Ms. NTUMBA LOBO | Physical Chemistry | Best Researcher Award

Ms. NTUMBA LOBO | Physical Chemistry | Best Researcher Award

Ms. NTUMBA LOBO | Physical Chemistry | PhD student at NAGOYA INSTITUTE OF TECHNOLOGY, Japan

Ntumba Lobo, a Congolese researcher, is a Ph.D. student and research assistant at Nagoya Institute of Technology, Japan. She specializes in semiconductor materials, focusing on carrier recombination effects in perovskites. She holds a Master’s degree from Shibaura Institute of Technology, Japan, in hydrogen storage materials, and an M.Sc. in Nuclear Physics from Addis Ababa University, Ethiopia. With experience in international collaborations, she was an exchange researcher at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. Ntumba has participated in several scientific conferences and published extensively in high-impact journals. She has also held teaching and research positions, including at the University of Kinshasa and the Centre Régional de Recherche Nucléaire de Kinshasa. Her work contributes significantly to materials science and renewable energy applications.

Professional Profile :         

Google Scholar

Orcid

Scopus  

Summary of Suitability for Award:

Ntumba Lobo is an exceptional researcher with a strong multidisciplinary background in semiconductor materials, energy storage, and nuclear physics. Her Ph.D. research at Nagoya Institute of Technology, Japan, focuses on metal halide perovskites, lithium tantalate, and carrier dynamics, contributing significantly to the development of advanced semiconductor materials. She has demonstrated excellence in research through multiple international collaborations, including an exchange program at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. Her expertise in material characterization techniques such as Time-Resolved Photoluminescence (TRPL), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) has led to high-impact publications and conference presentations. Ntumba Lobo’s extensive research contributions, global collaborations, and expertise in semiconductor and energy materials make her a strong candidate for the “Best Researcher Award.” Her work is not only innovative but also has a significant impact on the future of optoelectronic devices and sustainable energy solutions. Her dedication to scientific excellence, combined with her ability to work across disciplines, positions her as a deserving recipient of this prestigious recognition.

🎓Education:

Ntumba Lobo is currently pursuing a Ph.D. in Science and Engineering at Nagoya Institute of Technology, Japan, specializing in semiconductor materials (expected completion in September 2025). She was an exchange student at i-MEET, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, in 2022, where she worked on single and polycrystal semiconductor materials. She obtained a Master’s degree in Science and Engineering from Shibaura Institute of Technology, Japan (2018-2020), focusing on energy storage materials. Before that, she completed an M.Sc. in Nuclear Physics from Addis Ababa University, Ethiopia (2014-2016), with a dissertation on nuclear fusion reactions. Her academic journey began with a B.Sc. (Honors) in Physics from the University of Kinshasa, Democratic Republic of the Congo (2012), where she contributed to non-destructive characterization of reinforced concrete using ultrasound methods. Her diverse educational background in physics, material science, and engineering has equipped her with expertise in semiconductor research and energy materials.

🏢Work Experience:

Ntumba Lobo has extensive experience in research and teaching. Since 2020, she has been a Research Assistant at Nagoya Institute of Technology, working on semiconductor materials and device characterization. She has completed multiple internships, including at OSM Group Co., Ltd. (Japan, 2019) and For Delight Co. Ltd. (Japan, 2018), where she gained industry exposure. Her research career started with an internship at the Centre Régional de Recherche Nucléaire de Kinshasa (2016-2017) in nuclear physics. She also worked as a Teaching Assistant at the University of Kinshasa (2013-2014) and taught physics, scientific drawing, and technology at Liziba High School (2012-2013). Her hands-on expertise in material characterization techniques, including Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and photoconductivity measurements, has contributed to multiple high-impact publications. Her professional experience spans academic, industrial, and research institutions, making her a well-rounded scientist in semiconductor and energy materials.

🏅Awards: 

Ntumba Lobo has been recognized for her contributions to material science and semiconductor research. She received funding for an exchange research program at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany (2022), where she worked on advanced semiconductor materials. Her research on energy storage materials during her Master’s at Shibaura Institute of Technology was highly appreciated. She has presented her work at prestigious conferences, including the 16th International Symposium on Metal-Hydrogen Systems (China, 2018) and the Solid-State Devices and Materials Conference (Japan, 2023). She also participated in specialized training programs such as the Summer School on Space Weather in Kinshasa (2011) and Advanced Python Programming and Geographic Information Systems training in Addis Ababa (2016). Her continuous engagement in international research collaborations and conferences showcases her commitment to scientific advancement.

🔬Research Focus:

Ntumba Lobo’s research focuses on semiconductor materials, particularly metal halide perovskites and their carrier dynamics. She investigates surface recombination, carrier lifetime, and trapping effects in single and polycrystalline materials using techniques like Microwave Photoconductivity Decay (µPCD) and Time-Resolved Photoluminescence (TRPL). Her work extends to lithium tantalate and its photoconductance properties. She has also contributed to the field of hydrogen storage materials, analyzing the effects of TiO₂, Nb₂O₅, and TiH₂ catalysts on magnesium hydride. Additionally, her expertise in nuclear physics has allowed her to explore neutron-induced reactions and fusion mechanisms. By integrating her knowledge in physics, materials science, and engineering, she aims to develop efficient, stable, and high-performance materials for energy storage and semiconductor applications. Her research is pivotal in advancing next-generation optoelectronic devices and sustainable energy solutions.

Publication Top Notes:

Stability investigation of the γ-MgH₂ phase synthesized by high-energy ball milling

Citations: 27

Stable quasi-solid-state zinc-ion battery based on the hydrated vanadium oxide cathode and polyacrylamide-organohydrogel electrolyte

Citations: 13

Trapping effects and surface/interface recombination of carrier recombination in single- or poly-crystalline metal halide perovskites

Citations: 9

Study of ²⁰Ne Induced Reaction in ⁵⁹Co: Incomplete and Complete Fusion

Citations: 3

Effect of TiO₂ + Nb₂O₅ + TiH₂ Catalysts on Hydrogen Storage Properties of Magnesium Hydride

Citations: 2

La Super Symétrie en Physique Quantique

Citations: 1

Mitigation of carrier trapping effects on carrier lifetime measurements with continuous-wave laser illumination for Pb-based metal halide perovskite materials

Transport and business improvement in the province of South-Ubangi (Democratic Republic of the Congo)

 

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R ,Inorganic Chemistry, GOVERNMENT POLYTECHNIC COLLEGE, EZHUKONE, KOLLAM, KERALA, India

Dr. Minitha R. is an Associate Professor with over 14 years of teaching and 15 years of research experience in chemistry. She holds an M.Sc., M.Phil., NET, UGC-JRF, and Ph.D. Her expertise spans organic, coordination, supramolecular, and inorganic chemistry. She has served in key academic roles, including NSS Programme Officer and Chief Superintendent of Examinations. A dedicated researcher, Dr. Minitha has guided students and undertaken projects like developing a chemosensor for metal ion detection. She has organized multiple national seminars and actively participates in international conferences and workshops.

Professional Profile :                       

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Minitha R., an accomplished Associate Professor with 15 years of research experience, has significantly contributed to the field of Inorganic Chemistry, particularly in Coordination Chemistry, Supramolecular Chemistry, and Organic Chemistry. With a strong publication record, she has authored several impactful research papers in highly reputed journals, covering diverse topics such as metal complexes, chemosensors, molecular structures, and spectroscopic studies. Dr. Minitha R. is an exceptional candidate for the “Best Researcher Award,” given her proven research excellence, scholarly contributions, and leadership in the scientific community. Her extensive work in metal-based coordination complexes, chemosensors, and supramolecular chemistry, along with her active role in mentoring and academic leadership, makes her a highly deserving nominee.

🎓Education:

Dr. Minitha R. holds a Ph.D. in Chemistry and has qualified for the NET and UGC-JRF. She completed her M.Sc. and M.Phil. in Chemistry, demonstrating academic excellence throughout. Her education provided her with a strong foundation in inorganic chemistry, particularly in complex synthesis, supramolecular interactions, and chemosensing applications. Her academic journey was driven by a passion for molecular recognition, ligand design, and structural chemistry. She has actively participated in seminars and workshops to enhance her knowledge and keep up with evolving research trends.

🏢Work Experience:

With 14 years of teaching and 15 years of research experience, Dr. Minitha R. has handled Organic, Inorganic, and Physical Chemistry courses. She has successfully guided research scholars, fostering innovations in supramolecular and coordination chemistry. Apart from teaching, she has played key roles as an NSS Programme Officer, Nature Club Coordinator, Chief Superintendent of Examinations, and Young Innovators Programme Facilitator. She has also organized national seminars and workshops on emerging trends in chemistry, enhancing academic collaboration and knowledge dissemination.

🏅Awards: 

Dr. Minitha R. has been recognized for her outstanding contributions to academia and research. She served as the NSS Programme Officer (2021-2022), demonstrating her commitment to student welfare and community service. As the Nature Club Coordinator (2019-2020), she played a crucial role in promoting environmental awareness. Her leadership extended to being the Chief Superintendent of Examinations (2020-2021), ensuring smooth academic assessments. Additionally, she facilitated the Young Innovators Programme (2019), fostering creativity and scientific curiosity among students. Her research endeavors were supported by a KSCSTE-funded M.Sc. student project, where she developed a chemosensor for metal ion detection. These roles reflect her dedication to education, research, and institutional development.

🔬Research Focus:

Dr. Minitha R. specializes in Inorganic Chemistry, with a keen interest in Organic Chemistry, Coordination Chemistry, and Supramolecular Chemistry. Her research explores the synthesis and characterization of novel metal complexes, particularly those with biological and chemosensory applications. She has contributed significantly to the development of pyrazolylhydrazone-based metal complexes, dioxo molybdenum(VI) compounds, and benzothiazolium salts. Her work also extends to fluorescent hydrazones and ruthenium(II) complexes, emphasizing their structural and functional properties. Additionally, her studies on five-coordinate Zn(II) complexes highlight their potential in nonlinear optical applications. Through her research, she aims to bridge the gap between fundamental chemistry and real-world applications, particularly in materials science, catalysis, and medicinal chemistry.

Publication Top Notes:

Formation of dicyano ruthenium(II) complex mediated by triethylamine via deprotonation of hydrazonochroman-2,4-dione
Synthesis, spectroscopic and biological studies of metal complexes of an ONO donor pyrazolylhydrazone – Crystal structure of ligand and Co(II) complex
Studies of some dioxo molybdenum(VI) complexes of a polydentate ligand
One pot synthesis of 1–(3–methyl–4H–benzo[1,4]thiazin–2–yl)-ethanone and its antimicrobial properties
 Synthesis, spectral, and magnetic studies of benzothiazolium tetrachlorocuprate salts: crystal structure and semiconducting behavior of bis[2-(4-methoxyphenyl)benzothiazolium] tetrachlorocuprate(II)
Fluorescent coumarin-based hydrazone: Synthesis, crystal structure, and spectroscopic studies
FT-IR, FT-Raman and computational study of 1H-2,2-dimethyl-3H-phenothiazin-4[10H]-one
Synthesis, crystal structure, spectral analysis, and NLO studies of five-coordinate Zn(II) complexes of hydrazochromandione
 Chemosensing study of 1,4-Benzothiazine generated from acetylacetone

 

Dr. samira abozeid | Inorganic Chemistry Award | Best Researcher Award

Dr. samira abozeid | Inorganic Chemistry Award | Best Researcher Award

Dr. samira abozeid,mansoura university,Egypt

Dr. Samira Abozeid is a dedicated Lecturer and Assistant Professor in the Chemistry Department at Mansoura University, Egypt. With a strong academic background, she earned her Ph.D. in Chemistry from the State University of New York at Buffalo, complemented by an MSc and BSc from Mansoura University. Dr. Abozeid specializes in synthesizing metal complexes for applications in MRI contrast agents and drug delivery systems using innovative nanotechnology. Her commitment to academic excellence is evident through her extensive research contributions, collaborative efforts, and participation in various national and international projects. Additionally, she has been recognized with several awards for her outstanding research and teaching, showcasing her dedication to advancing the field of chemistry and contributing to educational initiatives.

Professional Profile:

Google Scholar

Scopus

Orcid

Summary of Suitability for Award:

Dr. Samira Mohammed Abozeid exemplifies the qualities and achievements that make her a suitable candidate for the “Best Researcher Award.” With a Ph.D. in Chemistry from the State University of New York at Buffalo, she has made significant contributions to the field, particularly in synthesizing metal complexes for MRI contrast agents and drug delivery systems. Her publication record, which includes 18 articles in high-impact journals, underscores her prolific research output and the relevance of her work in advancing medical applications of chemistry.

🎓Education:

Dr. Samira Abozeid holds an impressive academic portfolio. She completed her Bachelor’s and Master’s degrees in Chemistry at Mansoura University, Egypt, where she developed a solid foundation in chemical sciences. Dr. Abozeid then pursued her Ph.D. at the State University of New York at Buffalo, specializing in the synthesis of metal complexes and their applications in medical imaging and drug delivery. Her doctoral research significantly contributed to the understanding of MRI contrast agents, showcasing her capability to conduct high-level research. Throughout her academic journey, she has maintained a focus on integrating theoretical knowledge with practical applications, which has enriched her teaching methodologies and research approach. Dr. Abozeid’s education has equipped her with the skills to excel in both academia and research, fostering a commitment to innovation in chemistry.

🏢Work Experience:

Dr. Samira Abozeid has garnered extensive experience in academia and research throughout her career. Currently serving as a Lecturer and Assistant Professor at both Mansoura University and New Mansoura University, she plays a pivotal role in educating and mentoring students in chemistry. Dr. Abozeid has completed three significant research projects focused on the synthesis and characterization of metal complexes for MRI applications and drug delivery systems. With 18 published articles in esteemed journals and a citation index reflecting her impactful research contributions, she has established herself as a leading figure in her field. Furthermore, she has engaged in consultancy projects related to chemistry and has participated in multiple collaborative research efforts, both nationally and internationally, which have enriched her research perspective and facilitated knowledge exchange. Dr. Abozeid’s commitment to research excellence is complemented by her active involvement in professional memberships and initiatives aimed at bridging academic research with industry applications.

🏅Awards:

Dr. Samira Abozeid has received several prestigious awards and recognitions throughout her academic career. Among her notable accolades is the Egyptian Government Scholarship, which allowed her to pursue her studies at the State University of New York at Buffalo from 2016 to 2018. Additionally, she was honored with the James T. Grey, Jr. Fellowship in Summer 2020, which acknowledges outstanding research contributions. Dr. Abozeid also received the Mattern-Tyler Teaching Award and the Speyer Fellowship in Fall 2020, reflecting her excellence in both teaching and research. In 2023, she was awarded a competitively funded research project at Mansoura University, highlighting her commitment to advancing scientific knowledge. Furthermore, she has been recognized for delivering the Best Specialized Lecture at multiple conferences, showcasing her ability to communicate complex scientific ideas effectively. These honors underline her significant contributions to the field of chemistry and her dedication to academic excellence.

🔬Research Focus:

Dr. Samira Abozeid’s research focuses primarily on the synthesis and application of metal complexes, particularly in the development of MRI contrast agents and drug delivery systems. Her innovative approach involves utilizing nanoparticles and liposomes to enhance the effectiveness and biocompatibility of these complexes. Dr. Abozeid’s work emphasizes the importance of transition metal complexes in medical applications, providing novel insights into their structural properties and potential therapeutic uses. Her ongoing projects include the development of more effective and safer MRI probes, which can significantly improve diagnostic imaging capabilities. Additionally, she collaborates with national and international research groups to explore energy-related applications of metal complexes. Through her research, Dr. Abozeid aims to bridge the gap between chemistry and medicine, contributing to advancements in nanotechnology and its practical implications for healthcare. Her commitment to innovation and excellence continues to shape her contributions to the scientific community.

Publication Top Notes:

  • Two New Inner-Sphere Pt(II) Thiosemicarbazone Schiff Base Complexes Immobilized into Magnetic Nanoparticles: Synthesis, Characterization, and Biological Investigations
  • A Novel Fluorescent Probe Based Imprinted Polymer-Coated Magnetite for the Detection of Imatinib Leukemia Anti-Cancer Drug Traces in Human Plasma Samples
  • Fe(III) T1 MRI Probes Containing Phenolate or Hydroxypyridine-Appended Triamine Chelates and a Coordination Site for Bound Water
    • Citations: 5 citations.
  • Co(II) Complexes of Tetraazamacrocycles Appended with Amide or Hydroxypropyl Groups as ParaCEST Agents
    • Citations: 3 citations.
  • Comparison of Phosphonate, Hydroxypropyl and Carboxylate Pendants in Fe(III) Macrocyclic Complexes as MRI Contrast Agents
    • Citations: 18 citations.

 

 

 

 

Dr. Azza Hassoon | Metallodrugs | Best Researcher Award

Dr. Azza Hassoon | Metallodrugs | Best Researcher Award

Dr.Azza Hassoon,Mansoura University,Egypt

Dr. Azza Ahmed Mousad Megahed Hassoon is a Lecturer in the Department of Chemistry at Mansoura University, Egypt. Specializing in inorganic chemistry, she holds a Ph.D. from the University of Szeged, Hungary, where she graduated with honors. Dr. Hassoon’s research focuses on metal complex synthesis and bioinorganic chemistry, contributing to over seven publications in respected journals. She has also been recognized with various awards and scholarships, including the RSC Research Fund grant and travel awards for international conferences. An active participant in global conferences and summer schools, she is a member of the Spanish Royal Society of Chemistry (RSEQ).

Professional Profile:

Google Scholar

Orcid

Scopus

Summary of Suitability for Award:

Dr. Azza Ahmed Mousad Megahed Hassoon would be a strong candidate for a “Best Researcher Award.” Her contributions to inorganic and bioinorganic chemistry, especially in the synthesis and study of metallodrugs, demonstrate a significant impact on her field. Her international research experiences, including funded collaborations and recognition from prestigious societies like the RSC and RSEQ, underscore her commitment to advancing metallodrug research. Her impressive publication record, coupled with active involvement in global conferences and summer schools, reflect both her dedication to research excellence and her ongoing engagement with the scientific community.

🎓Education:

Dr. Azza Ahmed Mousad Megahed Hassoon a B.Sc. in Chemistry with honors from Mansoura University, Egypt, in 2012, achieving an impressive 85.52% grade. They went on to earn an M.Sc. in Inorganic Chemistry from the same institution in 2016. Recently, they completed a Ph.D. in Inorganic Chemistry at the University of Szeged, Hungary, in 2023, also graduating with honors.

🏢Work Experience:

Dr. Azza Ahmed Mousad Megahed Hassoon has accumulated extensive work experience in the Chemistry Department at Mansoura University, Egypt. She began her academic career as a Demonstrator from December 2012 to February 2016, where she supported faculty members in laboratory courses and student instruction. Following this role, she was appointed as an Assistant Lecturer from February 2016 to August 2023, during which she contributed to both teaching and research activities. In August 2023, she advanced to the position of Lecturer, where she continues to engage in teaching, mentoring students, and conducting research in inorganic chemistry. Her progressive roles reflect her commitment to academic excellence and her contributions to the field

🏅Awards:

Dr. Azza Ahmed Mousad Megahed Hassoon has received several prestigious awards and scholarships throughout her academic career. Notably, she was granted the Stipendium Hungaricum Scholarship for her Ph.D. at the University of Szeged, Hungary, from February 2019 to April 2023. Her contributions to the field have also been recognized through various Travel Awards for international conferences, including the International Conference on Metal-Binding Peptides (MBP) in July 2022 and the 16th International Symposium on Applied Bioinorganic Chemistry in June 2023. In 2024, she secured an RSC Research Fund Grant of £5000 to further her research. Additionally, Dr. Hassoon served as a Visiting Scholar at Brigham Young University in the USA from February to August 2016 and participated in a Visiting Summer School at JINR-Dubna, Russia, in May-June 2015, enhancing her international exposure and collaboration in the field of inorganic chemistry.

🔬Research Focus:

Dr. Azza Ahmed Mousad Megahed Hassoon specializes in Inorganic Chemistry, concentrating on metal complex synthesis and bioinorganic chemistry. Her research includes investigating metallodrugs and their applications in biological systems, which underscores her commitment to understanding the interactions between metal complexes and biological molecules. This focus not only highlights her academic expertise but also her contributions to developing innovative solutions in the field of chemistry, enhancing our understanding of how these compounds can be utilized in medical applications.

Publication Top Notes:

  • Synthesis, single crystal X-ray, spectroscopic characterization and biological activities of Mn²⁺, Co²⁺, Ni²⁺, and Fe³⁺ complexes
    • Citations: 20
  • New Square-Pyramidal Oxovanadium (IV) Complexes Derived from Polydentate Ligand (L1)
    • Citations: 19
  • Peptide-based chemical models for lytic polysaccharide monooxygenases
    • Citations: 5
  • Characterization of copper(II) specific pyridine containing ligands: Potential metallophores for Alzheimer’s disease therapy
    • Citations: 5
  • The interaction of half-sandwich (η⁵-Cp) Rh (III) cation with histidine containing peptides and their ternary species with (N, N) bidentate ligands*

 

Hesham Alsoghier | Chemistry | Best Researcher Award

Dr. Hesham Alsoghier | Chemistry | Best Researcher Award-

Doctorate at South Valley University Egypt, Chemistry

Hesham Mohammed Alsoghier is a dedicated chemist specializing in bio-organic and bio-inorganic chemistry with a focus on the synthesis and characterization of metal coordination compounds and organic ligands. With a robust educational background from South Valley University and international research experience, Hesham’s expertise spans spectrophotometric, computational, and analytical chemistry. His current research aims to explore innovative approaches for Alzheimer’s disease treatment through novel bifunctional compounds.

Author Metrics

Scopus Profile

ORCID Profile

Hesham’s research contributions are reflected in several high-impact publications. His work, published in reputable journals, includes studies on the spectral behavior of azo compounds, potential anti-Alzheimer’s agents, and the structural features of chemical tautomers. Metrics such as citations, h-index, and journal impact factors underscore his influence and recognition in the field.

  • Citations: 104 citations across 91 documents
  • Documents: 12 publications
  • h-index: 5

Education

Hesham completed his B.Sc. in Chemistry with honors from South Valley University, followed by a Master’s degree in Inorganic and Computational Chemistry from the same institution. His academic journey continued with a Ph.D. from South Valley University, focusing on the spectral behavior of azo benzothiazole derivatives. Additionally, he pursued advanced studies in Bio-Inorganic Chemistry at Instituto Superior Técnico, Universidade de Lisboa, and participated in an international master’s program at Adam Mickiewicz University.

Research Focus

Hesham’s research primarily revolves around the synthesis and characterization of bio-organic and bio-inorganic compounds, particularly their applications in disease treatment and metal coordination chemistry. His work includes spectral investigations, computational studies, and bioactivity assessments of novel chemical compounds. His current research is dedicated to developing bifunctional compounds with potential therapeutic benefits for Alzheimer’s disease.

Professional Journey

Beginning as a Teaching Assistant at South Valley University, Hesham’s career has progressed to his current role as a Lecturer Assistant, where he continues to contribute to both teaching and research. His professional journey includes significant research stints in Portugal and Poland, where he expanded his expertise in bio-inorganic chemistry and photochemistry. His role involves not only academic responsibilities but also active participation in research projects and collaborations.

Honors & Awards

Hesham has received several accolades for his academic and research achievements. Notable honors include recognition for his exceptional contributions to research in bio-inorganic chemistry and his successful completion of advanced international programs. These awards reflect his commitment to excellence in both teaching and research.

Publications Noted & Contributions

Hesham’s publication record includes several influential papers in high-impact journals. Key contributions include studies on the optical properties of azo dyes, the development of anti-Alzheimer’s agents, and investigations into chemical tautomerism. His work has been presented at international conferences and has significantly contributed to advancements in his field.

“Green electro-organic synthesis of a novel catechol derivative based on o-benzoquinone nucleophilic addition”

  • Journal: New Journal of Chemistry
  • Year: 2023
  • DOI: 10.1039/D2NJ04530C
  • Contributors: Mohamed Abd-Elsabour, Hytham F. Assaf, Ahmed M. Abo-Bakr, Abdulrahman G. Alhamzani, Mortaga M. Abou-Krisha, Aamal A. Al-Mutairi, Hesham M. Alsoghier

“A novel organic semiconductor 4-phenylthiazol-2-yl-(phenylhydrazono) acetonitrile (PTPA) thin films: synthesis, optical and electrical properties”

  • Journal: Scientific Reports
  • Date: August 10, 2023
  • DOI: 10.1038/s41598-023-39027-3
  • Contributors: Amr Attia Abuelwafa, Sahar Elnobi, M. Amélia Santos, Hesham M. Alsoghier

“Molecular docking, modeling, semiempirical calculations studies and in vitro evaluation of new synthesized pyrimidin-imide derivatives”

  • Journal: Journal of Molecular Structure
  • Year: 2022
  • DOI: 10.1016/j.molstruc.2021.131548
  • EID: 2-s2.0-85115989286
  • Contributors: Abo-Bakr, A.M., Alsoghier, H.M., Abdelmonsef, A.H.

“A Novel Electrochemical Sensor for Detection of Nicotine in Tobacco Products Based on Graphene Oxide Nanosheets Conjugated with (1,2-Naphthoquinone-4-Sulphonic Acid) Modified Glassy Carbon Electrode”

  • Journal: Nanomaterials
  • Date: July 9, 2022
  • DOI: 10.3390/nano12142354
  • Contributors: M. Abd-Elsabour, Hesham M. Alsoghier, Abdulrahman G. Alhamzani, Mortaga M. Abou-Krisha, Tarek A. Yousef, Hytham F. Assaf

“A novel alternative methods for decalcification of water resources using green agro-ashes”

  • Journal: Molecules
  • Year: 2021
  • DOI: 10.3390/molecules26226777
  • Contributors: El-Nahas, S., Arafat, A.S., Din, H.S.E., Alhamzani, A.G., Abou-Krisha, M.M., Alsoghier, H.M.

Research Timeline

From 2008 to 2012, Hesham conducted research for his Master’s thesis, focusing on the spectral investigations of azo compounds. This foundational work laid the groundwork for his subsequent studies. Between 2012 and 2013, he expanded his expertise through advanced studies in photochemistry at Adam Mickiewicz University, where he deepened his understanding of surface electro radiation and photo-chemistry. During 2014 to 2015, Hesham engaged in significant research at Instituto Superior Técnico, where he worked on the synthesis and characterization of bifunctional compounds aimed at Alzheimer’s disease treatment. Following this, from 2015 to 2018, he completed his Ph.D. research at South Valley University, investigating the spectral behavior of azo benzothiazole derivatives. Since 2018, he has continued his research at South Valley University, focusing on bio-organic and bio-inorganic chemistry, advancing his work on novel chemical compounds with potential therapeutic applications.

Collaborations and Projects

Hesham has collaborated with leading researchers and institutions, including partnerships with Instituto Superior Técnico, Universidade de Lisboa, and Adam Mickiewicz University. His collaborative projects focus on the development of novel chemical compounds and their applications in medicine. He has also participated in various research initiatives and workshops, contributing to advancements in his field through collaborative efforts.

Strengths of the Best Researcher Award for Dr. Hesham Alsoghier:

Innovative Research Focus: Dr. Hesham Alsoghier’s research on bifunctional compounds for Alzheimer’s disease treatment is highly innovative and relevant. His focus on addressing significant medical challenges showcases a commitment to impactful scientific work.

High-Impact Publications: The inclusion of his research in reputable journals such as Scientific Reports and New Journal of Chemistry demonstrates the high quality and relevance of his work. His publications cover a range of cutting-edge topics, from organic semiconductors to electrochemical sensors.

International Collaboration: Dr. Alsoghier’s experience working with institutions like Instituto Superior Técnico and Adam Mickiewicz University highlights his ability to collaborate effectively with leading researchers worldwide. This enhances the global impact of his work.

Diverse Expertise: His background in bio-organic and bio-inorganic chemistry, along with expertise in computational and analytical techniques, provides a strong foundation for tackling complex research problems. This multidisciplinary approach enriches his research contributions.

Recognition and Awards: The receipt of the Best Researcher Award and other honors underscores Dr. Alsoghier’s excellence in research and his contributions to advancing knowledge in his field. These accolades reflect his dedication and impact.

Areas for Improvement:

Citations and h-Index: While Dr. Alsoghier has made significant contributions, his citation count and h-index indicate room for growth. Increasing visibility and impact through strategic collaborations and higher-profile publications could enhance these metrics.

Publication Quantity: With 12 publications, Dr. Alsoghier’s output is notable but could be expanded. Publishing more frequently in high-impact journals could further establish his research presence and influence.

Research Scope Diversification: While his focus on Alzheimer’s disease is promising, exploring additional areas or applications within bio-organic and bio-inorganic chemistry could broaden the scope and impact of his research.

Grant Acquisition: Strengthening efforts in securing research grants and funding could support more extensive and ambitious projects. This could involve applying for larger grants or participating in collaborative grant proposals.

Public Engagement and Outreach: Increasing involvement in public outreach activities and science communication could enhance the visibility of his research and its societal relevance. Engaging with broader audiences through seminars, public talks, or media could also raise awareness of his work.

Conclusion:

Dr. Hesham Alsoghier is a distinguished chemist whose innovative research and high-impact publications underscore his significant contributions to bio-organic and bio-inorganic chemistry. His international collaborations and recognition through awards highlight his commitment and excellence in the field. To further enhance his impact, focusing on increasing citation metrics, expanding publication output, diversifying research scope, securing additional funding, and engaging with the public could be beneficial. Overall, Dr. Alsoghier’s achievements and ongoing research efforts demonstrate his potential to continue making substantial advancements in chemistry and related fields.

Sabita Nayak | Organic Synthesis | Best Researcher Award

Dr. Sabita Nayak | Organic Synthesis | Best Researcher Award

Doctorate at  Ravenshaw University, India

Dr. Sabita Nayak is the Head of the Department of Chemistry at Ravenshaw University, Cuttack, Odisha. With a rich academic background and extensive research experience, Dr. Nayak has made significant contributions to the field of chemistry, focusing on the synthesis of novel hybridized molecules and their biological activities.

Author Metrics

Scopus profile

Dr. Nayak has an impressive portfolio of over 49 publications in peer-reviewed journals, including high-impact journals such as ChemistrySelect, Bioorganic Chemistry, and Carbohydrate Research. Her work has been cited extensively, reflecting her significant impact in the field of chemical research

Education

Dr. Nayak earned her Ph.D. in Chemistry from Pune University in 2008, where she worked on the total synthesis of complex molecules. Her educational journey includes an M.Phil. in Chemistry from Utkal University, an M.Sc. in Chemistry from Ravenshaw University, and a B.Sc. in Chemistry from Utkal University.

Research Focus

Her research primarily explores the synthesis of small novel hybridized molecules, heterocyclic and carbocyclic molecules through Diels-Alder and Michael Addition Reactions, and carbohydrate sugar products. She is particularly interested in the biological activities of these synthesized molecules, contributing to advancements in medicinal chemistry.

Professional Journey

Dr. Nayak began her career as a Research Associate at Chembiotek Pharma Ltd. and later as a Postdoctoral Researcher at the University of Southwestern Medical Research Center, Dallas, Texas. Since 2010, she has been serving as an Assistant Professor in Chemistry at Ravenshaw University, where she continues to advance her research and teaching.

Honors & Awards

Dr. Nayak was awarded the “Dr. Mahamaya Pattnaik Smruti Samman” by Bigyan Prachar Samiti in 2022, recognizing her outstanding contributions to the field of chemistry.

Publications Noted & Contributions

Dr. Nayak’s notable publications include her research on [4+2]-cycloaddition reactions, thia-Michael addition-oxidation reactions, and the synthesis of 2H-chromene-based hydrazone derivatives. Her contributions have significantly advanced the understanding of synthetic methodologies and their applications in drug discovery.

Improving the therapeutic window of anticancer agents by β-cyclodextrin encapsulation: Experimental and theoretical insights

Authors: Priyadarsini Mishra, Kumar Sahoo, Mohapatra, Nayak, Nath Kundu

Journal: Journal of Molecular Liquids

Year: 2024

Volume: 404

Page: 124967

Abstract: The study investigates the use of β-cyclodextrin (β-CD) encapsulation to enhance the therapeutic window of anticancer agents. Through a combination of experimental data and theoretical modeling, the research provides insights into how β-CD can improve the efficacy and reduce the side effects of anticancer drugs by modulating their release and bioavailability. The findings highlight the potential of β-CD as a valuable tool in drug delivery systems for cancer therapy.

New 2H-Chromene-Based Hydrazone Derivatives as Promising Anti-Breast Cancer Agents: Efficient Synthesis, Spectral Characterization, Molecular Docking, and ADMET Studies

Authors: Shankar Panda, Samanta, Sudha Ambadipudi, Nayak, Mohan Behera, Samanta

Journal: ChemistrySelect

Year: 2024

Volume: 9(15)

Article Number: e202400115

Abstract: This paper presents the synthesis of novel 2H-chromene-based hydrazone derivatives and their evaluation as potential anti-breast cancer agents. The study includes detailed spectral characterization, molecular docking studies, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. The results suggest that these derivatives exhibit promising anti-cancer activity and could be developed into effective therapeutic agents for breast cancer treatment.

Transition-Metal Catalyzed [4+2]-Cycloaddition Reactions: A Sexennial Update

Authors: Panda, Mohapatra, Ansar Ahemad, Nayak, Mohapatra

Journal: ChemistrySelect

Year: 2024

Volume: 9(12)

Article Number: e202303643

Abstract: This review provides a comprehensive update on transition-metal catalyzed [4+2]-cycloaddition reactions over the past six years. It covers recent advances in reaction conditions, catalyst development, and applications in organic synthesis. The review highlights key developments and trends in the field, offering insights into how these reactions have evolved and their impact on synthetic chemistry.

Base Catalyzed One-Pot Thia-Michael Addition-Oxidation Reaction of Hetero-Aromatic Thiols to 2-Aryl-3-Nitro-2H-Chromenes and Their Antibacterial Evaluation

Authors: Samanta, Panda, Mohapatra, Bhattacharya, Sahoo

Journal: New Journal of Chemistry

Year: 2024

Volume: 48(11)

Pages: 4953–4959

Abstract: The article explores a base-catalyzed one-pot thia-Michael addition-oxidation reaction to synthesize 2-aryl-3-nitro-2H-chromenes from hetero-aromatic thiols. The synthesized compounds were evaluated for their antibacterial activity. The study demonstrates the efficiency of the proposed method in creating novel chromene derivatives with potential antimicrobial properties.

Palladium-Catalyzed Facile Synthesis of Imidazo[1,2-a]Pyridine-Flavone Hybrids and Evaluation of Their Antiplasmodial Activity

Authors: Raiguru, Panda, Mohapatra, Nayak

Journal: Journal of Molecular Structure

Year: 2023

Volume: 1294

Article Number: 136282

Abstract: This research presents a palladium-catalyzed approach for the synthesis of imidazo[1,2-a]pyridine-flavone hybrids. The study includes an evaluation of the antiplasmodial activity of these hybrids, highlighting their potential as new candidates for malaria treatment. The synthesis method is described as straightforward and efficient, offering a valuable addition to the development of antimalarial agents.

Research Timeline

Dr. Nayak’s research career began with her doctoral work at Pune University and has evolved through significant projects funded by agencies such as SERB, UGC, and CSIR. Her research timeline includes the completion of several projects and the initiation of ongoing studies in collaboration with esteemed institutions.

Collaborations and Projects

Dr. Nayak has collaborated with various researchers and institutions, including National Chemical Laboratory, Pune, and University of Southwestern Medical Research Center, Dallas. Her projects encompass a range of topics, from synthetic methodologies to biological evaluations, reflecting her broad expertise and collaborative approach in advancing chemical research.

Charles Perrin | Chemistry and Materials Science | Best Researcher Award

Prof Dr. Charles Perrin | Chemistry and Materials Science | Best Researcher Award

 Professor at Distinguished Professor Emeritus of UCSD, United States

Professor Dr. Charles L. Perrin, born on July 22, 1938, in Pittsburgh, PA, is a distinguished professor emeritus at UC San Diego, where he has served since 1964. 🎓 He holds an A.B. summa cum laude in Chemistry from Harvard College (1959) and a Ph.D. in Organic Chemistry from Harvard University (1963). 💍 Married to Marilyn Heller Perrin, they have two sons. 👨‍👩‍👦‍👦 Dr. Perrin’s career is marked by numerous awards, including the Alfred P. Sloan Foundation Fellowship, the ACS James Flack Norris Award, and multiple teaching excellence awards at UCSD. 🏅 His research in physical-organic chemistry encompasses molecular structure, reaction mechanisms, NMR methods, and hydrogen bonding. 🧪 He has authored over 190 scientific articles and has made significant contributions, such as the synthesis of malonic anhydrides and elucidating proton exchange mechanisms in amides. 📚 Dr. Perrin has also served as a consultant, expert witness, and editorial board member, and has chaired and organized various scientific conferences. 🌍🔬

Professional Profile:

Education🎓

Professor Dr. Charles L. Perrin’s education is rooted in his outstanding academic achievements. 🎓 He graduated summa cum laude with an A.B. in Chemistry from Harvard College in 1959. 🏛️ He then pursued a Ph.D. in Organic Chemistry under the guidance of Frank H. Westheimer at Harvard University, completing it in 1963. 📜 Following his doctorate, he was awarded an NSF Post-Doctoral Fellowship to work with Andrew Streitwieser, Jr., at the University of California, Berkeley, further solidifying his expertise in the field. 🔬

 

Professional Experience 📚

Professor Dr. Charles L. Perrin has had a distinguished professional career at UC San Diego, where he began as an Assistant Professor of Chemistry in 1964. 👨‍🏫 He was promoted to Associate Professor in 1971 and became a full Professor in 1980. 🌟 In 2018, he was honored as a Distinguished Professor Emeritus and was recalled to active service. 🎓 Over the decades, he has made significant contributions to physical-organic chemistry, published over 190 scientific articles, and received numerous prestigious awards. 🏅 Dr. Perrin has also served as a consultant, expert witness, and member of several editorial boards, and has chaired and organized key scientific conferences, solidifying his reputation as a leading figure in his field. 🌍

Research Interest 🔍

Professor Dr. Charles L. Perrin’s research interests lie in the realm of physical-organic chemistry, focusing on the molecular structure and mechanisms of organic reactions. 🧪 His work includes the study of malonic anhydrides, NMR methods for chemical kinetics, and proton exchange kinetics in amides and related compounds. 🔄 He delves into solvation and hydrogen bonding, stereoelectronic control in the cleavage of tetrahedral intermediates and acyl shifts, as well as kinetic and equilibrium isotope effects. 🔬 Dr. Perrin also explores the symmetry of hydrogen bonds, anomeric effects, conformational analysis, and steric hindrance to ionic solvation, alongside nonradical reactions of p-benzyne diradicals and the chemistry of resulting “naked” aryl anions. 🌐 🧬💻

Award and Honor🌟 

Professor Dr. Charles L. Perrin has received numerous awards and honors throughout his distinguished career. 🏅 He was elected to Phi Beta Kappa at Harvard College in 1958 and received an Alfred P. Sloan Foundation Fellowship in 1967-69. 🌟 He was honored with a Special HEW Research Fellowship at Göteborgs Universitet in Sweden (1972-73) and was named a Fellow of the American Association for the Advancement of Science in 1984. 🔬 Dr. Perrin has been recognized for his teaching excellence with multiple awards from UCSD, including the Revelle College Excellence in Teaching Awards (1977, 1993) and the UCSD Chancellor’s Associates’ Faculty Excellence Award for Teaching in 2001. 🎓 He received the prestigious ACS James Flack Norris Award in Physical Organic Chemistry in 2015 and was named the Distinguished Scientist Award of the ACS San Diego Section in 2017. 🌍 Additionally, he has held various visiting professorships and lectureships worldwide, further cementing his status as a leading figure in his field. 🌐

 

Research Skills 🔬 

Professor Dr. Charles L. Perrin possesses exceptional research skills in physical-organic chemistry. 🧪 He is adept at utilizing NMR methods for chemical kinetics and developing innovative techniques such as variable-temperature NMR and magnetization-transfer and 2D-NMR methods for multisite kinetics. 🔄 His expertise includes synthesizing complex molecules like malonic anhydrides and elucidating reaction mechanisms at the molecular level. 🔬 Dr. Perrin has a keen ability to investigate proton exchange kinetics, solvation, hydrogen bonding, and stereoelectronic effects, making significant contributions to understanding the fundamental principles governing organic reactions. 🌟 His work also includes the application of isotopic perturbation and kinetic isotope effects, showcasing his comprehensive analytical and experimental capabilities. 🌐

 

Achievements 🏅 🏆

Professor Dr. Charles L. Perrin has made numerous groundbreaking achievements in physical-organic chemistry. 🧪 He recognized the generality of ipso substitution and introduced the related terminology. 📚 He authored the textbook “Mathematics for Chemists” and ACS Audio Courses on “Probability and Statistics for Chemists” and “Calculus for Chemists.” 🔬 His work elucidated the mechanisms of proton exchange in amides, peptides, and proteins, and he synthesized malonic anhydrides, classic molecules sought for 70 years. 🔄 Dr. Perrin developed innovative NMR methods, discovered a chain mechanism for proton exchange, and made significant advancements in understanding the Curtin-Hammett Principle. 🌐 He critically assessed stereoelectronic control, evaluated the anomeric effect, and measured the rate of NH4+ rotation within its solvent cage. 🔍 His research demonstrated the nonexistence of the reverse anomeric effect, elucidated the symmetry of hydrogen bonds, and developed an accurate NMR titration method. 🌟 He also discovered new reactions involving p-benzyne and demonstrated nonadditivity of secondary deuterium isotope effects on basicities.

 

Publications📖📚

Symmetry of Hydrogen Bonds: Application of NMR Method of Isotopic Perturbation and Relevance of Solvatomers

  • Publication: Molecules, 2023, 28(11), 4462 📄
  • Author: Perrin, C.L.
  • Citations: 1 🔬

My First Publication

  • Publication: Journal of Physical Or
  • ganic Chemistry, 2022, 35(11), e4302 📄
  • Author: Perrin, C.L.
  • Citations: 0 🚫

The Complete Mechanism of an Aldol Condensation in Water

  • Publication: Physical Chemistry Chemical Physics, 2022, 24(31), pp. 18978–18982 📄
  • Authors: Perrin, C.L., Kim, J.
  • Citations: 1 🔬

Nucleophilic Addition of Enolates to 1,4-Dehydrobenzene Diradicals Derived from Enediynes: Synthesis of Functionalized Aromatics

  • Publication: ACS Omega, 2022, 7(26), pp. 22930–22937 📄
  • Authors: Shrinidhi, A., Perrin, C.L.
  • Citations: 2 🔬🔬

Malonic Anhydrides, Challenges from a Simple Structure

  • Publication: Journal of Organic Chemistry, 2022, 87(11), pp. 7006–7012 📄
  • Author: Perrin, C.L.
  • Citations: 0 🚫

Glossary of Terms Used in Physical Organic Chemistry (IUPAC Recommendations 2021)

  • Publication: Pure and Applied Chemistry, 2022, 94(4), pp. 353–534 📄
  • Authors: Perrin, C.L., Agranat, I., Bagno, A., Uggerud, E., Williams, I.H.
  • Citations: 19 🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬

Ipso

  • Publication: Journal of Organic Chemistry, 2021, 86(21), pp. 14245–14249 📄
  • Author: Perrin, C.L.
  • Citations: 6 🔬🔬🔬🔬🔬🔬

Comment on “Topography of the Free Energy Landscape of Claisen-Schmidt Condensation: Solvent and Temperature Effects on the Rate-Controlling Step” by N. D. Coutinho, H. G. Machado, V. H. Carvalho-Silva and W. A. da Silva

  • Publication: Physical Chemistry Chemical Physics, 2021, 23(38), pp. 22199–22201 📄
  • Author: Perrin, C.L.
  • Citations: 1 🔬

Cyclohexeno[3,4]cyclodec-1,5-diyne-3-ene: A Convenient Enediyne

  • Publication: Organic Letters, 2021, 23(17), pp. 6911–6915 📄
  • Authors: Shrinidhi, A., Perrin, C.L.
  • Citations: 2 🔬🔬

Enthalpic and Entropic Contributions to the Basicity of Cycloalkylamines

  • Publication: Chemical Science, 2020, 11(32), pp. 8489–8494 📄
  • Authors: Perrin, C.L., Shrinidhi, A.
  • Citations: 3 🔬🔬🔬

Jose Ferreira | Chemistry and Materials Science | Best Researcher Award

Dr. Jose Ferreira | Chemistry and Materials Science | Best Researcher Award

Doctorate at Research Scientist II of Iowa State University, United States

Dr. José Mario Ferreira Júnior is a highly accomplished scientist specializing in materials science and engineering at Iowa State University 🌟. With a Ph.D. in Chemistry 🎓, Dr. Ferreira Júnior has an extensive background in surface analysis, corrosion, and graphene synthesis 🧪. His research journey has taken him across the globe, from the Federal University of Bahia in Brazil 🇧🇷 to the University of Aveiro in Portugal 🇵🇹, and the University of Surrey in the UK 🇬🇧. He has held various academic and research positions, including a professorship at the Federal University of Bahia and post-doctoral roles at multiple prestigious institutions 🌍. Dr. Ferreira Júnior is also actively engaged in the scientific community through his profiles on ORCID, ResearchGate, and Google Scholar 📚. His work is characterized by a commitment to advancing the field of chemistry through innovative research and practical applications 🔬.

Professional Profile:

Education

Dr. José Mario Ferreira Júnior’s education is marked by distinguished achievements in the field of chemistry 🎓. He earned his Ph.D., which laid the foundation for his extensive research and academic career 🌟. Throughout his educational journey, Dr. Ferreira Júnior has gained in-depth knowledge and expertise in materials science, focusing on areas such as surface analysis, corrosion, and graphene synthesis 🧪. His education has equipped him with the skills to conduct groundbreaking research and contribute significantly to the scientific community 📚.

Professional Experience

Dr. José Mario Ferreira Júnior boasts a robust professional background in materials science and engineering 🌍. Currently a Research Scientist II at Iowa State University, he specializes in graphene oxide synthesis 🧪. His career includes a post-doctoral position at Wyoming University, focusing on electrochemical membranes, and another post-doctoral role at the University of Aveiro in Portugal 🇵🇹, working on the M-ERA-NET2 project. Dr. Ferreira Júnior also served as a Professor Adjunct at the Federal University of Bahia in Brazil 🇧🇷, where he taught materials science and contributed to the Postgraduate Program of Chemical Engineering. Additionally, he has held a post-doctoral position at the University of Surrey in the UK 🇬🇧 and taught general chemistry and calculus at the School of Engineering of Lorena, University of São Paulo 🇧🇷. His diverse experiences reflect a commitment to advancing materials science through both research and teaching 📚.

Research Interest

Dr. José Mario Ferreira Júnior’s research interests are centered on advancing the field of materials science 🧪. His expertise includes surface analysis, corrosion, and graphene synthesis, reflecting a broad yet specialized focus within chemistry 🔬. Dr. Ferreira Júnior is passionate about developing new materials and exploring their applications, particularly in enhancing material durability and performance ⚙️. His work aims to bridge the gap between fundamental research and practical applications, driving innovation and contributing to scientific knowledge 📚. Through his research, Dr. Ferreira Júnior seeks to address key challenges in materials science, making significant strides in the synthesis and characterization of advanced materials 🌟.

Award and Honor

Dr. José Mario Ferreira Júnior has been recognized with numerous awards and honors throughout his distinguished career in materials science and engineering 🏅. His groundbreaking research and contributions have earned him accolades from prestigious institutions and scientific communities 🌟. Among his notable achievements, Dr. Ferreira Júnior received the Outstanding Researcher Award at Iowa State University for his pioneering work in graphene oxide synthesis 🧪. Additionally, he was honored with the Excellence in Teaching Award at the Federal University of Bahia, acknowledging his dedication to education and mentorship 🎓. These accolades highlight Dr. Ferreira Júnior’s commitment to advancing scientific knowledge and fostering academic excellence 📚.

Research Skills

Dr. José Mario Ferreira Júnior possesses a comprehensive set of research skills that make him a leading expert in materials science and engineering 🌟. His proficiency in surface analysis and corrosion allows him to evaluate and improve material durability and performance 🔬. Dr. Ferreira Júnior excels in graphene synthesis, employing advanced techniques to create and manipulate this cutting-edge material 🧪. His ability to transition research from bench work to practical applications demonstrates his adeptness in bridging theoretical and experimental science ⚙️. With a strong background in collecting, analyzing, and reporting primary and secondary data 📊, he is skilled in developing innovative solutions and generating research grants 💡. His expertise is further supported by extensive experience in teaching and mentoring, fostering the next generation of scientists and engineers 🎓.

Publications

  • A conversion layer based on trivalent chromium and cobalt for the corrosion protection of electrogalvanized steel
    • AR Di Sarli, JD Culcasi, CR Tomachuk, CI Elsner, JM Ferreira-Jr, I Costa
    • Surface and Coatings Technology 📄, 258, 426-436
    • 🗓️ 2014
    • 📊 30 citations
  • Electrochemical and chemical characterization of electrodeposited zinc surface exposed to new surface treatments
    • JM Ferreira Jr, KP Souza, FM Queiroz, I Costa, CR Tomachuk
    • Surface and Coatings Technology 📄, 294, 36-46
    • 🗓️ 2016
    • 📊 26 citations
  • Development and characterisation of zinc oxalate conversion coatings on zinc
    • JM Ferreira Jr, M Oliveira, GF Trindade, LCL Santos, CR Tomachuk, …
    • Corrosion Science 📄, 137, 13-32
    • 🗓️ 2018
    • 📊 23 citations
  • Removal of oil contents and salinity from produced water using microemulsion
    • JSB Souza, JMF Júnior, G Simonelli, JR Souza, LMN Góis, LCL Santos
    • Journal of Water Process Engineering 📄, 38
    • 🗓️ 2020
    • 📊 16 citations
  • Introduction to a series of dicarboxylic acids analyzed by x-ray photoelectron spectroscopy
    • JM Ferreira, GF Trindade, R Tshulu, JF Watts, MA Baker
    • Surface Science Spectra 📄, 24 (1)
    • 🗓️ 2017
    • 📊 14 citations
  • Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part II-butanedioic acid anhydrous
    • JM Ferreira, GF Trindade, R Tshulu, JF Watts, MA Baker
    • Surface Science Spectra 📄, 24 (1)
    • 🗓️ 2017
    • 📊 12 citations
  • Deposition and characterization of a new mixed organic/inorganic cerium containing coating for the corrosion protection of electrogalvanized steel
    • JM Ferreira Jr, JL Rossi, MA Baker, SJ Hinder, I Costa
    • International Journal of Electrochemical Science 📄, 9 (4), 1827-1839
    • 🗓️ 2014
    • 📊 10 citations
  • Deposition and characterization of a sol-gel Mg-substituted fluorapatite coating with new stoichiometries
    • JM Ferreira Jr, V Rajendran, G Simonelli, ACM Silva, LCL Santos, …
    • Applied Surface Science 📄, 505, 144393
    • 🗓️ 2020
    • 📊 8 citations
  • Avaliação de sistema de colunas para remediação de biogás a partir de biomassa não digerida
    • V Pereira, JM Ferreira-Jr, GAS Martinez, CR Tomachuk
    • HOLOS 📄, 8, 242-251
    • 🗓️ 2015
    • 📊 8 citations
  • Determination of kinetic parameters for the sisal residue pyrolysis through thermal analysis
    • CAMP Daniel Bemmuyal Passos Santos, Marcos Fábio de Jesus, José Mário …
    • Journal of Industrial and Engineering Chemistry 📄
    • 🗓️ 2022
    • 📊 7 citations
  • Biodiesel production using co-solvents: a review
    • G Simonelli, JMF Júnior, CA de Moraes Pires, LCL dos Santos
    • Research, Society and Development 📄, 9 (1), e99911672-e99911672
    • 🗓️ 2020
    • 📊 6 citations
  • 5-Hydroxymethylfurfural Oxidation Over Platinum Supported on Açaí Seed Coal for Synthesis of 2, 5-Furandicarboxylic Acid
    • SMN de Assumpção, SB Lima, JGAB Silva, RC Santos, LMA Campos, …
    • Biointerface Research in Applied Chemistry 📄, 12 (5), 6632-6650
    • 🗓️ 2021
    • 📊 5 citations
  • Advances in ethanol autothermal reform for hydrogen gas production: a review
    • ML Brito, JMF Júnior, LCL dos Santos, G Simonelli
    • Research, Society and Development 📄, 9 (5), e126953070-e126953070
    • 🗓️ 2020
    • 📊 5 citations🗓️
  • Corrosion protection of electrogalvanized steel by surface treatments containing cerium and niobium compounds
    • JM FERREIRA JUNIOR, KP Souza, JL Rossi, I Costa, GF Trindade, …
    • International Journal of Electrochemical Science 📄, 11 (8), 6655-6672
    • 🗓️ 2016
    • 📊 5 citations
  • Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part I-propanedioic acid anhydrous
    • JM Ferreira, GF Trindade, R Tshulu, JF Watts, MA Baker
    • Surface Science Spectra 📄, 24 (1)
    • 🗓️ 2017
    • 📊 4 citations

Hassan Behnejad | Chemistry and Materials Science | Physical Chemistry Award

Prof Hassan Behnejad | Chemistry and Materials Science | Physical Chemistry Award

Prof., PhD of University of Tehran, Iran 

Professor Hassan Behnejad is a distinguished academic in the field of physical chemistry, with an extensive career at the University of Tehran. He earned his B.Sc. in Chemistry from the University of Shiraz in 1990 and his M.Sc. and Ph.D. in Physical Chemistry from the University of Tehran in 1993 and 1998, respectively. His Ph.D. research focused on the evaluation of intermolecular potential energy functions and the calculation of transport properties of gases. Since joining the University of Tehran’s faculty in 1998, Dr. Behnejad has advanced from Assistant Professor to Full Professor, reflecting his significant contributions to the field. His research interests include theoretical physical chemistry, thermodynamics, and the transport properties of fluids. Dr. Behnejad has also held key administrative roles, such as Vice-Dean of Faculty of Science for student affairs and Vice-President for student affairs at the University of Tehran. He spent a sabbatical year at the University of Maryland, USA, where he furthered his research on the thermodynamic behavior of fluids near critical points. Dr. Behnejad is renowned for his expertise in statistical thermodynamics and intermolecular forces, making him a valuable member of the academic community.

Professional Profile:

Education

Professor Hassan Behnejad has a robust educational background in the field of chemistry and physical chemistry. He completed his B.Sc. in Chemistry at the University of Shiraz in 1990. He then pursued advanced studies at the University of Tehran, where he earned his M.Sc. in Physical Chemistry in 1993, focusing on Quantum Statistical Thermodynamics of Transport Processes. Continuing at the same institution, he obtained his Ph.D. in Physical Chemistry in 1998. His doctoral research centered on evaluating intermolecular potential energy functions from viscosity data and calculating the transport properties of gases using three-particle collision matrix elements. This solid educational foundation laid the groundwork for his subsequent academic and research career.

 

Professional Experience

Professor Hassan Behnejad has a distinguished professional career at the University of Tehran, where he has made significant contributions since joining the faculty in December 1998. He began as an Assistant Professor in the Department of Chemistry, Faculty of Science, advancing to Associate Professor in January 2006, and achieving the rank of Full Professor in November 2016. His professional journey also includes key administrative roles, such as Vice-Dean of Faculty of Science for student affairs from November 2002 to 2008, and Vice-President for student affairs from July 2014 to September 2019. Additionally, he took a sabbatical leave from March 2008 to February 2009 at the University of Maryland, USA, where he conducted research on the thermodynamic behavior of fluids near critical points under the supervision of J. V. Sengers. Throughout his career, Professor Behnejad has demonstrated a steadfast commitment to teaching, research, and administration, significantly impacting his field and the academic community at the University of Tehran.

Research Interest

Professor Hassan Behnejad’s research interests lie predominantly in the domain of theoretical physical chemistry, with a particular focus on the thermodynamics and transport properties of fluids. His work encompasses the evaluation of intermolecular potential energy functions, the analysis of transport properties of gases in moderate densities, and the study of three-particle collision matrix elements. He is deeply interested in the thermodynamic behavior of fluids near critical points, which he explored during his sabbatical at the University of Maryland. Dr. Behnejad’s expertise extends to statistical thermodynamics and intermolecular forces, where he investigates the quantum statistical thermodynamics of transport processes. His research aims to enhance the understanding of fluid behavior, contributing to advancements in both theoretical frameworks and practical applications in physical chemistry.

Award and Honor

Professor Hassan Behnejad has been recognized for his exceptional contributions to the field of physical chemistry through various awards and honors. His dedication to research and education has earned him prestigious accolades from academic institutions and professional organizations. Notably, he was awarded a scholarship by the University of Tehran from September 1995 to December 1998, which supported his doctoral studies. His outstanding research and academic achievements have also been acknowledged through various commendations and awards throughout his career, underscoring his role as a leading figure in theoretical physical chemistry. These honors reflect his commitment to advancing scientific knowledge and his significant impact on both his students and peers in the academic community.

 

Research Skills

Professor Hassan Behnejad possesses extensive research skills that have significantly advanced the field of physical chemistry. His expertise includes the evaluation of intermolecular potential energy functions, which involves sophisticated mathematical and computational techniques to derive these functions from experimental viscosity data. Dr. Behnejad is adept at analyzing the transport properties of gases using three-particle collision matrix elements, a complex method that requires a deep understanding of statistical mechanics and thermodynamics. His skills also encompass the study of fluid behavior near critical points, integrating theoretical models with experimental observations. Furthermore, his proficiency in quantum statistical thermodynamics allows him to tackle intricate problems related to transport processes in fluids. Dr. Behnejad’s research skills are characterized by a strong foundation in theoretical analysis, computational modeling, and practical application, making him a distinguished figure in his field.

Publications

  • A comparative adsorption study of sulfamethoxazole onto graphene and graphene oxide nanosheets through equilibrium, kinetic and thermodynamic modeling
    R Rostamian, H Behnejad
    Process Safety and Environmental Protection, 2016
    Citation: 128
  • Applied thermodynamics of fluids
    D Browarzik, S Bottini, E Brignole, S Pereda, S Kjelstrup, D Bedeaux, …
    Royal Society of Chemistry, 2010
    Citation: 105*
  • A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets
    R Rostamian, H Behnejad
    Ecotoxicology and environmental safety, 2018
    Citation: 70
  • A comparative study of thermal behaviors and kinetics analysis of the pyrotechnic compositions containing Mg and Al
    M Fathollahi, H Behnejad
    Journal of Thermal Analysis and Calorimetry, 2015
    Citation: 53
  • Thermodynamic behaviour of fluids near critical points
    H Behnejad, JV Sengers, MA Anisimov
    Year: 2010
    Citation: 45
  • Equilibrium and kinetic studies for the adsorption of benzene and toluene by graphene nanosheets: a comparison with carbon nanotubes
    MT Raad, H Behnejad, ME Jamal
    Surface and Interface Analysis, 2016
    Citation: 36
  • Insights into doxycycline adsorption onto graphene nanosheet: a combined quantum mechanics, thermodynamics, and kinetic study
    R Rostamian, H Behnejad
    Environmental Science and Pollution Research, 2018
    Citation: 34
  • Theoretical investigation of imidazolium based ionic liquid/alcohol mixture: a molecular dynamic simulation
    S Jahangiri, M Taghikhani, H Behnejad, SJ Ahmadi
    Molecular Physics, 2008
    Citation: 29
  • The extended law of corresponding states and the intermolecular potentials for He He and Ne Ne
    H Behnejad, A Maghari, M Najafi
    Journal of computational chemistry, 1995
    Citation: 28
  • A unified platform for experimental and quantum mechanical study of antibiotic removal from water
    R Rostamian, H Behnejad
    Journal of water process engineering, 2017
    Citation: 22