferences, emphasizing his status as an emerging expert in nanochemistry. Although specific awards have not been detailed, his work’s impact is evident in his published research and participation in prominent scientific forums. His commitment to sustainable practices in chemistry and the successful application of his research findings further highlight his dedication to advancing the field. Dr. Gautam’s continuous engagement in academia and research reflects a strong potential for future recognition as he continues to contribute meaningfully to scientific knowledge and practice.

🔬Research Focus:

Dr. Anil K. Gautam’s research focus lies in nanochemistry, particularly the green synthesis of nanoparticles and nanocomposites using natural extracts. His pioneering work involves developing eco-friendly methodologies to synthesize various metal oxides and their composites, emphasizing their potential applications in anticancer and antibacterial therapies. His studies on the structural properties of nanoparticles, coupled with their functional evaluations, contribute significantly to the understanding of nanomaterials in biomedical applications. Additionally, Dr. Gautam explores the synthesis of heterojunction nanocomposites for photocatalytic degradation of organic pollutants, aiming to enhance environmental sustainability. Through rigorous experimental design and literature analysis, he seeks to stay at the forefront of advancements in nanotechnology, bridging the gap between sustainable practices and innovative research in chemistry. His dedication to addressing complex challenges through his research positions him as a key contributor to the evolving landscape of nanoscience.

Publication Top Notes:

Green Synthesis of Pistia stratiotes Ag/AgCl Nanomaterials and Their Anti-Bacterial Activity

 

 

 

Dr. Azza Hassoon | Metallodrugs | Best Researcher Award

Dr. Azza Hassoon | Metallodrugs | Best Researcher Award

Dr.Azza Hassoon,Mansoura University,Egypt

Dr. Azza Ahmed Mousad Megahed Hassoon is a Lecturer in the Department of Chemistry at Mansoura University, Egypt. Specializing in inorganic chemistry, she holds a Ph.D. from the University of Szeged, Hungary, where she graduated with honors. Dr. Hassoon’s research focuses on metal complex synthesis and bioinorganic chemistry, contributing to over seven publications in respected journals. She has also been recognized with various awards and scholarships, including the RSC Research Fund grant and travel awards for international conferences. An active participant in global conferences and summer schools, she is a member of the Spanish Royal Society of Chemistry (RSEQ).

Professional Profile:

Google Scholar

Orcid

Scopus

Summary of Suitability for Award:

Dr. Azza Ahmed Mousad Megahed Hassoon would be a strong candidate for a “Best Researcher Award.” Her contributions to inorganic and bioinorganic chemistry, especially in the synthesis and study of metallodrugs, demonstrate a significant impact on her field. Her international research experiences, including funded collaborations and recognition from prestigious societies like the RSC and RSEQ, underscore her commitment to advancing metallodrug research. Her impressive publication record, coupled with active involvement in global conferences and summer schools, reflect both her dedication to research excellence and her ongoing engagement with the scientific community.

🎓Education:

Dr. Azza Ahmed Mousad Megahed Hassoon a B.Sc. in Chemistry with honors from Mansoura University, Egypt, in 2012, achieving an impressive 85.52% grade. They went on to earn an M.Sc. in Inorganic Chemistry from the same institution in 2016. Recently, they completed a Ph.D. in Inorganic Chemistry at the University of Szeged, Hungary, in 2023, also graduating with honors.

🏢Work Experience:

Dr. Azza Ahmed Mousad Megahed Hassoon has accumulated extensive work experience in the Chemistry Department at Mansoura University, Egypt. She began her academic career as a Demonstrator from December 2012 to February 2016, where she supported faculty members in laboratory courses and student instruction. Following this role, she was appointed as an Assistant Lecturer from February 2016 to August 2023, during which she contributed to both teaching and research activities. In August 2023, she advanced to the position of Lecturer, where she continues to engage in teaching, mentoring students, and conducting research in inorganic chemistry. Her progressive roles reflect her commitment to academic excellence and her contributions to the field

🏅Awards:

Dr. Azza Ahmed Mousad Megahed Hassoon has received several prestigious awards and scholarships throughout her academic career. Notably, she was granted the Stipendium Hungaricum Scholarship for her Ph.D. at the University of Szeged, Hungary, from February 2019 to April 2023. Her contributions to the field have also been recognized through various Travel Awards for international conferences, including the International Conference on Metal-Binding Peptides (MBP) in July 2022 and the 16th International Symposium on Applied Bioinorganic Chemistry in June 2023. In 2024, she secured an RSC Research Fund Grant of £5000 to further her research. Additionally, Dr. Hassoon served as a Visiting Scholar at Brigham Young University in the USA from February to August 2016 and participated in a Visiting Summer School at JINR-Dubna, Russia, in May-June 2015, enhancing her international exposure and collaboration in the field of inorganic chemistry.

🔬Research Focus:

Dr. Azza Ahmed Mousad Megahed Hassoon specializes in Inorganic Chemistry, concentrating on metal complex synthesis and bioinorganic chemistry. Her research includes investigating metallodrugs and their applications in biological systems, which underscores her commitment to understanding the interactions between metal complexes and biological molecules. This focus not only highlights her academic expertise but also her contributions to developing innovative solutions in the field of chemistry, enhancing our understanding of how these compounds can be utilized in medical applications.

Publication Top Notes:

  • Synthesis, single crystal X-ray, spectroscopic characterization and biological activities of Mn²⁺, Co²⁺, Ni²⁺, and Fe³⁺ complexes
    • Citations: 20
  • New Square-Pyramidal Oxovanadium (IV) Complexes Derived from Polydentate Ligand (L1)
    • Citations: 19
  • Peptide-based chemical models for lytic polysaccharide monooxygenases
    • Citations: 5
  • Characterization of copper(II) specific pyridine containing ligands: Potential metallophores for Alzheimer’s disease therapy
    • Citations: 5
  • The interaction of half-sandwich (η⁵-Cp) Rh (III) cation with histidine containing peptides and their ternary species with (N, N) bidentate ligands*

 

Ica Manas-Zloczower | Chemistry | Best Researcher Award

Prof. Ica Manas-Zloczower | Chemistry| Best Researcher Award

Professor at Case Western Reserve University, United States

Ica Manas-Zloczower is a distinguished university professor at Case Western Reserve University, specializing in macromolecular science and chemical engineering. With a career spanning over four decades, she has made significant contributions to the fields of polymer processing, advanced materials, and energy solutions. Her extensive research and leadership roles have positioned her as a prominent figure in both academia and professional societies.

Author Metrics

Google Scholar Profile

Scopus Profile

ORCID Profile

Throughout her career, Ica Manas-Zloczower has published numerous research articles in high-impact journals, contributing significantly to the scientific community. Her work is widely cited, reflecting her influence and expertise in polymer science. Metrics such as citation indices and h-index highlight her prolific output and the impact of her research on advancing knowledge in her field.

  • Total Citations: 5,873
  • Total Documents: 236
  • h-index: 43

Education

Ica earned her Doctor of Science from the Technion – Israel Institute of Technology, where she focused on chemical engineering. Her academic journey began at the Polytechnic Institute in Jassy, Romania, where she received both her B.S. and M.S. degrees. This solid educational foundation has underpinned her subsequent achievements in research and teaching.

Research Focus

Her research primarily centers on polymer processing, recycling technologies, and the development of advanced materials. Ica is particularly interested in mechanochemical methods for the recycling of thermosetting polymers and the enhancement of thermomechanical properties of polymer composites. This focus not only addresses critical environmental issues but also pushes the boundaries of material science.

Professional Journey

Ica’s professional journey includes roles as an assistant professor, associate professor, and now as a distinguished university professor at Case Western Reserve University. She has served as the Associate Dean of Faculty Development and has held leadership positions in several professional organizations, including the International Polymer Processing Society. Her academic and administrative roles demonstrate her commitment to fostering growth in engineering education.

Honors & Awards

Ica has received numerous accolades for her teaching, research, and service. Notable honors include the 2017 Society of Plastics Engineers Fred E. Schwab Education Award and the 2012 George S. Whitby Award for Distinguished Teaching and Research. Her recognition as a Fellow of the Society of Plastics Engineers underscores her contributions to the field.

Publications Noted & Contributions

Ica has authored and co-authored a plethora of articles in leading journals, contributing vital research on topics like polymer recycling and mechanical properties of materials. Her editorial roles in several journals further amplify her impact, as she shapes the discourse in polymer science and engineering. Notable publications include works on vitrimerization and thermomechanical properties of polymers, reflecting her innovative research approach.

Improving Performance of TPU by Controlled Crosslinking of Soft Segments

Journal: Polymer Engineering & Science
Publication Date: August 2024
DOI: 10.1002/pen.26826
Contributors: Lucivan P. Barros Junior, Lucio R. de Souza, Rasoul Rahimzadeh, Ica Manas‐Zloczower
This article explores innovative methods to enhance the performance of thermoplastic polyurethane (TPU) by controlling the crosslinking of its soft segments. The findings contribute to optimizing TPU properties for various applications, particularly in areas requiring enhanced mechanical performance and durability.

A Mechanochemical Approach to Recycle Thermosets Containing Carbonate and Thiourethane Linkages

Journal: Polymer
Publication Date: April 2024
DOI: 10.1016/j.polymer.2024.126877
Contributors: Rasoul Rahimzadeh, Yazhe Han, Ica Manas-Zloczower
This research presents a mechanochemical method for recycling thermosetting polymers with carbonate and thiourethane linkages. The study addresses the critical issue of polymer waste, proposing a viable recycling technique that could significantly impact sustainability in polymer usage.

Thermomechanical Performance of Thermoplastic Polyurethane–Poly(tetrafluoroethylene) Fibril Nanocomposites

Journal: ACS Applied Polymer Materials
Publication Date: July 14, 2023
DOI: 10.1021/acsapm.3c00738
Contributors: Maya Pishvar, Mehrad Amirkhosravi, Ica Manas-Zloczower
This article investigates the thermomechanical properties of nanocomposites made from TPU and poly(tetrafluoroethylene) (PTFE) fibrils. The research contributes to the understanding of composite behavior, highlighting the potential for developing advanced materials with superior mechanical properties.

Porous Hydrogels: Present Challenges and Future Opportunities

Journal: Langmuir
Publication Date: February 14, 2023
DOI: 10.1021/acs.langmuir.2c02253
Contributors: Reza Foudazi, Ryan Zowada, Ica Manas-Zloczower, Donald L. Feke
This publication reviews the current challenges in developing porous hydrogels while identifying future research directions. It serves as a comprehensive resource for researchers in the field, fostering innovation in hydrogel applications.

Thermomechanical Properties of Cross-Linked EVA: A Holistic Approach

Journal: ACS Applied Polymer Materials
Publication Date: February 10, 2023
DOI: 10.1021/acsapm.2c01928
Contributors: Kimberly Miller McLoughlin, Amin Jamei Oskouei, Michelle K. Sing, Alireza Bandegi, Sarah Mitchell, Jayme Kennedy, Thomas G. Gray, Ica Manas-Zloczower
This article presents a comprehensive analysis of the thermomechanical properties of cross-linked ethylene-vinyl acetate (EVA). By utilizing a holistic approach, the study enhances understanding of the relationship between processing conditions and material performance.

Research Timeline

Over the years, Ica’s research has evolved, with early work focusing on basic polymer processing principles and later expanding into advanced recycling technologies and material characterization. This timeline illustrates her adaptability and foresight in addressing emerging challenges in materials science, making significant contributions to both academia and industry.

Conclusion

Ica Manas-Zloczower’s career is marked by a dedication to research, teaching, and professional service in the field of macromolecular science and engineering. Her contributions not only advance scientific understanding but also inspire future generations of engineers. As she continues to push the boundaries of polymer science, her legacy will undoubtedly influence the direction of research and education in the field.