Dr. Victoria Varchenko | Analytical Chemistry Award | Best Researcher Award

Dr. Victoria Varchenko | Analytical Chemistry Award | Best Researcher Award

Dr. Victoria Varchenko ,Institute of Functional Materials Chemistry of State Scientific Institution “Institute for Single Crystals” of NAS of Ukraine , Ukraine

Victoria Varchenko is a skilled analytical chemist whose expertise lies in electrochemical methods and nanoparticle characterization. He completed her Ph.D. in Analytical Chemistry  at  Institute for Single Crystals, Ukraine, under Dr. K.N. Belikov. Her doctoral research focused on modified carbon paste electrodes for voltammetric determination of indole compounds, a vital area in analytical chemistry. Varchenko has contributed to the development of advanced procedures for preconcentration, sorption, and microextraction. he currently holds a position as Research Associate at the same institute, where he applies her deep knowledge of voltammetry, electrochemical transformations, and inductively coupled plasma optical emission spectrometry (ICP-OES). Her work significantly impacts the accuracy and efficiency of analytical chemistry techniques, especially in complex environmental and biological sample analysis.

Professional Profile:

Orcid

Scopus

Summary of Suitability for Award:

Victoria Varchenko’s qualifications, experience, and research contributions make her a strong candidate for the “Best Researcher Awards.” Her educational background includes a Ph.D. in Analytical Chemistry from the State Scientific Institution “Institute for Single Crystals” of the National Academy of Sciences of Ukraine, with a focus on modified carbon paste electrodes for the voltammetric determination of electroactive indole compounds. Her research in this area shows innovation in analytical chemistry, specifically in voltammetry, and her expertise in preconcentration, separation, microextraction, and electrochemical transformation of organic substances demonstrates a deep understanding of complex chemical processes.

🎓Education:

Victoria Varchenko obtained her Ph.D. in Analytical Chemistry from the Institute for Single Crystals, Ukraine, in  under the guidance of Dr. K.N. Belikov. Her thesis, titled Modified Carbon Paste Electrodes for Voltammetric Determination of Electroactive Indole Compounds, significantly contributed to the field of electrochemical analysis. Before pursuing her doctoral degree, she earned a Master of Science in Chemistry from V.N. Karazin Kharkov National University in  specializing in chemical metrology. This foundational training provided her with a deep understanding of analytical techniques and quality control processes. Varchenko’s education has equipped her with the skills necessary to develop innovative solutions to complex analytical challenges, especially in the areas of voltammetry, sorption, and microextraction.

🏢Work Experience:

Victoria Varchenko has a rich background in analytical chemistry, with over eight years of experience at the State Scientific Institution “Institute for Single Crystals” of the National Academy of Sciences of Ukraine. She started her career there as a Junior Research Associate , where she focused on developing and validating analytical procedures, particularly in microextraction, voltammetry, and sorption techniques. In 2020, she was promoted to Research Associate, where she continues to focus on advanced applications of electrochemical methods, including the study of organic substances’ electrochemical transformations. Varchenko’s work also involves the use of inductively coupled plasma optical emission spectrometry (ICP-OES) for comprehensive analysis of diverse sample types. Her experience spans various research areas, including nanoparticle synthesis, voltammetric analysis, and analytical quality control, positioning her as an expert in her field.

🏅Awards:

Victoria Varchenko has received recognition for her significant contributions to the field of analytical chemistry, particularly for her innovative research on electrochemical techniques. Though specific awards are not detailed, her work is highly regarded in the scientific community, with multiple publications in peer-reviewed journals. Her research, including the development of modified carbon paste electrodes for indole compound determination, has been instrumental in advancing analytical chemistry techniques. Additionally, her work on microextraction and sorption in environmental analysis has been well-received. Varchenko has been an active contributor to quality control advancements in chemical analysis, further demonstrating her impact on the field. Her work is supported by her position as a Research Associate at a leading institution, reflecting the esteem with which she is regarded by her peers.

🔬Research Focus:

Victoria Varchenko’s primary research interests lie in advancing analytical chemistry techniques, with a particular focus on preconcentration, separation methods, and electrochemical analysis. She specializes in developing and applying modified carbon paste electrodes for voltammetric determination of electroactive organic compounds. Her work in microextraction and sorption has led to enhanced sample preparation methods, improving the efficiency and accuracy of analytical testing. Varchenko is also involved in nanoparticle synthesis and characterization, areas that are increasingly important in environmental and biological analysis. Furthermore, she applies inductively coupled plasma optical emission spectrometry (ICP-OES) for the comprehensive analysis of complex samples, such as environmental and agricultural products. Varchenko’s research is aimed at creating more efficient, accurate, and environmentally friendly analytical methods, with applications in fields like environmental monitoring and health diagnostics.

Publication Top Notes:

  • Differential-Pulse Polarographic Determination of Periciazine by Hydrogenperoxymonofulfate Treatment
  • Menthol-Based (Deep) Eutectic Solvents: A Review on Properties and Application in Extraction
    • Cited by: 13
  •  Application of Cloud-Point Extraction for the Determination of Arsenic using Inductively Coupled Plasma Atomic Emission Spectrometry in Several Pharmaceutical Preparations
  • : Grafting of phosphorus-containing tetrahydroxy(thia)calixarenes on silica enhances europium(III) adsorption
    • Cited by: 3
  • Study on the sorption properties of (NH4)2TiOF4 particles
    • Cited by: 3

 

 

 

 

Mr. Lei Mou | Analytical Chemistry Award | Young Scientist Award

Mr. Lei Mou | Analytical Chemistry Award | Young Scientist Award

Mr. Lei Mou ,Guangzhou Medical University, China

Lei Mou is a Research Associate at the Terasaki Institute for Biomedical Innovation, Los Angeles, specializing in biosensors, wearable devices, and organ-on-a-chip technology. With a robust background in biomedical engineering and materials science, Lei completed a Ph.D. from the National Center for Nanoscience and Technology (NCNST) under Prof. Xingyu Jiang. His work integrates advanced microfluidic and biosensor platforms aimed at enhancing clinical diagnostics and wearable health monitoring. With extensive research and technical skills, he has contributed to innovative approaches in immunoassay technology, HPV detection, and biosignal computing. Lei’s contributions to nanobiotechnology are also reflected in his numerous patents, high-impact publications, and presentations at international conferences.

Professional Profile:

Google Scholar

Summary of Suitability for Award:

Lei Mou demonstrates strong potential for the “Young Scientist Award,” with impressive accomplishments in biomedical engineering, especially in clinical biosensors, wearable devices, and organs-on-a-chip technology. His academic foundation is rooted in a Ph.D. from the Chinese Academy of Sciences, where he specialized in biomaterials and point-of-care diagnostic platforms, laying a solid groundwork for his current innovative research.

🎓Education:

Lei Mou earned his Ph.D. in Biomedical Engineering from the National Center for Nanoscience and Technology, Chinese Academy of Sciences (2016-2020), where he researched biosensors and microfluidic devices under Prof. Xingyu Jiang’s mentorship. His undergraduate studies in Materials Science and Engineering were completed at the University of Science and Technology Beijing (USTB) in 2016, as part of the Excellent Engineer Training Program. Here, he laid the foundation for his expertise in nanomaterials and engineering design, achieving numerous accolades for academic excellence. Lei’s educational path has emphasized interdisciplinary research, equipping him with a skill set to bridge materials science, biomedical engineering, and clinical applications effectively.

🏢Work Experience:

Lei Mou is currently a Research Associate at the Terasaki Institute for Biomedical Innovation (TIBI), where he focuses on the development of organ-on-a-chip systems and advanced biosensors. Prior to this, he was a Researcher at the Third Affiliated Hospital of Guangzhou Medical University, where he specialized in clinical biosensors and wearable device technology. Lei’s professional experience has enabled him to develop high-sensitivity immunoassay platforms and contribute to significant projects in health-related microfluidic applications. His work bridges clinical settings and advanced engineering, bringing laboratory innovations closer to real-world applications.

🏅Awards:

Lei Mou has earned numerous awards for his academic and research excellence, including the Director’s Scholarship at NCNST and the First Class Scholarship for Master’s Students, recognizing him as a top 3% student. During his undergraduate studies, he received the prestigious 86 Alumni Scholarship, the National Scholarship from China’s Ministry of Education, and the Beijing Outstanding Graduates Award. His achievements reflect his commitment to excellence and innovation in his field, with honors that highlight his performance and contributions to biomedical engineering and materials science.

🔬Research Focus:

Lei Mou’s research focuses on microfluidic immunoassays, wearable biosensors, and organs-on-a-chip technologies. He specializes in integrating nanotechnology with biomedical engineering to develop advanced diagnostic tools for healthcare. His work includes creating chemiluminescence immunoassay platforms that amplify biomarker signals using gold nanoparticles, as well as developing portable devices for detecting high-risk HPV strains. His research has significant implications for personalized medicine and remote diagnostics, aiming to improve accessibility and precision in clinical diagnostics and healthcare monitoring.

Publication Top Notes:

  • Surface chemistry of gold nanoparticles for health-related applications
    • Citations: 277
  • Microfluidics‐based biomaterials and biodevices
    • Citations: 183
  • Materials for microfluidic immunoassays: a review
    • Citations: 154
  • Printable metal-polymer conductors for highly stretchable bio-devices
    • Citations: 130
  • Highly stretchable and biocompatible liquid metal‐elastomer conductors for self‐healing electronics
    • Citations: 109

 

 

 

 

Dr. samira abozeid | Inorganic Chemistry Award | Best Researcher Award

Dr. samira abozeid | Inorganic Chemistry Award | Best Researcher Award

Dr. samira abozeid,mansoura university,Egypt

Dr. Samira Abozeid is a dedicated Lecturer and Assistant Professor in the Chemistry Department at Mansoura University, Egypt. With a strong academic background, she earned her Ph.D. in Chemistry from the State University of New York at Buffalo, complemented by an MSc and BSc from Mansoura University. Dr. Abozeid specializes in synthesizing metal complexes for applications in MRI contrast agents and drug delivery systems using innovative nanotechnology. Her commitment to academic excellence is evident through her extensive research contributions, collaborative efforts, and participation in various national and international projects. Additionally, she has been recognized with several awards for her outstanding research and teaching, showcasing her dedication to advancing the field of chemistry and contributing to educational initiatives.

Professional Profile:

Google Scholar

Scopus

Orcid

Summary of Suitability for Award:

Dr. Samira Mohammed Abozeid exemplifies the qualities and achievements that make her a suitable candidate for the “Best Researcher Award.” With a Ph.D. in Chemistry from the State University of New York at Buffalo, she has made significant contributions to the field, particularly in synthesizing metal complexes for MRI contrast agents and drug delivery systems. Her publication record, which includes 18 articles in high-impact journals, underscores her prolific research output and the relevance of her work in advancing medical applications of chemistry.

🎓Education:

Dr. Samira Abozeid holds an impressive academic portfolio. She completed her Bachelor’s and Master’s degrees in Chemistry at Mansoura University, Egypt, where she developed a solid foundation in chemical sciences. Dr. Abozeid then pursued her Ph.D. at the State University of New York at Buffalo, specializing in the synthesis of metal complexes and their applications in medical imaging and drug delivery. Her doctoral research significantly contributed to the understanding of MRI contrast agents, showcasing her capability to conduct high-level research. Throughout her academic journey, she has maintained a focus on integrating theoretical knowledge with practical applications, which has enriched her teaching methodologies and research approach. Dr. Abozeid’s education has equipped her with the skills to excel in both academia and research, fostering a commitment to innovation in chemistry.

🏢Work Experience:

Dr. Samira Abozeid has garnered extensive experience in academia and research throughout her career. Currently serving as a Lecturer and Assistant Professor at both Mansoura University and New Mansoura University, she plays a pivotal role in educating and mentoring students in chemistry. Dr. Abozeid has completed three significant research projects focused on the synthesis and characterization of metal complexes for MRI applications and drug delivery systems. With 18 published articles in esteemed journals and a citation index reflecting her impactful research contributions, she has established herself as a leading figure in her field. Furthermore, she has engaged in consultancy projects related to chemistry and has participated in multiple collaborative research efforts, both nationally and internationally, which have enriched her research perspective and facilitated knowledge exchange. Dr. Abozeid’s commitment to research excellence is complemented by her active involvement in professional memberships and initiatives aimed at bridging academic research with industry applications.

🏅Awards:

Dr. Samira Abozeid has received several prestigious awards and recognitions throughout her academic career. Among her notable accolades is the Egyptian Government Scholarship, which allowed her to pursue her studies at the State University of New York at Buffalo from 2016 to 2018. Additionally, she was honored with the James T. Grey, Jr. Fellowship in Summer 2020, which acknowledges outstanding research contributions. Dr. Abozeid also received the Mattern-Tyler Teaching Award and the Speyer Fellowship in Fall 2020, reflecting her excellence in both teaching and research. In 2023, she was awarded a competitively funded research project at Mansoura University, highlighting her commitment to advancing scientific knowledge. Furthermore, she has been recognized for delivering the Best Specialized Lecture at multiple conferences, showcasing her ability to communicate complex scientific ideas effectively. These honors underline her significant contributions to the field of chemistry and her dedication to academic excellence.

🔬Research Focus:

Dr. Samira Abozeid’s research focuses primarily on the synthesis and application of metal complexes, particularly in the development of MRI contrast agents and drug delivery systems. Her innovative approach involves utilizing nanoparticles and liposomes to enhance the effectiveness and biocompatibility of these complexes. Dr. Abozeid’s work emphasizes the importance of transition metal complexes in medical applications, providing novel insights into their structural properties and potential therapeutic uses. Her ongoing projects include the development of more effective and safer MRI probes, which can significantly improve diagnostic imaging capabilities. Additionally, she collaborates with national and international research groups to explore energy-related applications of metal complexes. Through her research, Dr. Abozeid aims to bridge the gap between chemistry and medicine, contributing to advancements in nanotechnology and its practical implications for healthcare. Her commitment to innovation and excellence continues to shape her contributions to the scientific community.

Publication Top Notes:

  • Two New Inner-Sphere Pt(II) Thiosemicarbazone Schiff Base Complexes Immobilized into Magnetic Nanoparticles: Synthesis, Characterization, and Biological Investigations
  • A Novel Fluorescent Probe Based Imprinted Polymer-Coated Magnetite for the Detection of Imatinib Leukemia Anti-Cancer Drug Traces in Human Plasma Samples
  • Fe(III) T1 MRI Probes Containing Phenolate or Hydroxypyridine-Appended Triamine Chelates and a Coordination Site for Bound Water
    • Citations: 5 citations.
  • Co(II) Complexes of Tetraazamacrocycles Appended with Amide or Hydroxypropyl Groups as ParaCEST Agents
    • Citations: 3 citations.
  • Comparison of Phosphonate, Hydroxypropyl and Carboxylate Pendants in Fe(III) Macrocyclic Complexes as MRI Contrast Agents
    • Citations: 18 citations.

 

 

 

 

Dr.Martin Oscar Armando Pacheco Álvarez |Environmental Chemistry| Young Scientist Award

Dr.Martin Oscar Armando Pacheco Álvarez |Environmental Chemistry| Young Scientist Award 

Dr.Martin Oscar Armando Pacheco Álvarez | Instituto Tecnológico Superior de Guanajuato | Mexico

Martín Oscar Armando Pacheco Álvarez is a dedicated Profesor de Asignatura at the Instituto Tecnológico Superior de Guanajuato. With a solid academic foundation, he has published 17 articles in prestigious indexed journals such as Chemosphere and Journal of Electroanalytical Chemistry, collaborating with renowned scientists in his field. His contributions extend to two book chapters and four dissemination articles, showcasing his commitment to advancing knowledge in electrochemistry. Martín has actively participated in seven congresses, where he has shared insights through workshops on advanced oxidation processes. His research has taken him to the Plataforma Solar de Almería in Spain, where he further honed his expertise. Recognized for his academic excellence, he received the award for “Highest Average of the Doctorate in Chemical Sciences.” Through his research, Martín aims to develop sustainable and efficient solutions for wastewater treatment, reflecting his passion for environmental science.

Professional Profile:

Google Scholar

Scopus

Summary of Suitability for Award:

Martín Oscar Armando Pacheco Álvarez stands out as a leading candidate for the “Young Scientist Award” due to his impressive academic contributions and innovative research in the field of electrochemistry and advanced oxidation processes. With 17 publications in renowned indexed journals like Chemosphere and Journal of Electroanalytical Chemistry, he has demonstrated a strong commitment to advancing scientific knowledge. His collaboration with esteemed scientists and contributions to books and articles further illustrate his impact on the academic community.

🎓Education:

Martín Oscar Armando Pacheco Álvarez completed his Doctorate in Chemical Sciences, during which he excelled academically and earned the distinction of having the highest average in his program. His academic journey began with a Bachelor’s degree in Chemical Engineering, followed by a Master’s degree in Environmental Engineering, where he focused on advanced oxidation processes. His education provided him with a strong foundation in electrochemical analysis and materials characterization. Martín further enhanced his research skills through various internships and research stays, including a notable stint at the Plataforma Solar de Almería in Spain. This experience allowed him to apply his theoretical knowledge in practical settings, bridging the gap between academia and real-world applications. He continues to contribute to the academic community through teaching and mentoring, inspiring the next generation of scientists.

🏢Work Experience:

Martín Oscar Armando Pacheco Álvarez has extensive teaching and research experience in the field of chemistry and electrochemistry. He has held positions at notable institutions, including the Universidad Tecnológica de León and Instituto Oviedo, before joining the Instituto Tecnológico Superior de Guanajuato. Throughout his career, he has been involved in significant research projects focused on advanced oxidation processes, including photocatálisis and electrochemical degradation methods. Martín has contributed to multiple scientific publications, including articles in high-impact journals and chapters in academic books. His experience extends to consultancy roles, where he has advised on electrochemical processes for wastewater treatment. Additionally, he has presented his research at numerous congresses, actively engaging with the scientific community and sharing knowledge through workshops. His commitment to education and research is evident in his mentorship of students and his ongoing efforts to enhance the academic curriculum in his field.

🏅Awards:

Martín Oscar Armando Pacheco Álvarez has received several accolades throughout his academic career, reflecting his commitment to excellence in research and education. Notably, he was awarded the title of “Highest Average of the Doctorate in Chemical Sciences,” recognizing his outstanding academic performance during his doctoral studies. Additionally, he has been honored for his contributions to environmental science through his research on advanced oxidation processes. His work has garnered attention in the scientific community, leading to invitations to present at prestigious conferences and workshops. Martín’s dedication to promoting sustainable solutions for wastewater treatment has also earned him recognition from various organizations, highlighting his role as a thought leader in electrochemistry. As a member of professional societies such as the Mexican Society of Electrochemistry (SMEQ) and ENPA, he actively contributes to the advancement of knowledge in his field, further enhancing his reputation as a respected scientist.

🔬Research Focus:

Martín Oscar Armando Pacheco Álvarez specializes in advanced oxidation processes (AOPs) and their applications in environmental remediation, particularly in wastewater treatment. His research investigates various AOP techniques, including photocatálisis, electrooxidation, and the innovative electro-Fenton process. He explores the kinetics of generating oxidant species in TiO2/BDD systems and their efficacy in degrading organic dyes and contaminants in industrial effluents. By focusing on sustainable and economically viable methods for wastewater treatment, Martín aims to develop scalable solutions that can be applied in real-world scenarios. His work emphasizes the importance of electrochemical analysis and material characterization in understanding and improving these processes. Through collaborations with esteemed scientists and participation in research initiatives, he continues to contribute valuable insights into the field of electroanalytical chemistry. Ultimately, his research endeavors aim to address critical environmental challenges and promote the development of clean technologies.

Publication Top Notes:

    • Title: Electrochemical oxidation technology to treat textile wastewaters
      Cited by: 127
    • Title: Proposal for highly efficient electrochemical discoloration and degradation of azo dyes with parallel arrangement electrodes
      Cited by: 65

      Title: A critical review on paracetamol removal from different aqueous matrices by Fenton and Fenton-based processes, and their combined methods
      Cited by: 57

    • Title: Studying the influence of different parameters on the electrochemical oxidation of tannery dyes using a Ti/IrO2-SnO2-Sb2O5 anode
      Cited by: 30
    • Title: Tannery wastewater treatment using combined electrocoagulation and electro-Fenton processes

 

 

Jose Ferreira | Chemistry and Materials Science | Best Researcher Award

Dr. Jose Ferreira | Chemistry and Materials Science | Best Researcher Award

Doctorate at Research Scientist II of Iowa State University, United States

Dr. José Mario Ferreira Júnior is a highly accomplished scientist specializing in materials science and engineering at Iowa State University 🌟. With a Ph.D. in Chemistry 🎓, Dr. Ferreira Júnior has an extensive background in surface analysis, corrosion, and graphene synthesis 🧪. His research journey has taken him across the globe, from the Federal University of Bahia in Brazil 🇧🇷 to the University of Aveiro in Portugal 🇵🇹, and the University of Surrey in the UK 🇬🇧. He has held various academic and research positions, including a professorship at the Federal University of Bahia and post-doctoral roles at multiple prestigious institutions 🌍. Dr. Ferreira Júnior is also actively engaged in the scientific community through his profiles on ORCID, ResearchGate, and Google Scholar 📚. His work is characterized by a commitment to advancing the field of chemistry through innovative research and practical applications 🔬.

Professional Profile:

Education

Dr. José Mario Ferreira Júnior’s education is marked by distinguished achievements in the field of chemistry 🎓. He earned his Ph.D., which laid the foundation for his extensive research and academic career 🌟. Throughout his educational journey, Dr. Ferreira Júnior has gained in-depth knowledge and expertise in materials science, focusing on areas such as surface analysis, corrosion, and graphene synthesis 🧪. His education has equipped him with the skills to conduct groundbreaking research and contribute significantly to the scientific community 📚.

Professional Experience

Dr. José Mario Ferreira Júnior boasts a robust professional background in materials science and engineering 🌍. Currently a Research Scientist II at Iowa State University, he specializes in graphene oxide synthesis 🧪. His career includes a post-doctoral position at Wyoming University, focusing on electrochemical membranes, and another post-doctoral role at the University of Aveiro in Portugal 🇵🇹, working on the M-ERA-NET2 project. Dr. Ferreira Júnior also served as a Professor Adjunct at the Federal University of Bahia in Brazil 🇧🇷, where he taught materials science and contributed to the Postgraduate Program of Chemical Engineering. Additionally, he has held a post-doctoral position at the University of Surrey in the UK 🇬🇧 and taught general chemistry and calculus at the School of Engineering of Lorena, University of São Paulo 🇧🇷. His diverse experiences reflect a commitment to advancing materials science through both research and teaching 📚.

Research Interest

Dr. José Mario Ferreira Júnior’s research interests are centered on advancing the field of materials science 🧪. His expertise includes surface analysis, corrosion, and graphene synthesis, reflecting a broad yet specialized focus within chemistry 🔬. Dr. Ferreira Júnior is passionate about developing new materials and exploring their applications, particularly in enhancing material durability and performance ⚙️. His work aims to bridge the gap between fundamental research and practical applications, driving innovation and contributing to scientific knowledge 📚. Through his research, Dr. Ferreira Júnior seeks to address key challenges in materials science, making significant strides in the synthesis and characterization of advanced materials 🌟.

Award and Honor

Dr. José Mario Ferreira Júnior has been recognized with numerous awards and honors throughout his distinguished career in materials science and engineering 🏅. His groundbreaking research and contributions have earned him accolades from prestigious institutions and scientific communities 🌟. Among his notable achievements, Dr. Ferreira Júnior received the Outstanding Researcher Award at Iowa State University for his pioneering work in graphene oxide synthesis 🧪. Additionally, he was honored with the Excellence in Teaching Award at the Federal University of Bahia, acknowledging his dedication to education and mentorship 🎓. These accolades highlight Dr. Ferreira Júnior’s commitment to advancing scientific knowledge and fostering academic excellence 📚.

Research Skills

Dr. José Mario Ferreira Júnior possesses a comprehensive set of research skills that make him a leading expert in materials science and engineering 🌟. His proficiency in surface analysis and corrosion allows him to evaluate and improve material durability and performance 🔬. Dr. Ferreira Júnior excels in graphene synthesis, employing advanced techniques to create and manipulate this cutting-edge material 🧪. His ability to transition research from bench work to practical applications demonstrates his adeptness in bridging theoretical and experimental science ⚙️. With a strong background in collecting, analyzing, and reporting primary and secondary data 📊, he is skilled in developing innovative solutions and generating research grants 💡. His expertise is further supported by extensive experience in teaching and mentoring, fostering the next generation of scientists and engineers 🎓.

Publications

  • A conversion layer based on trivalent chromium and cobalt for the corrosion protection of electrogalvanized steel
    • AR Di Sarli, JD Culcasi, CR Tomachuk, CI Elsner, JM Ferreira-Jr, I Costa
    • Surface and Coatings Technology 📄, 258, 426-436
    • 🗓️ 2014
    • 📊 30 citations
  • Electrochemical and chemical characterization of electrodeposited zinc surface exposed to new surface treatments
    • JM Ferreira Jr, KP Souza, FM Queiroz, I Costa, CR Tomachuk
    • Surface and Coatings Technology 📄, 294, 36-46
    • 🗓️ 2016
    • 📊 26 citations
  • Development and characterisation of zinc oxalate conversion coatings on zinc
    • JM Ferreira Jr, M Oliveira, GF Trindade, LCL Santos, CR Tomachuk, …
    • Corrosion Science 📄, 137, 13-32
    • 🗓️ 2018
    • 📊 23 citations
  • Removal of oil contents and salinity from produced water using microemulsion
    • JSB Souza, JMF Júnior, G Simonelli, JR Souza, LMN Góis, LCL Santos
    • Journal of Water Process Engineering 📄, 38
    • 🗓️ 2020
    • 📊 16 citations
  • Introduction to a series of dicarboxylic acids analyzed by x-ray photoelectron spectroscopy
    • JM Ferreira, GF Trindade, R Tshulu, JF Watts, MA Baker
    • Surface Science Spectra 📄, 24 (1)
    • 🗓️ 2017
    • 📊 14 citations
  • Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part II-butanedioic acid anhydrous
    • JM Ferreira, GF Trindade, R Tshulu, JF Watts, MA Baker
    • Surface Science Spectra 📄, 24 (1)
    • 🗓️ 2017
    • 📊 12 citations
  • Deposition and characterization of a new mixed organic/inorganic cerium containing coating for the corrosion protection of electrogalvanized steel
    • JM Ferreira Jr, JL Rossi, MA Baker, SJ Hinder, I Costa
    • International Journal of Electrochemical Science 📄, 9 (4), 1827-1839
    • 🗓️ 2014
    • 📊 10 citations
  • Deposition and characterization of a sol-gel Mg-substituted fluorapatite coating with new stoichiometries
    • JM Ferreira Jr, V Rajendran, G Simonelli, ACM Silva, LCL Santos, …
    • Applied Surface Science 📄, 505, 144393
    • 🗓️ 2020
    • 📊 8 citations
  • Avaliação de sistema de colunas para remediação de biogás a partir de biomassa não digerida
    • V Pereira, JM Ferreira-Jr, GAS Martinez, CR Tomachuk
    • HOLOS 📄, 8, 242-251
    • 🗓️ 2015
    • 📊 8 citations
  • Determination of kinetic parameters for the sisal residue pyrolysis through thermal analysis
    • CAMP Daniel Bemmuyal Passos Santos, Marcos Fábio de Jesus, José Mário …
    • Journal of Industrial and Engineering Chemistry 📄
    • 🗓️ 2022
    • 📊 7 citations
  • Biodiesel production using co-solvents: a review
    • G Simonelli, JMF Júnior, CA de Moraes Pires, LCL dos Santos
    • Research, Society and Development 📄, 9 (1), e99911672-e99911672
    • 🗓️ 2020
    • 📊 6 citations
  • 5-Hydroxymethylfurfural Oxidation Over Platinum Supported on Açaí Seed Coal for Synthesis of 2, 5-Furandicarboxylic Acid
    • SMN de Assumpção, SB Lima, JGAB Silva, RC Santos, LMA Campos, …
    • Biointerface Research in Applied Chemistry 📄, 12 (5), 6632-6650
    • 🗓️ 2021
    • 📊 5 citations
  • Advances in ethanol autothermal reform for hydrogen gas production: a review
    • ML Brito, JMF Júnior, LCL dos Santos, G Simonelli
    • Research, Society and Development 📄, 9 (5), e126953070-e126953070
    • 🗓️ 2020
    • 📊 5 citations🗓️
  • Corrosion protection of electrogalvanized steel by surface treatments containing cerium and niobium compounds
    • JM FERREIRA JUNIOR, KP Souza, JL Rossi, I Costa, GF Trindade, …
    • International Journal of Electrochemical Science 📄, 11 (8), 6655-6672
    • 🗓️ 2016
    • 📊 5 citations
  • Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part I-propanedioic acid anhydrous
    • JM Ferreira, GF Trindade, R Tshulu, JF Watts, MA Baker
    • Surface Science Spectra 📄, 24 (1)
    • 🗓️ 2017
    • 📊 4 citations

Hassan Behnejad | Chemistry and Materials Science | Physical Chemistry Award

Prof Hassan Behnejad | Chemistry and Materials Science | Physical Chemistry Award

Prof., PhD of University of Tehran, Iran 

Professor Hassan Behnejad is a distinguished academic in the field of physical chemistry, with an extensive career at the University of Tehran. He earned his B.Sc. in Chemistry from the University of Shiraz in 1990 and his M.Sc. and Ph.D. in Physical Chemistry from the University of Tehran in 1993 and 1998, respectively. His Ph.D. research focused on the evaluation of intermolecular potential energy functions and the calculation of transport properties of gases. Since joining the University of Tehran’s faculty in 1998, Dr. Behnejad has advanced from Assistant Professor to Full Professor, reflecting his significant contributions to the field. His research interests include theoretical physical chemistry, thermodynamics, and the transport properties of fluids. Dr. Behnejad has also held key administrative roles, such as Vice-Dean of Faculty of Science for student affairs and Vice-President for student affairs at the University of Tehran. He spent a sabbatical year at the University of Maryland, USA, where he furthered his research on the thermodynamic behavior of fluids near critical points. Dr. Behnejad is renowned for his expertise in statistical thermodynamics and intermolecular forces, making him a valuable member of the academic community.

Professional Profile:

Education

Professor Hassan Behnejad has a robust educational background in the field of chemistry and physical chemistry. He completed his B.Sc. in Chemistry at the University of Shiraz in 1990. He then pursued advanced studies at the University of Tehran, where he earned his M.Sc. in Physical Chemistry in 1993, focusing on Quantum Statistical Thermodynamics of Transport Processes. Continuing at the same institution, he obtained his Ph.D. in Physical Chemistry in 1998. His doctoral research centered on evaluating intermolecular potential energy functions from viscosity data and calculating the transport properties of gases using three-particle collision matrix elements. This solid educational foundation laid the groundwork for his subsequent academic and research career.

 

Professional Experience

Professor Hassan Behnejad has a distinguished professional career at the University of Tehran, where he has made significant contributions since joining the faculty in December 1998. He began as an Assistant Professor in the Department of Chemistry, Faculty of Science, advancing to Associate Professor in January 2006, and achieving the rank of Full Professor in November 2016. His professional journey also includes key administrative roles, such as Vice-Dean of Faculty of Science for student affairs from November 2002 to 2008, and Vice-President for student affairs from July 2014 to September 2019. Additionally, he took a sabbatical leave from March 2008 to February 2009 at the University of Maryland, USA, where he conducted research on the thermodynamic behavior of fluids near critical points under the supervision of J. V. Sengers. Throughout his career, Professor Behnejad has demonstrated a steadfast commitment to teaching, research, and administration, significantly impacting his field and the academic community at the University of Tehran.

Research Interest

Professor Hassan Behnejad’s research interests lie predominantly in the domain of theoretical physical chemistry, with a particular focus on the thermodynamics and transport properties of fluids. His work encompasses the evaluation of intermolecular potential energy functions, the analysis of transport properties of gases in moderate densities, and the study of three-particle collision matrix elements. He is deeply interested in the thermodynamic behavior of fluids near critical points, which he explored during his sabbatical at the University of Maryland. Dr. Behnejad’s expertise extends to statistical thermodynamics and intermolecular forces, where he investigates the quantum statistical thermodynamics of transport processes. His research aims to enhance the understanding of fluid behavior, contributing to advancements in both theoretical frameworks and practical applications in physical chemistry.

Award and Honor

Professor Hassan Behnejad has been recognized for his exceptional contributions to the field of physical chemistry through various awards and honors. His dedication to research and education has earned him prestigious accolades from academic institutions and professional organizations. Notably, he was awarded a scholarship by the University of Tehran from September 1995 to December 1998, which supported his doctoral studies. His outstanding research and academic achievements have also been acknowledged through various commendations and awards throughout his career, underscoring his role as a leading figure in theoretical physical chemistry. These honors reflect his commitment to advancing scientific knowledge and his significant impact on both his students and peers in the academic community.

 

Research Skills

Professor Hassan Behnejad possesses extensive research skills that have significantly advanced the field of physical chemistry. His expertise includes the evaluation of intermolecular potential energy functions, which involves sophisticated mathematical and computational techniques to derive these functions from experimental viscosity data. Dr. Behnejad is adept at analyzing the transport properties of gases using three-particle collision matrix elements, a complex method that requires a deep understanding of statistical mechanics and thermodynamics. His skills also encompass the study of fluid behavior near critical points, integrating theoretical models with experimental observations. Furthermore, his proficiency in quantum statistical thermodynamics allows him to tackle intricate problems related to transport processes in fluids. Dr. Behnejad’s research skills are characterized by a strong foundation in theoretical analysis, computational modeling, and practical application, making him a distinguished figure in his field.

Publications

  • A comparative adsorption study of sulfamethoxazole onto graphene and graphene oxide nanosheets through equilibrium, kinetic and thermodynamic modeling
    R Rostamian, H Behnejad
    Process Safety and Environmental Protection, 2016
    Citation: 128
  • Applied thermodynamics of fluids
    D Browarzik, S Bottini, E Brignole, S Pereda, S Kjelstrup, D Bedeaux, …
    Royal Society of Chemistry, 2010
    Citation: 105*
  • A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets
    R Rostamian, H Behnejad
    Ecotoxicology and environmental safety, 2018
    Citation: 70
  • A comparative study of thermal behaviors and kinetics analysis of the pyrotechnic compositions containing Mg and Al
    M Fathollahi, H Behnejad
    Journal of Thermal Analysis and Calorimetry, 2015
    Citation: 53
  • Thermodynamic behaviour of fluids near critical points
    H Behnejad, JV Sengers, MA Anisimov
    Year: 2010
    Citation: 45
  • Equilibrium and kinetic studies for the adsorption of benzene and toluene by graphene nanosheets: a comparison with carbon nanotubes
    MT Raad, H Behnejad, ME Jamal
    Surface and Interface Analysis, 2016
    Citation: 36
  • Insights into doxycycline adsorption onto graphene nanosheet: a combined quantum mechanics, thermodynamics, and kinetic study
    R Rostamian, H Behnejad
    Environmental Science and Pollution Research, 2018
    Citation: 34
  • Theoretical investigation of imidazolium based ionic liquid/alcohol mixture: a molecular dynamic simulation
    S Jahangiri, M Taghikhani, H Behnejad, SJ Ahmadi
    Molecular Physics, 2008
    Citation: 29
  • The extended law of corresponding states and the intermolecular potentials for He He and Ne Ne
    H Behnejad, A Maghari, M Najafi
    Journal of computational chemistry, 1995
    Citation: 28
  • A unified platform for experimental and quantum mechanical study of antibiotic removal from water
    R Rostamian, H Behnejad
    Journal of water process engineering, 2017
    Citation: 22