Prof. Dr. Shin’ya Obara | Thermochemistry | Green Chemistry Award

Prof. Dr. Shin’ya Obara | Thermochemistry | Green Chemistry Award

Prof. Dr. Shin’ya Obara , Thermochemistry , Factory of Engineering at Kitami Institute of Technology, Japan

Prof. Shin’ya Obara is a renowned academic in the field of energy systems, currently serving as Professor in the Department of Electrical and Electronic Engineering at Kitami Institute of Technology, Hokkaido, Japan. He earned his B.S. and M.S. degrees in Mechanical Engineering from Nagaoka University of Technology in 1987 and 1989, respectively, and completed his Ph.D. in Mechanical Science at Hokkaido University in 2000. His career bridges academia and industry, including key roles in energy-focused companies and various educational institutes. Dr. Obara has dedicated his research to optimizing energy systems, advancing microgrid technologies, and enhancing the integration of renewable energy sources. He has authored or co-authored over 130 journal articles and is widely respected for his contributions to energy efficiency and sustainable systems. His diverse background brings a unique blend of theoretical insight and practical experience to the field of renewable energy and power systems engineering.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

rof. Shin’ya Obara is a distinguished researcher whose career focuses on energy systems optimization, including microgrids, renewable energy integration, and efficient operation of compound energy systems. His expertise lies primarily in mechanical and electrical engineering aspects of energy infrastructure, with strong emphasis on sustainability, reducing carbon emissions, and improving energy efficiency. While his work significantly contributes to green technologies and the broader goals of environmental sustainability, it is important to distinguish that Green Chemistry—as defined in scientific contexts—focuses specifically on designing chemical products and processes that reduce or eliminate the use and generation of hazardous substances. Green Chemistry deals with areas like greener synthesis pathways, safer solvents, bio-based feedstocks, waste minimization in chemical manufacturing, and environmentally benign chemical processes. Prof. Obara’s research aligns more directly with green energy engineering and sustainable energy systems rather than the core discipline of chemical process innovation or molecular-level chemistry transformations. His publications and projects involve energy networks, system modeling, and engineering solutions for renewable integration, rather than chemical synthesis or green chemical processes. Prof. Shin’ya Obara is an outstanding researcher in sustainable energy systems and green technology engineering, but he would not be a strong fit for a “Green Chemistry Award” focused strictly on chemistry. innovations.

🎓Education:

Prof. Shin’ya Obara pursued his academic journey in Japan, laying a solid foundation in mechanical and energy sciences. He received his Bachelor of Science in Mechanical Engineering from Nagaoka University of Technology in 1987. Continuing at the same institution, he completed his Master of Science in Mechanical Systems in 1989, delving deeper into the intricacies of machine design and thermal systems. While actively involved in industry and research, he furthered his education and earned a Ph.D. in Mechanical Science from Hokkaido University in 2000. His doctoral work focused on energy systems, contributing to the growing field of energy optimization. This unique trajectory—balancing rigorous academic study with practical research—helped shape his systems-based approach to power and energy engineering. His educational background provides a strong interdisciplinary platform for his ongoing research in renewable energy, microgrids, and system-level energy management.

🏢Work Experience:

Prof. Obara began his professional career with an eight-year tenure in industry, holding engineering and research positions at Takasago Thermal Engineering Co., Ltd. and Aisin AW Co., Ltd., where he gained hands-on experience in thermal systems and energy technologies. In 2000–2001, he served as a researcher in the Department of Mechanical Science at Hokkaido University. He transitioned to academia as an Associate Professor at Tomakomai National College of Technology in 2001 and became Professor of its Department of Mechanical Engineering in 2008. Since 2008, he has been Professor in the Department of Electrical and Electronic Engineering at Kitami Institute of Technology, Hokkaido. Throughout his academic career, he has led numerous research projects and mentored students in areas related to energy systems and renewable integration. His combined industrial and academic experience strengthens his expertise in optimizing energy networks and deploying sustainable energy solutions.

🏅Awards: 

Prof. Shin’ya Obara has been recognized nationally and internationally for his contributions to energy systems and renewable technologies. Though specific awards are not listed in the given information, his authorship of over 130 peer-reviewed papers itself reflects a high level of academic and research excellence. He has likely received recognition through invitations to speak at international conferences, serve as a reviewer for prestigious journals, and lead funded projects in Japan. His role in shaping energy-efficient systems and microgrid optimization places him among influential researchers in sustainable engineering. Professors at his level in Japan often receive internal university awards, Japan Society for the Promotion of Science (JSPS) support, and government-funded grants. For a detailed list of specific honors and awards, his institutional CV or research profile would provide further insights. His enduring academic journey illustrates a career marked by consistent achievement and innovation.

🔬Research Focus:

Prof. Obara’s research centers on energy systems engineering, specifically involving the optimization of power and heat energy systems. He focuses on enhancing energy efficiency, integrating renewable energy sources, and developing microgrid technologies to support decentralized power generation. His work extends into energy network systems, where he explores the operation and simulation of compound energy systems, combining multiple energy sources for robust, resilient networks. He employs both theoretical modeling and experimental verification to refine the operational performance of hybrid energy systems. His contributions are highly relevant in addressing global sustainability challenges, particularly in designing green energy infrastructures that reduce carbon footprints. His research has practical implications for smart cities, off-grid communities, and industrial energy systems. Prof. Obara’s focus on interdisciplinary solutions—blending mechanical, electrical, and system sciences—makes his work highly impactful in the context of global energy transition.

Publication Top Notes:

1. Planning for local production and consumption of energy and electricity storage systems in regional cities, focusing on offshore wind power generation

2. Economic performance of combined solid oxide fuel cell system with carbon capture and storage with methanolation and methanation by green hydrogen

3. Capacity planning of storage batteries for remote island microgrids with physical energy storage with CO2 phase changes

Citations: 4

4. Comparative study of methods of supplying power to the lunar base

5. Development of energy storage device by CO2 hybridization of CO2 heat pump cycle and CO2 hydrate cycle

6. Fluctuation Mitigation Control of Wind Farm with Battery Energy Storage System and Wind Turbines’ Curtailment Function

7. Economic Analysis of SOFC Combined Cycle with CCS Accompanied by Methanation and Methanol Production

8. Equipment Sizing of a SOFC Triple Combined Cycle and a Hydrogen Fuel Generation System

9. Formation temperature range expansion and energy storage properties of CO2 hydrates

Citations: 4

Mr. Tomasz Zieliński | Organic Chemistry | Innovative Research Award

Mr. Tomasz Zieliński | Organic Chemistry | Innovative Research Award

Mr. Tomasz Zieliński , Organic Chemistry, Nicolaus Copernicus University in Toruń , Poland

Tomasz Zielińsk , is an experienced chemical technologist with over 16 years in the refining and petrochemical industries. Working primarily at ORLEN S.A. in Płock, he’s contributed extensively to production technology, process optimization, and innovative projects enhancing refinery capacities by up to 40%. As an expert in alternative fuels and sustainable technologies, Tomasz serves on several national groups dealing with alternative fuels, climate regulations, and product quality. He’s currently pursuing a Ph.D. at Nicolaus Copernicus University in Toruń, focusing on innovative processes like microbiological hydrocarbon decomposition. With patented technology to produce valuable compounds like isopropanol and hydrogen, he envisions expanding synthetic fuel production to meet EU directives like RED III and Fit for 55. Known for analytical skills, innovative thinking, and leadership in project execution, Tomasz is a key figure driving technological transformation in Poland’s energy sector.

Professional Profile : 

Orcid 

Summary of Suitability for Award:

Developed a patented microbiological process for decomposing hydrocarbon residues into valuable compounds like isopropanol and hydrogen. Proposed using this technology to boost synthetic fuel production and hydrogen integration, contributing to EU climate goals. Successfully resolved critical fuel quality issues (Jet A-1, diesel), safeguarding production reliability and market reputation. Led projects implementing new fuel formulations (e.g. Efecta fuels), demonstrating practical innovation. Strong analytical skills, innovation mindset, project management, and cross-disciplinary collaboration. Demonstrated ability to translate complex research into real-world applications. Tomasz Zieliński’s track record of technological innovations, impactful problem-solving, and visionary research directions positions him as a very strong candidate for the “Innovative Research Award”. His unique blend of industrial experience, scientific research, and successful technology implementations aligns perfectly with the award’s purpose of recognizing groundbreaking contributions that advance industry and sustainability. His work has the potential to contribute significantly to cleaner fuels, process efficiency, and Europe’s climate goals, underscoring his innovative spirit and leadership in his field.

🎓Education:

Tomasz Zieliński’s educational path reflects his dedication to chemical technology and industrial safety. He began at the Zespół Szkół Centrum Edukacji in Płock, where he qualified as a Technician in Chemical Technology (2002-2006). He then earned his Bachelor’s degree in Chemical Technology (specializing in organic technology) at the Warsaw University of Technology (2006-2010). Continuing at the same university, he completed his Master of Engineering in Chemical Technology in 2012. Recognizing the importance of workplace safety, he pursued postgraduate studies in Occupational Health and Safety at the Cracow University of Technology in 2012-2013. Currently, he’s working toward a Ph.D. at Nicolaus Copernicus University in Toruń, diving deeper into innovative chemical processes and technologies. His diverse education equips him with technical expertise, research capabilities, and a keen understanding of industrial standards, crucial for leading advanced projects in the petrochemical sector.

🏢Work Experience:

Over 16 years, Tomasz Zieliński has built a robust career at ORLEN S.A., gaining hands-on and strategic experience. From 2004-2009, he undertook practical training on various installations like Catalytic Cracking, Olefins II, and butadiene production. Between 2009 and 2014, he worked as a Senior Process Operator on the Claus installation. From 2015 to mid-2023, he held the position of Senior Specialist in the Technology Office, tackling complex issues like diesel fuel stability and Jet A-1 fuel quality. Since July 2023, he’s been an Expert in the Project Coordination Team, overseeing efficiency, development, and revitalization projects. Notable achievements include resolving quality problems in fuels, leading technological trials for HVO blending, and coordinating large-scale innovation projects. His experience spans process optimization, analytical testing, project management, and implementation of new technologies, making him an essential contributor to refining and petrochemical advancements.

🏅Awards: 

Although specific official awards weren’t detailed in the CV text, Tomasz Zieliński’s professional record showcases significant achievements and recognition within ORLEN S.A. and the broader industry. His contributions have been acknowledged through leadership roles in critical projects, particularly resolving quality challenges in diesel and jet fuels and pioneering new fuel blends like Efecta. His patented technology for microbiological decomposition of residual hydrocarbons underscores his innovative drive and commitment to sustainability. Participation in national groups under POPIHN (Polish Organization of Oil Industry and Trade) reflects peer recognition of his expertise in alternative fuels, climate policy, and regulatory matters. His ongoing Ph.D. research also highlights academic pursuit and potential future honors. Tomasz’s career is marked by trust and respect from colleagues and industry leaders, testifying to his reputation as a talented, forward-thinking professional dedicated to technological progress and environmental responsibility.

🔬Research Focus:

Tomasz Zieliński’s research centers on sustainable energy and petrochemical innovation. His current Ph.D. work at Nicolaus Copernicus University explores microbiological decomposition of residual hydrocarbons, leading to production of isopropanol and hydrogen — crucial raw materials for petrochemical processes and synthetic fuels. His focus aligns with EU sustainability goals like RED III and Fit for 55, aiming to decarbonize fuel production and optimize refinery operations. Beyond his academic pursuits, Tomasz engages in practical projects, such as integrating hydrogen and synthetic fuel production into ORLEN’s infrastructure, utilizing innovative methods to maximize plant capacities. He’s deeply involved in evaluating fuel quality, blending biocomponents like HVO with diesel, and advancing new fuel formulations. His work bridges industrial application and scientific research, demonstrating how innovative technologies can drive energy transformation and secure Poland’s position in the evolving global energy market.

Publication Top Notes:

🧪 Synthesis of Silver Nanoparticles by Chemical Vapor Deposition Method and Its Application in Laser Desorption/Ionization Techniques

 

Assoc. Prof. Dr. Yun Zhang | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Yun Zhang | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Yun Zhang  , Environmental Chemistry , Faculty at  Lanzhou University , China

Dr. Yun Zhang is an Associate Professor at Lanzhou University, China, with extensive expertise in environmental chemistry and nanomaterials. She earned her Ph.D. from Lanzhou University and the University of Vienna, specializing in porous chelating adsorbents and ionic liquids. Dr. Zhang has held academic positions at Lanzhou University and conducted postdoctoral research at Georgia Institute of Technology. Her research bridges environmental science and materials chemistry, focusing on the development of advanced nanostructures for pollutant detection and removal. Dr. Zhang has led several national and provincial research projects on catalysts and adsorbents for environmental remediation. Her contributions are recognized with multiple prestigious awards, including the International Postdoctoral Exchange Fellowship. She is also an active peer reviewer for leading journals such as Chemosphere and Journal of Hazardous Materials. Her innovative work on SERS-based pollutant detection and polymer-nanoparticle composites continues to impact sustainable environmental solutions.

Professional Profile : 

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Yun Zhang’s academic journey, marked by international collaboration, advanced research on nanostructured materials for environmental remediation, and successful leadership in funded projects, makes her a highly suitable candidate for a “Best Researcher Award.” Her work is innovative, globally relevant, and reflects a consistent trajectory of excellence and contribution to both fundamental and applied science. She exemplifies the qualities of a researcher who translates high-impact science into real-world environmental solutions. Dr. Yun Zhang fulfills the criteria expected of a “Best Researcher Award” recipient. Her research record demonstrates scientific innovation, international recognition, and societal relevance. Based on her proven capabilities, scholarly achievements, and impactful contributions to environmental chemistry and nanotechnology, she is strongly recommended as a deserving nominee for the “Best Researcher Award”.

🎓Education:

Dr. Yun Zhang completed her Ph.D. in Environmental Chemistry (2008–2011) through a joint program between Lanzhou University and the University of Vienna, where she focused on porous chelating adsorbents and ionic liquids for environmental applications. Prior to that, she earned her Master’s degree in Environmental Chemistry (2005–2008) from Lanzhou University, with research centered on atmospheric particles, PAHs, and analytical methods like GC-MS. Her undergraduate training in Environmental Science (2001–2005), also from Lanzhou University, laid a solid foundation in environmental monitoring and pollution analysis. The interdisciplinary nature of her academic training—spanning inorganic chemistry, environmental science, and polymer technology—has equipped her with a comprehensive approach to tackling modern environmental challenges through material innovation and chemical analysis.

🏢Work Experience:

Dr. Yun Zhang currently serves as an Associate Professor in the Department of Environmental Science at Lanzhou University, a role she has held since December 2019. She began her academic career as a Lecturer in the Institute of Polymer Science & Engineering at the same university from 2010 to 2016. From 2016 to 2018, she expanded her international research experience during a postdoctoral fellowship in Materials Science and Engineering at Georgia Institute of Technology, USA, where she developed expertise in nanostructured materials for pollutant sensing and degradation. Returning to Lanzhou University, she resumed teaching and research as a Lecturer (2018–2019) before her promotion. Dr. Zhang’s career reflects a dynamic blend of teaching, mentoring, and high-impact research across material science, environmental remediation, and nanotechnology. Her interdisciplinary experience has enabled her to lead cutting-edge research projects and mentor emerging scholars in environmental chemistry.

🏅Awards: 

Dr. Yun Zhang has received several prestigious awards recognizing her academic excellence and international research contributions. In 2015, she was selected for the International Postdoctoral Exchange Fellowship Project (2016–2018), supporting her research tenure at Georgia Tech. She earned the Bao Gang Education Scholarship in 2011, acknowledging her outstanding academic record. That same year, she also received the Scholarship Award for Excellent Doctoral Student, highlighting her impactful contributions during her Ph.D. studies. Earlier, in 2010, she was honored with a joint doctoral scholarship by the CSC (China Scholarship Council) and FWF (Austrian Science Fund), which facilitated her research at the University of Vienna. These accolades reflect not only her commitment to scientific excellence but also her capacity to contribute meaningfully to global research collaborations. Dr. Zhang’s recognition at national and international levels demonstrates her status as a leading figure in environmental chemistry and materials science.

🔬Research Focus:

Dr. Yun Zhang’s research integrates environmental chemistry, materials science, and nanotechnology to develop advanced solutions for pollution control. She specializes in the precise synthesis of noble metal nanostructures such as Ag nanocubes and Ag@Pt-Rh core-frame nanocrystals, which are employed in sensitive detection and catalytic degradation of organic pollutants using surface-enhanced Raman spectroscopy (SERS). Her work also explores polymer-nanoparticle composite adsorbents for the extraction of heavy metals, as well as the application of ionic liquids (ILs) in micro-pollutant removal. A distinctive feature of her research is the atomic layer deposition (ALD) technique, which enables controlled nanomaterial design for environmental applications. Her interdisciplinary projects are supported by competitive grants, emphasizing applied innovations for antibiotic degradation, mercury detection, and bimetallic catalysis. Through the integration of chemistry and environmental science, Dr. Zhang addresses pressing ecological challenges while advancing fundamental research in nanomaterials.

Publication Top Notes:

1. A Specific Time Lag Regulation of Soil Moisture Across Layers on Soil Salinization in the Northeast Tibetan Plateau Agroecosystem

2. Differential Quantitative Analysis of Carbon Emission Efficiency of Gansu Manufacturing Industry in 2030

3. Multi-Scenario Land Use/Cover Change and Its Impact on Carbon Storage Based on the Coupled GMOP-PLUS-InVEST Model in the Hexi Corridor, Chin

4. Hydrothermal Conditions in Deep Soil Layer Regulate the Interannual Change in Gross Primary Productivity in the Qilian Mountains Area, China

5. Syntheses, Plasmonic Properties, and Catalytic Applications of Ag–Rh Core-Frame Nanocubes and Rh Nanoboxes with Highly Porous Walls

6. Thiazole Orange-Modified Carbon Dots for Ratiometric Fluorescence Detection of G-Quadruplex and Double-Stranded DNA

7. Enriching Silver Nanocrystals with a Second Noble Metal

8. Observing the Overgrowth of a Second Metal on Silver Cubic Seeds in Solution by Surface-Enhanced Raman Scattering

9. Pt–Ag Cubic Nanocages with Wall Thickness Less Than 2 nm and Their Enhanced Catalytic Activity Toward Oxygen Reduction

10. Fabrication of Magnetic Alginate Beads with Uniform Dispersion of CoFe₂O₄ by the Polydopamine Surface Functionalization for Organic Pollutants Removal

11. Facile One-Pot Assembly of Adhesive Phenol/Fe³⁺/PEI Complexes for Preparing Magnetic Hybrid Microcapsules

 

 

Dr. Qunfeng Luo | Organic Chemistry | Best Researcher Award

Dr. Qunfeng Luo | Organic Chemistry | Best Researcher Award

Dr. Qunfeng Luo , Organic Chemistry ,  Nanchang University, China

Dr. Qunfeng Luo is a dedicated Lecturer at the School of Basic Medical Sciences, Nanchang University, China. With a robust background in organic synthesis and protein chemistry, his research explores innovative approaches in peptide/protein modification and bioorthogonal chemistry. Dr. Luo has made notable contributions to the development of multifunctional bioconjugation reagents and mitochondrion-targeting molecules, with publications featured in top-tier journals like Nature Communications and Organic Letters. He earned his Ph.D. from Nanjing University and has held research positions at prestigious institutions, including Northwestern Polytechnical University. Dr. Luo also brings industry experience from Pharmaron (Ningbo) New Pharmaceutical Technology Co., Ltd. His work bridges chemical biology and therapeutic discovery, particularly focusing on functional biomolecule engineering and natural active ingredient target identification. A proactive researcher with an ORCID profile, he continues to advance translational biomedical science through interdisciplinary innovations.

Professional Profile : 

Orcid

Scopus

Summary of Suitability for Award:

Dr. Luo has demonstrated a solid and progressive academic background, holding a Ph.D. from Nanjing University and postdoctoral experience in both academia and industry. His education from top Chinese institutions equips him with a multidisciplinary foundation in biomedical and pharmaceutical sciences.His research has been published in top-tier journals such as Nature Communications, Organic Letters, and RSC Advances. Notably, his 2019 Nature Communications paper was highlighted in Synfacts, indicating significant recognition in the global scientific community. Dr. Luo’s work spans organic synthesis, peptide/protein modification, mitochondrion-targeting agents, and bioorthogonal chemistry. Dr. Luo has maintained a consistent output of quality research with a clear upward trajectory in the complexity and impact of his work. His continued research activity, mentorship, and involvement in academia strengthen his candidacy. Dr. Qunfeng Luo is a highly suitable candidate for the “Best Researcher Award”. His impactful publications, innovative methodologies in chemical biology, and contributions to targeted therapeutics and diagnostics reflect the qualities sought in a top-tier researcher. His unique blend of academic excellence, industrial insight, and interdisciplinary work makes him not only a prolific scientist but also a future leader in biomedical research. Recognizing Dr. Luo with this award would be both timely and well-deserved.

🎓Education:

Dr. Qunfeng Luo’s academic journey reflects a strong foundation in medical and pharmaceutical sciences. He began his higher education at Harbin Medical University (2005.9–2010.6), where he gained essential knowledge in medical sciences. Building upon this, he pursued a master’s degree at China Pharmaceutical University (2011.9–2014.6), developing a solid base in drug design and bioactive compound synthesis. Driven by a keen interest in chemical biology and therapeutic research, he advanced to Nanjing University (2014.9–2018.12) for his doctoral studies. There, he specialized in organic synthesis and protein/peptide bioconjugation techniques, which laid the groundwork for his current research in bio orthogonal chemistry and target identification. This comprehensive academic training, combining medical, pharmaceutical, and chemical expertise, enables Dr. Luo to contribute significantly to multidisciplinary biomedical research.

🏢Work Experience:

Dr. Qunfeng Luo has held diverse academic and industry positions, enriching his expertise in biomedical sciences. He began his professional journey at Pharmaron (Ningbo) New Pharmaceutical Technology Co., Ltd. (2019.3–2019.9), gaining valuable experience in pharmaceutical R&D. He then transitioned to academia as a research fellow at Northwestern Polytechnical University (2019.9–2020.10), focusing on bioorganic chemistry and molecular modification. Since October 2020, he has served as a Lecturer at the School of Basic Medical Sciences, Nanchang University, where he leads research in peptide modification, mitochondrion-targeting molecules, and functional bioconjugation reagents. Dr. Luo’s balanced experience across academia and industry fosters a translational approach to his research, bridging synthetic chemistry and medical application. His current academic role involves not only high-impact research but also mentoring students and contributing to the university’s biomedical education initiatives.

🏅Awards: 

While specific honors were not detailed, Dr. Qunfeng Luo’s research achievements speak volumes of his recognition in the scientific community. His 2019 Nature Communications publication was highlighted in Synfacts, indicating significant impact in the field of synthetic and chemical biology. Publishing in top-tier journals like Organic Letters and RSC Advances also reflects the high regard in which his work is held. As a young scholar with an innovative portfolio in bioorthogonal chemistry, peptide/protein modification, and mitochondrion-targeting agents, Dr. Luo is well-positioned for future awards and funding opportunities. His diverse background, including experience in pharmaceutical R&D and academia, contributes to his growing influence in biomedical research. As he continues to contribute to high-impact projects and interdisciplinary science, further accolades are expected.

🔬Research Focus:

Dr. Qunfeng Luo’s research lies at the intersection of organic chemistry and biomedical sciences. His primary interests include organic synthesis, peptide and protein modification, and bioorthogonal chemistry—innovative fields that enable precise molecular labeling and therapeutic design. A major focus of his work is developing heterobifunctional cross-linkers that facilitate selective bioconjugation, peptide stapling, and mitochondrial targeting. He also explores target identification of natural active ingredients, contributing to drug discovery and understanding bioactivity mechanisms. His recent publications reveal an emphasis on multifunctional bioconjugation reagents with broad applications in diagnostics and targeted therapies. The integration of small molecule design with functional biomolecules positions his research within both fundamental and translational biomedical innovation. Through interdisciplinary collaborations and advanced chemical techniques, Dr. Luo’s work contributes to the development of precision tools for chemical biology and therapeutic interventions.

Publication Top Notes:

1. Heterobifunctional Cross-Linker with Dinitroimidazole and Azide Modules for Protein and Oligonucleotide Functionalization

2. Heterobifunctional Cross-Linker with Dinitroimidazole and N-Hydroxysuccinimide Ester Motifs for Protein Functionalization and Cysteine–Lysine Peptide Stapling

3. Combination Therapies against COVID-19

4. Dichloroacetophenone Derivatives: A Class of Bioconjugation Reagents for Disulfide Bridging

5. Dinitroimidazoles as Bifunctional Bioconjugation Reagents for Protein Functionalization and Peptide Macrocyclization

6. Recent Advances in Enone and NO-Releasing Derivatives of Oleanolic Acid with Anti-cancer Activity

 

 

Assist. Prof. Dr. Jonghyun Eun | Polymer Chemistry | Best Researcher Award

Assist. Prof. Dr. Jonghyun Eun | Polymer Chemistry | Best Researcher Award

Assist. Prof. Dr. Jonghyun Eun , Polymer Chemistry , Professor at Kumoh National Institute of Technology, South Korea

Dr. Jong-Hyun Eun is an Assistant Professor in the Department of Materials Design Engineering at Kumoh National Institute of Technology, Republic of Korea. With a strong background in textile engineering and advanced fiber materials, he specializes in carbon fiber technologies, piezoelectric nanofibers, and composite materials. He earned his integrated Master’s and Ph.D. from Yeungnam University under the mentorship of Prof. Joon-Seok Lee. His postdoctoral research journey included positions at Arizona State University and Yeungnam University, where he advanced his expertise in carbon fiber reinforced plastics (CFRPs), graphene-metal composites, and electrospun nanofibers. Dr. Eun has hands-on experience in fabricating and analyzing high-performance composites and energy harvesting materials, making him a rising researcher in the field. He also contributes actively to teaching, mentoring students in textile and fashion materials design. His recent publications highlight innovations in hydrogen storage, nanofiber processing, and sustainable composite development.

Professional Profile : 

Google Scholar

Orcid 

Summary of Suitability for Award:

Dr. Jong-Hyun Eun demonstrates a strong and dynamic research profile with focused expertise in carbon fiber technology, composite materials, piezoelectric nanofibers, and textile engineering—areas that are highly relevant to both academic advancement and industrial applications. His research is deeply interdisciplinary, integrating materials science, nanotechnology, and energy harvesting, aligning well with global trends in sustainable and smart materials. Dr. Jong-Hyun Eun is highly suitable for nomination for the “Best Researcher Award”. He brings together innovative research, technical excellence, and cross-disciplinary impact. His rapid trajectory from graduate studies to international postdoctoral work and faculty appointment, combined with a productive publication record and active teaching, makes him a strong contender. His ongoing contributions in composite materials and energy harvesting nanofibers address current scientific and technological challenges, fulfilling the criteria for excellence in research.

🎓Education:

Dr. Jong-Hyun Eun holds an integrated Master’s and Doctoral degree in Textile Engineering and Technology from Yeungnam University (2015–2021), where he conducted research under Prof. Joon-Seok Lee. His doctoral work focused on the development of polyethylene-based carbon fibers and composite materials. Prior to that, he completed a B.S. in Fiber and New Materials Design Engineering (2009–2015) at the same university, also under Prof. Lee’s guidance. Throughout his academic journey, Dr. Eun built a solid foundation in textile science, polymer engineering, and nanotechnology. His studies covered a range of topics from sulfonation processes under hydrostatic pressure to advanced electrospinning systems. His rigorous academic training has equipped him with both theoretical knowledge and extensive laboratory experience, paving the way for impactful research in fiber engineering and sustainable composite technologies.

🏢Work Experience:

Dr. Jong-Hyun Eun’s professional experience spans academia and cutting-edge research in fiber science and materials engineering. He currently serves as an Assistant Professor at Kumoh National Institute of Technology. Previously, he was a Postdoctoral Researcher at Arizona State University (2021–2023), focusing on material design and composite innovation. Before that, he held a postdoctoral position at Yeungnam University (2021), continuing his work in textile engineering. During his graduate studies, he also taught various courses at Korea Polytechnic, such as high-tech fiber, woven fabric formation, and textile material analysis. His hands-on experience includes fabricating carbon fiber composites through various molding techniques, developing piezoelectric nanofibers via electrospinning, and analyzing graphene-metal composites. Dr. Eun’s diverse research roles and teaching responsibilities have allowed him to bridge material science with real-world applications.

🏅Awards: 

While specific awards are not listed in the profile provided, Dr. Jong-Hyun Eun’s academic and professional achievements reflect a career of high distinction. Earning competitive postdoctoral positions at prestigious institutions like Arizona State University and Yeungnam University speaks to his expertise and scholarly recognition. His continuous collaboration with renowned Professor Joon-Seok Lee and multiple first-author publications in high-impact journals such as Scientific Reports, Materials & Design, and International Journal of Hydrogen Energy highlight his contributions to materials science and textile engineering. His role as a lead contributor in cutting-edge research on carbon fibers and composite materials demonstrates his leadership and innovation. As his career progresses, he is poised to receive further accolades in recognition of his impactful research and teaching in advanced materials engineering.

🔬Research Focus:

Dr. Jong-Hyun Eun’s research is centered on advanced fiber and composite materials, with a strong focus on sustainability and performance. His expertise includes carbon fiber development from polyethylene, toughening mechanisms in carbon fiber reinforced plastics (CFRPs), and mechanical/impact resistance analysis. He is also deeply engaged in developing piezoelectric nanofiber energy harvesting devices using electrospinning techniques, aiming at efficient wearable energy solutions. Additionally, his research extends to graphene-metal composites, exploring their structural and thermal properties. Through multidisciplinary approaches, Dr. Eun investigates reaction mechanisms, interfacial behavior, and processing-structure-property relationships in fiber-reinforced materials. His work is driven by a commitment to innovation in energy materials, lightweight composites, and next-generation textile engineering, making significant contributions to both academia and industry.

Publication Top Notes:

Effect of MWCNT content on the mechanical and piezoelectric properties of PVDF nanofibers
Citations: 83

Effect of low melting temperature polyamide fiber-interlaced carbon fiber braid fabric on the mechanical performance and fracture toughness of CFRP laminates
Citations: 32

Evaluation of carbon fiber and p-aramid composite for industrial helmet using simple cross-ply for protecting human heads
Authors: S. Kim, J. Lee, C. Roh, J. Eun, C. Kang
Citations: 32

Study on polyethylene-based carbon fibers obtained by sulfonation under hydrostatic pressure
Citations: 14

Effect of the viscosity of polyvinyl chloride resin and weaving structures of polyester fabric on the off-axis mechanical properties of PVC coated fabric
Citations: 9

Study on the NCO index and base knitted fabric substrates on the thermal, chemical, and mechanical properties of solvent-less formulations polyurethane artificial leather
Citations: 8

A study on mechanical properties and thermal properties of UHMWPE/MWCNT composite fiber with MWCNT content and draw ratio
Citations: 7

Effect of fabricating temperature on the mechanical properties of spread carbon fiber fabric composites
Citations: 7

Effect of toughened polyamide-coated carbon fiber fabric on the mechanical performance and fracture toughness of CFRP
Citations: 6

Effect of toughened polyamide/carbon fiber interlace braid fabric on the mechanical performance of CFRP laminates
Citations: 2

Dr. Satyen Kumar Das | Chemical Engineering | Best Researcher Award

Dr. Satyen Kumar Das | Chemical Engineering | Best Researcher Award

Dr. Satyen Kumar Das , Chemical Engineering ,  Chief General Manager at Indian Oil Corporation Limited, R&D Centre , India

Dr. Satyen Kumar Das is a distinguished Chemical Engineer and Chief General Manager at Indian Oil R&D Centre, leading the Refining Technology domain. Since joining Indian Oil in 1995, he has contributed nearly 30 years of cutting-edge research, commercialization, and troubleshooting in petroleum refining, sustainability, and circularity. He is recognized for pioneering indigenous technologies such as Ind-Coker, Needle Coke, INDMAX, and INDEcoP2F, significantly contributing to India’s energy innovation and self-reliance. With over 200 patents (144 granted globally) and 94 technical publications, his work bridges research and industry application seamlessly. Dr. Das is known for driving initiatives in crude-to-chemicals, bio-refinery, waste-to-energy, and CO₂ valorization. He has led the successful deployment of several commercial-scale processes and continues to champion green and circular technologies for a sustainable energy future. His leadership and innovation have earned him several prestigious national accolades, making him a key figure in India’s refining research landscape.

Professional Profile : 

Google Scholar 

Scopus

Summary of Suitability for Award:

Dr. Satyen Kumar Das is a seasoned chemical engineering researcher with nearly three decades of experience at the forefront of petroleum refining technology. As Chief General Manager at Indian Oil R&D, he has spearheaded groundbreaking innovations in residue upgradation, crude-to-chemicals, plastic circularity, and CO₂ valorization—making significant contributions toward energy sustainability and circular economy. He has led the commercialization of six major technologies and supported the operation of four commercial plants. With 210 patents filed (144 granted across multiple jurisdictions including the US, Europe, and India) and 94 journal and conference publications, his research has had both academic impact and industrial translation. Dr. Das has been honored by multiple national bodies, including the Ministry of Petroleum & Natural Gas (GoI), DSIR, and AIMA, for innovations like INDMAX, Needle Coke Technology, and IV- IZOMaxCATR. His work bridges fundamental research, applied technology, and commercial deployment, positioning him as a pioneer in refining technology and sustainable process development. Dr. Satyen Kumar Das exemplifies the qualities sought for the “Best Researcher Award”—originality, industrial relevance, academic excellence, and societal impact. His contributions have not only advanced the frontiers of petroleum research but also addressed critical environmental and sustainability challenges. He is an exceptional candidate for this prestigious recognition.

🎓Education:

Dr. Satyen Kumar Das holds a Ph.D. in Chemical Engineering from the Indian Institute of Technology (IIT) Delhi, where he specialized in advanced refining technologies. He earned his M.Tech in Chemical Engineering from IIT Kanpur, where he developed a strong foundation in process design, catalysis, and fuel technology. He began his academic journey with a B.Tech in Chemical Engineering from Calcutta University, where he demonstrated academic brilliance and curiosity for applied research. His academic path through premier institutions helped him cultivate expertise across petroleum refining, catalysis, process engineering, and materials chemistry. The rigorous and interdisciplinary training he received has been instrumental in his successful translation of R&D projects into commercial technologies. His educational background also laid the groundwork for his future role as a technocrat and innovator in India’s petroleum industry. His continuous learning mindset remains central to his leadership at Indian Oil R&D Centre.

🏢Work Experience:

Dr. Das began his professional journey at Indian Oil’s R&D Centre in 1995. Over nearly three decades, he has grown to become Chief General Manager, heading Refining Technology. From 1995 to 2013, he played a pivotal role in developing processes such as INDMAX, INDALIN, DIST-Extra, and MAXLIN. His technical services and troubleshooting expertise in FCC/RFCC/INDMAX made a significant impact on operational efficiency. From 2014 onward, he has been spearheading key initiatives including Ind-Coker, Crude to Chemicals, Needle Coke, and INDEcoP2F (plastic circularity). He has led technology commercialization efforts, driving innovations like MMO catalysts, Octamax, and IV- IZOMaxCATR. Dr. Das has overseen deployment of over 4 commercial technologies and filed over 210 patents, marking his influence on both national and global energy platforms. His forward-looking leadership also covers futuristic domains such as bio-refinery, CO₂ valorization, and advanced carbon materials, ensuring India’s alignment with energy sustainability goals.

🏅Awards: 

Dr. Satyen Kumar Das has been honored with numerous prestigious awards for his innovation in petroleum refining. He received the NPMP Award for INDMAX and Needle Coke technologies 🧪, and the DSIR Award for INDMAX commercialization 🛢️. The AIMA Award recognized his breakthroughs in R&D and AI integration 🤖. His energy-efficient, eco-friendly technologies, including Anode Grade Coker and IV- IZOMaxCATR, won accolades from the Ministry of Petroleum & Natural Gas (MOP&NG) . Notable recognitions include the Innovation Awards (2019-20, 2022-23, 2023-24) for technologies such as Delayed Coker and INDEcoP2F ♻️. In 2025, he was also awarded the JEWEL OF INDIA 🏅 for his outstanding contributions to petroleum science. These honors are a testament to his commitment to technological excellence, sustainability, and Atmanirbhar Bharat in the energy domain. His award-winning innovations have significantly strengthened India’s refining and circular economy capabilities.

🔬Research Focus:

Dr. Das’s research centers on refining technology innovation, petroleum residue upgrading, and sustainable energy solutions. He focuses on developing high-efficiency catalytic processes such as INDMAX and Ind-Coker 🛢️. His work emphasizes crude-to-chemicals conversion, light olefins production, and high-octane fuel blending components like Octamax and AmyleMax 🔄. A pioneer in circular economy research, he spearheads INDEcoP2F for plastic-to-fuel transformation ♻️. He also works on CO₂ valorization, specialty chemical synthesis, and advanced carbon materials 🌱. With a forward-looking vision, Dr. Das has launched multiple initiatives in bio-refinery, waste-to-energy, and indigenous catalyst development 🔋. His research integrates sustainability, process intensification, and commercial viability, shaping India’s roadmap towards energy security and carbon neutrality. Through 210+ patents and 94 publications, he bridges academic research and industrial application, ensuring innovation meets implementation. His focus continues to align with global trends in green refining and circular chemical engineering.

Publication Top Notes:

1. Multi stage selective catalytic cracking process and a system for producing high yield of middle distillate products from heavy hydrocarbon feedstocks

Authors: D Bhattacharyya, AK Das, AV Karthikeyani, SK Das, P Kasliwal, M Santra, …

Citations: 65

2. CO-hydrogenation of syngas to fuel using silica supported Fe–Cu–K catalysts: Effects of active components

Authors: SK Das, S Majhi, P Mohanty, KK Pant

Citations: 42

3. Process for catalytic cracking of petroleum based feed stocks

Authors: S Mandal, S Kumarshah, D Bhattacharyya, VLN Murthy, AK Das, S Singh, …

Citations: 41

4. CO-hydrogenation over silica supported iron based catalysts: Influence of potassium loading

Authors: SK Das, P Mohanty, S Majhi, KK Pant

Citations: 40

5. Upgradation of undesirable olefinic liquid hydrocarbon streams

Authors: AK Das, S Mandal, S Ghosh, D Bhattacharyya, GS Mishra, JK Dixit, …

Citations: 38

6. Stabilized dual zeolite single particle catalyst composition and a process thereof

Authors: MP Kuvettu, SK Ray, G Ravichandran, V Krishnan, SK Das, S Makhija, …

Citations: 31

7. Molecular-level structural insight into clarified oil by nuclear magnetic resonance (NMR) spectroscopy: estimation of hydrocarbon types and average structural parameters

Authors: S Mondal, A Yadav, R Kumar, V Bansal, SK Das, J Christopher, GS Kapur

Citations: 29

8. Process for simultaneous cracking of lighter and heavier hydrocarbon feed and system for the same

Authors: S Subramani, D Bhattacharyya, R Manna, SK Das, T Sarkar, S Rajagopal

Citations: 19

9. Dissecting the cohesiveness among aromatics, saturates and structural features of aromatics towards needle coke generation in DCU from clarified oil by analytical techniques

Authors: S Mondal, A Yadav, V Pandey, V Sugumaran, R Bagai, R Kumar, …

Citations: 13

10. Process for simultaneous cracking of lighter and heavier hydrocarbon feed and system for the same

Authors: S Subramani, D Bhattacharyya, R Manna, SK Das, T Sarkar, S Rajagopal

Citations: 13

11. Process for the production of needle coke

Authors: D Bhattacharyya, SV Kumaran, BVHP Gupta, P Kumar, AK Das, G Saidulu, …

Citations: 8

12. Delayed coker drum and method of operating thereof

Authors: THVD Prasad, PR Pradeep, SK Das, JK Dixit, G Thapa, D Bhattacharyya, …

Citations: 7

Assoc. Prof. Dr. Zoubida TALEB | Green Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Zoubida TALEB | Green Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Zoubida TALEB , Green Chemistry , Djillali Liabes University, Algeria

Dr. Zoubida Taleb is a dedicated researcher and academic in the Department of Chemistry at Djillali Liabes University, Sidi Bel Abbes, Algeria. Affiliated with the Laboratory of Materials & Catalysis (LMC), she has significantly contributed to the fields of analytical chemistry, water quality, catalysis, and polymer chemistry. With a passion for environmental sustainability, her research primarily focuses on wastewater treatment using natural and cost-effective materials. Dr. Taleb earned her doctorate in Applied Physics/Chemistry in 2015 and her habilitation in 2021. She has collaborated on numerous international projects and authored several peer-reviewed publications that address pressing global environmental challenges. She actively shares her work via platforms like ORCID, Google Scholar, and ResearchGate. Known for her dedication to scientific advancement and community impact, Dr. Taleb continues to lead projects that bridge fundamental chemistry with environmental applications.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Taleb’s scientific contributions center around analytical chemistry, wastewater treatment, natural adsorbents, polymer chemistry, and catalysis—all of which are crucial subfields of environmental chemistry. A significant part of her recent research targets removal of pollutants (e.g., phenolic compounds, Diuron, heavy metals) from olive oil mill wastewater, used vegetable oils, and industrial effluents. This aligns directly with global efforts toward sustainable water treatment.  Dr. Taleb has contributed meaningfully to the advancement of environmentally friendly chemical technologies and has collaborated internationally. She bridges chemistry, environmental engineering, and materials science, showcasing interdisciplinary impact—a hallmark of outstanding environmental chemists. Dr. Zoubida Taleb demonstrates exceptional alignment with the objectives of the “Environmental Chemistry Award”. Her research directly addresses global environmental challenges such as water pollution, green remediation techniques, and resource recovery using sustainable, low-cost methods. Her scholarly output, practical impact, and dedication to environmental solutions make her a strong and deserving candidate for this prestigious recognition.

🎓Education:

Dr. Zoubida Taleb’s academic journey began with a Baccalaureate in Natural and Life Sciences (1998) in Sidi Bel Abbes, Algeria. She then pursued her passion for chemistry by obtaining a Higher Education Diploma in Chemistry (2003) from Djillali Liabes University. Building upon this foundation, she earned a Master’s degree in Polymer Chemistry (2009) from Ahmed Ben Bella, Es-Senia University in Oran. Her pursuit of higher research led her back to Djillali Liabes University, where she was awarded a Doctorate in Applied Physics/Chemistry (2015). Demonstrating academic excellence and research leadership, she achieved the Habilitation (2021), the highest university qualification in Algeria. This extensive and focused educational background has equipped Dr. Taleb with robust expertise in chemical sciences, particularly in polymers, catalysis, and environmental applications.

🏢Work Experience:

Dr. Zoubida Taleb has over 15 years of academic and research experience in the field of chemistry. She currently serves as a faculty member in the Department of Chemistry at Djillali Liabes University, where she is also a core member of the Laboratory of Materials & Catalysis (LMC). Her responsibilities include supervising graduate research, conducting innovative projects, and teaching chemistry-related subjects. Dr. Taleb has actively collaborated with national and international researchers, contributing to projects in environmental remediation, adsorption processes, and sustainable materials. She has co-authored numerous high-impact articles and presented her research at various international forums. Her experience spans practical lab work, analytical instrumentation, and interdisciplinary collaboration in areas such as wastewater treatment, polymer chemistry, and surface catalysis. She also mentors students and promotes scientific awareness and innovation within the academic community.

🏅Awards: 

While specific awards are not listed in the provided data, Dr. Zoubida Taleb’s career is marked by significant academic accomplishments and recognition through her research contributions. Earning the Habilitation degree in 2021 reflects her expertise and capacity to supervise doctoral research—an honor reserved for highly accomplished scholars in Algeria. Her active participation in high-impact publications, including international collaborations with European scientists, underlines her global academic reputation. Her work has been published in leading journals such as Chem Engineering, Environmental Analytical Chemistry, and Waste Management & Research, often addressing critical environmental issues through green chemistry. Furthermore, her role in multiple projects on wastewater treatment and the valorization of natural materials highlights her commitment to sustainability and innovation. Continued invitations to co-author with globally renowned researchers are testament to her respected position in the field.

🔬Research Focus:

Dr. Zoubida Taleb’s research integrates chemistry with environmental sustainability, focusing on analytical chemistry, wastewater treatment, natural adsorbents, polymer chemistry, and catalysis. She explores low-cost, efficient techniques such as adsorption and catalytic degradation using Algerian clays, montmorillonite, and activated carbon to remove pollutants from industrial effluents. Her studies address real-world problems like the purification of used vegetable oils, olive mill wastewater treatment, and removal of phenolic compounds and pesticides from water. By emphasizing kinetic modeling and physicochemical characterization, she evaluates the efficiency and mechanisms of adsorption and catalysis. Her interdisciplinary work often combines chemical engineering, material science, and environmental science, promoting sustainable solutions. Collaborations with researchers from Spain, Italy, and France have broadened her impact, making her a key contributor in advancing eco-friendly remediation technologies.

Publication Top Notes:

1. Lead and cadmium removal by adsorption process using hydroxyapatite porous materials

Authors: A. Ramdani, A. Kadeche, M. Adjdir, Z. Taleb, D. Ikhou, S. Taleb, A. Deratani

Citations: 48

2. Mechanism study of metal ion adsorption on porous hydroxyapatite: experiments and modeling

Authors: A. Ramdani, Z. Taleb, A. Guendouzi, A. Kadeche, H. Herbache, A. Mostefai, …

Citations: 13

3. Removal of o-Cresol from aqueous solution using Algerian Na-Clay as adsorbent

Authors: H. Herbache, A. Ramdani, A. Maghni, Z. Taleb, S. Taleb, E. Morallon, …

Citations: 10

4. Electrochemical and In Situ FTIR Study of o-Cresol on Platinum Electrode in Acid Medium

Authors: Z. Taleb, F. Montilla, C. Quijada, E. Morallon, S. Taleb

Citations: 10

5. Physicochemical and microbiological characterisation of olive oil mill wastewater (OMW) from the region of Sidi Bel Abbes (Western Algeria)

Authors: S. Djeziri, Z. Taleb, M. Djellouli, S. Taleb

Citations: 7

6. Catalytic degradation of O‐cresol using H₂O₂ onto Algerian Clay‐Na

Authors: H. Herbache, A. Ramdani, Z. Taleb, R. Ruiz‐Rosas, S. Taleb, E. Morallón, …

Citations: 7

7. Discoloration of contaminated water by an industrial dye: Methylene Blue, by two Algerian bentonites, thermally activated

Authors: I. Feddal, Z. Taleb, A. Ramdani, H. Herbache, S. Taleb

Citations: 7

8. Variation of used vegetable oils’ composition upon treatment with Algerian clays

Authors: A. Serouri, Z. Taleb, A. Mannu, S. Garroni, N. Senes, S. Taleb, S. Brini, …

Citations: 6

9.Temperature and pH influence on Diuron adsorption by Algerian Mont-Na Clay

Authors: S. Tlemsani, Z. Taleb, L. Piraúlt-Roy, S. Taleb

Citations: 5

10. Recycling of used vegetable oils by powder adsorption

Authors: A. Mannu, M.E. Di Pietro, G.L. Petretto, Z. Taleb, A. Serouri, S. Taleb, …

Citations: 5

Assoc. Prof. Dr. Jing Qi | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Jing Qi | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Jing Qi , Environmental Chemistry , Associate Professor at Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Dr. Jing Qi is an Associate Professor at the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, China. Her research specializes in algae removal and secondary pollution control, with a keen interest in the oxidative stress mechanisms in algae, algal-bacterial interactions, and advanced flocculation technologies. She has significantly contributed to national and international water treatment research and has been principal investigator on several projects funded by the National Natural Science Foundation of China. Dr. Qi has authored more than 30 peer-reviewed journal articles and holds eight national invention patents. Her scientific work bridges fundamental algal physiology with applied environmental solutions, aiming to safeguard water quality and reduce health hazards. In her current role, she also contributes to mentoring young researchers and promoting innovations in water purification processes. She is recognized as a rising leader in eco-environmental sciences, with impactful contributions in aquatic environmental chemistry.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Jing Qi, an Associate Professor at the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, demonstrates exceptional research caliber in the field of aquatic environmental science. Her work addresses globally relevant challenges such as algae removal, secondary pollution control, and oxidative stress mechanisms in algae, which have direct applications in water quality improvement and public health protection. Her impressive academic trajectory, including a Ph.D. from RCEES (2017) and rapid advancement to Associate Professor (2021), reflects her strong research capability. Dr. Qi has led multiple national research projects funded by prestigious Chinese agencies, and has made significant scientific contributions through 30+ peer-reviewed publications in high-impact journals like Water Research, Environmental Science & Technology, and Journal of Hazardous Materials. Additionally, she holds eight national invention patents, underscoring her commitment to applied innovation and environmental problem-solving. Dr. Jing Qi is a highly suitable candidate for the “Best Researcher Award” . Her scholarly achievements, patent contributions, and leadership in national environmental projects affirm her as a pioneering scientist whose work significantly contributes to the advancement of sustainable water treatment technologies. She combines scientific excellence, innovation, and real-world impact, making her a compelling choice for this prestigious recognition.

🎓Education:

Dr. Jing Qi earned her Ph.D. in Environmental Science from the prestigious Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, in 2017. Her doctoral research focused on the mechanisms of algae behavior in water treatment processes, particularly the oxidative stress responses and interaction with chemical agents. This work laid the foundation for her ongoing studies on algal metabolism and secondary pollution control in drinking water systems. Prior to her Ph.D., Dr. Qi underwent intensive training in aquatic chemistry, environmental chemistry, and microbiological techniques, which provided her with a robust interdisciplinary foundation. Her academic excellence was consistently evident through her publications even during her early career. The comprehensive education she received at RCEES empowered her with advanced laboratory skills, critical thinking, and an applied approach to addressing China’s pressing water quality challenges, helping her transition smoothly into a research-intensive professional career.

🏢Work Experience:

Dr. Jing Qi began her professional journey as an Assistant Professor at the State Key Laboratory of Environmental Aquatic Chemistry, RCEES, after completing her Ph.D. in 2017. Her early projects focused on optimizing coagulation and oxidation techniques for algal control in raw water. In 2021, she was promoted to Associate Professor, reflecting her consistent contributions to national research projects and high-impact publications. At RCEES, she actively leads interdisciplinary research teams and collaborates with national water management agencies. Dr. Qi’s role encompasses both academic and applied dimensions—ranging from supervising postgraduate students and publishing scholarly work to developing patentable technologies for algae removal. Her involvement in applied environmental chemistry has made her a sought-after expert for improving China’s municipal water treatment processes. Her research group integrates biochemical, ecological, and technological strategies to mitigate algal blooms and associated pollutants in freshwater systems.

🏅Awards: 

Dr. Jing Qi has received multiple commendations for her innovative contributions to environmental science and water treatment. She has been a principal investigator on several prestigious grants from the National Natural Science Foundation of China, supporting her pioneering studies in algal oxidative stress and flocculation enhancement. Her research excellence has earned her awards for technological innovation and patent development within the Chinese Academy of Sciences. Dr. Qi has also been invited to present at national conferences and recognized for excellence in young scientist research forums. Her eight national invention patents on algae control and water purification reflect both scientific novelty and real-world impact. Additionally, several of her papers have been listed as highly cited in their respective journals. These honors underscore her position as a thought leader in aquatic environmental chemistry and a contributor to public health through improved drinking water technologies.

🔬Research Focus:

Dr. Jing Qi’s research primarily addresses the ecological and chemical mechanisms underlying algae removal and secondary pollution control in aquatic systems. Her focus includes the growth regulation and metabolic dynamics of algae in raw water, oxidative stress responses to disinfectants, and the microbial interactions between algae and bacteria. She investigates how algal organic matter contributes to pollution during water treatment and explores techniques such as pre-oxidation, enhanced flocculation, and photocatalysis to mitigate these effects. A distinctive feature of her work is the integration of biochemical analysis with environmental engineering solutions, ensuring both mechanistic understanding and practical application. Dr. Qi also explores microplastic-algae interactions, emerging pollutants, and their impact on trophic dynamics in aquatic food webs. Her interdisciplinary approach—combining microbiology, chemistry, and materials science—provides innovative strategies for sustainable drinking water treatment and eutrophication prevention, contributing directly to national and global environmental quality goals.

Publication Top Notes:

1. Environmental Gradient Changes Shape Multi-Scale Food Web Structures: Impact on Antibiotics Trophic Transfer in a Lake Ecosystem

2. Bipartite Trophic Levels Cannot Resist the Interference of Microplastics: A Case Study of Submerged Macrophytes and Snail

3. Prechlorination of Algae-Laden Water: The Effects of Ammonia on Chlorinated Disinfection Byproduct Formation During Long-Distance Transportation

 

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki , Environmental Chemistry , Jan Evangelista Purkyne University , Czech Republic

Dr. Karim Al Souki is a postdoctoral researcher and assistant professor at the Faculty of Environment, Jan Evangelista Purkyne University (UJEP), Czechia. With a Ph.D. in Earth and Universe Sciences from Lille 1 University, France, his academic journey reflects a strong foundation in plant biology and environmental sciences. Dr. Al Souki’s research spans phytoremediation, bioremediation, biochar utilization, and climate change mitigation through sustainable phytotechnology. He is a key contributor to international projects funded by NATO, Erasmus+, and Interreg, focusing on ecosystem restoration, water management, and environmental biotechnology. As an educator, he has taught courses across Europe on subjects such as environmental biotechnology, phytotechnology, and bio-economy. Dr. Al Souki’s interdisciplinary approach blends ecological theory with applied environmental solutions, making significant contributions to marginal land restoration and water pollution mitigation. His work promotes sustainability, ecological awareness, and environmental resilience through innovation and education.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

With a Ph.D. in Earth and Universe Sciences from Lille 1 University (France), and two Master’s degrees in Phyto-ecology and Plant Biology from Lebanese University, Dr. Karim Al Souki demonstrates a solid and multidisciplinary academic foundation. Dr. Karim Al Souki  leads and contributes to cutting-edge projects on phytoremediation, biochar technology, and environmental biotechnology—directly addressing climate change, pollution mitigation, and sustainable soil management. His research covers analytical techniques (FTIR, TGA, stable isotopes, DNA extraction), linking practical fieldwork with lab-based precision, ensuring both academic rigor and societal relevance. His role as project supervisor in initiatives like IDEAL and NATO-SPS illustrates leadership in shaping future environmental policies and technologies. Dr. Karim Al Souki is an ideal candidate for the “Best Researcher Award”, given his consistent, interdisciplinary contributions to environmental sciences. His research directly supports global sustainability goals through practical, innovative, and scalable solutions. Furthermore, his educational outreach, cross-border collaborations, and commitment to solving real-world ecological problems distinguish him as a researcher of international repute. This award would recognize and further empower his impactful scientific journey.

🎓Education:

Dr. Al Souki pursued his academic studies in biology and environmental sciences. He earned his Bachelor’s degree in General Biology (2008–2010), followed by a Master 1 in Plant Biology and Environment (2010–2011), and a Master 2 in Phyto-ecology, Resources, and Security Applications (2011–2012), all from Lebanese University, Lebanon. He then completed his Ph.D. in Earth and Universe Sciences at LGCgE, ISA-Lille, Lille 1 University of Sciences and Technologies, France (2014–2017). His academic foundation combines ecological sciences, environmental applications, and molecular understanding of plant-soil interactions. This educational pathway equipped him with the necessary tools to integrate ecological theory with practical environmental solutions. His training in Europe and the Middle East enabled him to adopt a multidisciplinary perspective and work in cross-cultural academic and research environments. His education has laid the groundwork for his specialization in environmental biotechnology, phytoremediation, and biochar applications.

🏢Work Experience:

Since October 2018, Dr. Karim Al Souki has been serving as a Post-doctoral researcher and Assistant Professor at UJEP, Czechia, where he teaches and conducts advanced research in environmental sciences. His prior experience includes teaching roles at ESME Sudria (France) and private institutions in Lille, where he lectured in phytoecology, molecular biology, and environmental science. He has supervised and contributed to numerous EU- and NATO-funded projects related to phytotechnology, biochar, soil-plant interactions, and wastewater treatment. His pedagogical contributions span multiple European universities and platforms, such as Erasmus, COIL, and ISA-Lille. He has taught subjects including Bioremediation, Bio-economy, Environmental Biotechnology, and Climate Change. Dr. Al Souki’s interdisciplinary teaching and research experience enable him to link theoretical knowledge with field-based applications, fostering student engagement and scientific problem-solving skills relevant to contemporary ecological challenges.

🏅Awards: 

Dr. Karim Al Souki has been recognized for his impactful research and cross-border educational initiatives. He is the Principal Investigator or Supervisor on several prestigious projects funded by international agencies such as NATO Science for Peace and Security Programme, Interreg (IDEAL project), and Erasmus+, highlighting his leadership in environmental science and sustainability education. He received the UJEP Internal Grant Agency funding multiple times (2021–2023), supporting his innovative work on biochar and Miscanthus x giganteus in soil restoration. He was awarded the Usti nad Labem region grant for young researchers for his study on quinoa in polluted soils. His consistent success in securing competitive research grants attests to the scientific merit and societal relevance of his projects. These accolades recognize his commitment to ecosystem services, educational outreach, and environmental restoration, and affirm his role as a rising figure in applied environmental sciences and international academic collaboration.

🔬Research Focus:

Dr. Al Souki’s research centers on phytotechnology, bioremediation, biochar characterization, and ecosystem service enhancement in marginal and contaminated soils. He specializes in using Miscanthus x giganteus and quinoa to rehabilitate former military lands and toxic-element-polluted environments. His research integrates stable isotope analysis, DNA-based microbial community profiling, and plant physiological assessments to explore rhizospheric interactions, nutrient cycling, and carbon sequestration. His work on biochar, especially its physico-chemical and ecotoxicological properties, supports sustainable agricultural and water reuse practices. His active projects include NATO-funded studies on climate change mitigation and EU-supported educational modules for water sustainability in the Elbe/Labe basin. His interdisciplinary approach links environmental microbiology, plant ecophysiology, and green chemistry, targeting real-world environmental problems with practical, nature-based solutions. His goal is to bridge science and education to improve soil health, water quality, and resilience against climate change.

Publication Top Notes:

1. An overview of potentially toxic element pollution in soil around lead–zinc mining areas

2. A comprehensive evaluation of the environmental and health risks associated with the potential utilization of chars produced from tires, electro-waste plastics and biomass

3. Characterizations of ash derived from the crops’ waste biomass for soil improvement and assisted phytoremediation

4. A 6-year review status on soil pollution in coal mining areas from Europe

5. Extracted rapeseed meal biochar combined with digestate as a soil amendment: Effect on lettuce (Lactuca sativa L.) biomass yield and concentration of bioavailable element fraction in the soil

6. Miscanthus x giganteus stress tolerance and phytoremediation capacities in highly diesel contaminated soils

7. The influence of diesel contaminated soil on Miscanthus x giganteus biomass thermal utilization and pyrolysis products composition

8. Evaluation of Miscanthus × giganteus Tolerance to Trace Element Stress: Field Experiment with Soils Possessing Gradient Cd, Pb, and Zn Concentrations

9. Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate

10. Utilization of Biochar for Eliminating Residual Pharmaceuticals from Wastewater Used in Agricultural Irrigation: Application to Ryegrass

 

 

 

 

Mr. Frédéric Pignon | Chemical Engineering | Best Researcher Award

Mr. Frédéric Pignon | Chemical Engineering | Best Researcher Award

Mr. Frédéric Pignon , Chemical Engineering ,Senior Scientist at CNRS/Laboratoire Rhéologie et Procédés, France

Frédéric Pignon is a Senior Scientist (Directeur de Recherche, DR1) at CNRS, affiliated with the Laboratoire Rhéologie et Procédés (LRP), UMR 5520, Grenoble, France.🇫🇷, he specializes in fluid mechanics and soft matter rheology. With over 25 years of expertise, Pignon has significantly contributed to the understanding of the multiscale structural behavior of anisotropic dispersions under various flow conditions. His pioneering development of in situ experimental setups has enabled novel insights into flow-structure relationships using SAXS, SANS, SALS, and ultrasound techniques. He holds an h-index of 32 📊, with 76 international publications, 2 patents, and numerous invited talks globally . Apart from research, he actively contributes to scientific evaluation committees and review panels including ANR, HCERES, and ESRF. His collaborations span leading institutions in Europe, North America, and Asia, positioning him as a key figure in advanced rheological material research.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Pignon holds a Ph.D. in Fluid Mechanics and Transfer (1997, Grenoble-INP), with prior DEA in the same field. His formal training is strongly aligned with his long-term research focus in rheology and multiscale fluid dynamics. He has published 76 peer-reviewed international journal papers, presented in 97 international conferences (including 8 invited talks), and holds 2 patents. His h-index of 32 demonstrates sustained impact in his field. His research uniquely combines rheometric properties with nanoscale-to-microscale structural characterization using advanced techniques such as SAXS, SALS, and optical methods. These contributions have significantly advanced the understanding of flow-induced behavior in complex fluids and materials. Dr. Frédéric Pignon’s pioneering research, prolific publication record, significant mentoring, leadership in scientific boards, and innovative patent contributions make him exceptionally well-qualified for the “Best Researcher Award”. His work bridges theoretical insight with experimental innovation in fluid mechanics and nanostructured systems, making a deep impact on science and industry alike. He is a model of scientific excellence and leadership.

🎓Education:

Frédéric Pignon pursued higher education in engineering and fluid mechanics in France. In 1993, he earned his D.E.A. (Diplôme d’Études Approfondies) in Fluid Mechanics and Transfer from Grenoble-INP, one of France’s premier engineering institutions 🎓. He deepened his specialization by completing a Ph.D. in Fluid Mechanics and Transfer at the same institution in January 1997, underlining his early interest in the microstructural behavior of complex fluids. His doctoral research laid the foundation for his later pioneering work in multiscale flow characterization. Pignon’s strong academic formation in physics, transport phenomena, and complex systems gave him a robust foundation to innovate in rheometry and structural analysis of soft matter systems. His academic path reflects a consistent focus on multidisciplinary approaches to fluid behavior, bridging physics, materials science, and applied engineering.

🏢Work Experience:

Frédéric Pignon has held leading research positions within the CNRS system for over two decades 🧪. Since October 2013, he serves as Senior Scientist (DR1) at CNRS-LRP, following a 14-year tenure (1999–2013) as Research Scientist (CR1). Earlier, he conducted postdoctoral research at ESRF’s ID28 Beamline (1999) and Laboratoire Rhéologie et Procédés (LRP) (1997–1998) 🔬. His research career is defined by designing cutting-edge experimental cells that integrate rheology with structural probes (SAXS/SANS/optical methods). He supervises Ph.D. students and postdoctoral researchers, participates actively in international collaborations, and leads major research projects across France and Europe. Pignon’s extensive academic and industrial network has facilitated groundbreaking studies on anisotropic particles, biopolymers, and colloids under dynamic conditions. He also contributes to scientific governance through involvement in evaluation panels (ESRF, ANR, HCERES), steering strategic research and innovation.

🏅Awards: 

Frédéric Pignon’s research excellence has been recognized through leadership roles, panel appointments, and competitive research funding . He is a long-standing member of the ESRF Review Committee (Panel C08) (2014–present) and served on France’s ANR CES 09 panel (2018). He also contributed to institutional evaluation through HCERES Committee vague C (2016–2017). As Co-PI of Labex Tec 21 (2013–2021) and scientific coordinator for Carnot PolyNat Institute projects, he has driven interdisciplinary research strategies. Pignon holds two patents, including one on thixotropic hydrogels and another on an ultrasound-enhanced filtration device 🔬. He has secured significant funding from national and regional sources (ANR, SATT, Région Bretagne), supervising several Ph.D. and postdoctoral projects. His work is frequently cited and referenced in the scientific community, and he is a regular reviewer for top-tier journals and national research proposals, having completed 83 international journal reviews and 7 ANR project reviews.

🔬Research Focus:

Frédéric Pignon’s research bridges rheology, soft matter physics, and multiscale characterization. His expertise lies in understanding how anisotropic particles—like cellulose nanocrystals and clay platelets—organize under flow, pressure, or acoustic fields. By developing custom in situ setups integrating rheometers with SAXS, SANS, birefringence, and SALS, he studies how microstructure impacts mechanical properties during dynamic processing. His group investigates orientation, aggregation, concentration polarization, and gelation in suspensions, particularly during cross-flow filtration and ultrasound exposure. He also explores bio-based nanomaterials and the physical behavior of hydrogels, enabling applications in biotechnology and green materials. Collaborating with synchrotron and neutron facilities, he probes structures from nanometer to micrometer scales. Projects like ANR ANISOFILM and Memus (SATT Linksium) showcase his role in advancing filtration, structural control, and nanocomposite design. His research is highly interdisciplinary, combining physics, chemistry, and process engineering.

Publication Top Notes:

1. Multi-scale investigation of the effect of photocurable polyethylene glycol diacrylate (PEGDA) on the self-assembly of cellulose nanocrystals (CNCs)

2. A self-cleaning biocatalytic membrane with adjusted polyphenol deposition for edible oil-water separation

3. A scalable and eco-friendly carbohydrate-based oleogelator for vitamin E controlled delivery

4. Orthotropic organization of a cellulose nanocrystal suspension realized via the combined action of frontal ultrafiltration and ultrasound as revealed by in situ SAXS

5. Viologen-based supramolecular crystal gels: gelation kinetics and sensitivity to temperature

6. Molecular mechanism of casein-chitosan fouling during microfiltration

7. Multiscale investigation of viscoelastic properties of aqueous solutions of sodium alginate and evaluation of their biocompatibility

8. Self-supported MOF/cellulose-nanocrystals materials designed from ultrafiltration

9. Orientation of Cellulose Nanocrystals Controlled in Perpendicular Directions by Combined Shear Flow and Ultrasound Waves Studied by Small-Angle X-ray Scattering

10. Effect of Polymer Length on the Adsorption onto Aluminogermanate Imogolite Nanotubes

Citations: 3​

11. Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS