Dr. Faranak Hatami | Computational Chemistry | Best Researcher Award

Dr. Faranak Hatami | Computational Chemistry | Best Researcher Award

Dr. Faranak Hatami , Computational Chemistry , PhD at University of massachuessetes Lowell, United States

Faranak Hatami (Fara) is a dedicated physicist and researcher specializing in molecular dynamics simulations, machine learning, and nuclear materials science. Currently pursuing her Ph.D. in Physics at the University of Massachusetts Lowell, she focuses on transport property analysis and multi-objective optimization for molecular systems like Tri-Butyl-Phosphate (TBP). Faranak holds two master’s degrees—one in Physics from UMASS Lowell, where she explored force fields for TBP, and another in Nuclear Engineering from Shahid Beheshti University, where she investigated radiation damage in metals. With a robust background in computational physics, AI, and advanced simulation tools, she has authored multiple publications across nuclear materials and computational chemistry. Her teaching experience spans both the U.S. and Iran, reflecting her passion for education. Beyond academia, she completed a research internship at the University of Montreal. Faranak’s work bridges fundamental physics and practical applications, contributing innovative insights to the fields of material science and chemical engineering.

Professional Profile : 

Google Scholar 

Summary of Suitability for Award:

Faranak Hatami is a highly suitable candidate for a “Best Researcher Award”. She demonstrates exceptional multidisciplinary expertise spanning physics, molecular dynamics, machine learning, and nuclear materials science. Her Ph.D. work at UMASS Lowell innovatively combines atomic-scale simulations with AI to optimize force field parameters for Tri-Butyl-Phosphate, addressing both fundamental science and practical applications.  She has authored several impactful publications in reputable journals and preprints, covering diverse topics from radiation damage in metals to machine learning models predicting thermodynamic properties. Her research portfolio includes complex computational modeling, multi-objective optimization, and advanced materials analysis. Additionally, Faranak’s teaching record and successful research internship in Canada reflect her commitment to knowledge dissemination and international collaboration. Her ability to merge computational physics with machine learning showcases originality and forward-thinking, key attributes for top research honors. Faranak Hatami embodies the qualities of a best researcher: scientific rigor, innovative thinking, multidisciplinary skillset, and impactful publications. Her contributions significantly advance computational methods in physical sciences and engineering, making her a strong and deserving candidate for a “Best Researcher Award”.

🎓Education:

 Faranak Hatami is completing her Ph.D. in Physics at the University of Massachusetts Lowell (2021–2025), with her thesis focused on transport property analysis and optimization of force field parameters for Tri-Butyl-Phosphate (TBP), combining atomic-scale simulations with machine learning. Prior to this, she earned her M.Sc. in Physics from the same university in 2023, where she conducted a comparative study of force fields for liquid TBP using molecular dynamics. Earlier, she obtained her M.Sc. in Nuclear Engineering from Shahid Beheshti University in Iran (2016), where she examined radiation damage effects on zirconium and iron grain boundaries through simulations. Her academic journey began with a B.S. in Electrical Engineering from Kurdistan University in 2013. Throughout her studies, Faranak has integrated advanced computational methods, AI, and experimental data analysis, building a multidisciplinary foundation that connects physics, materials science, and engineering disciplines.

🏢Work Experience:

Faranak Hatami brings diverse experience across research, teaching, and technical projects. At UMASS Lowell, she serves as a Teaching Assistant in Physics while pursuing her Ph.D., guiding students through complex concepts. Previously, she lectured on Computational Methods and Statistical Methods and Physics courses at Shahid Beheshti University between 2014 and 2018. Her research career includes an internship at the University of Montreal (2019–2021), exploring hydrogen’s effects on iron grain boundaries using the kinetic activation relaxation technique (k-ART). Faranak has led significant academic projects spanning molecular dynamics simulations, multi-objective optimization, and machine learning applications in material science. She has deep expertise in computational tools such as LAMMPS, MCNP, VASP, and Python-based AI frameworks. Her work reflects a unique blend of fundamental physics research, practical problem-solving, and advanced data analysis, contributing to fields like chemical engineering, nuclear materials, and computational modeling.

🏅Awards: 

 Faranak Hatami has built an impressive research portfolio during her academic career, reflected in multiple publications and conference presentations. While specific named awards were not explicitly listed in her profile, her contributions have earned her recognition through invited presentations such as at the AIChE Annual Meeting, showcasing her expertise in molecular dynamics simulations and force field optimization. Completing dual M.Sc. degrees in Physics and Nuclear Engineering highlights her dedication and academic excellence. Her selection as a research intern at the University of Montreal, working on advanced computational studies in materials science, further underscores her capability and esteem in her field. Through her multidisciplinary approach integrating AI, molecular modeling, and nuclear materials science, she stands out as a rising scholar contributing valuable insights to computational physics and chemical engineering. As she advances her Ph.D., she is poised for further accolades in research innovation and scientific community engagement.

🔬Research Focus:

 Faranak Hatami focuses her research on the intersection of molecular dynamics simulations, machine learning, and materials science. Her Ph.D. work centers on analyzing transport properties and optimizing force field parameters for Tri-Butyl-Phosphate (TBP) using multi-objective optimization algorithms like NSGA-II/III. She applies molecular dynamics to predict critical thermodynamic and transport properties, integrating neural networks for parameter tuning. Additionally, she explores AI-based classification of microscopy and atomic-scale images, blending physics with cutting-edge data science. Faranak’s earlier research in nuclear engineering examined radiation damage in metals such as zirconium and nickel, utilizing techniques like climbing image nudged elastic band (CI-NEB) for defect analysis. She’s also investigated hydration free energies, grain boundary behaviors, and primary knock-on atom (PKA) spectra in irradiated materials. Her work bridges computational physics with practical engineering challenges, advancing predictive models and simulation methods to better understand complex molecular and material systems.

Publication Top Notes:

Comparative Analysis of Machine Learning Models for Predicting Viscosity in Tri-n-Butyl Phosphate Mixtures Using Experimental Data

Citations: 6

Quantification of Methane Hydration Energy Through Free Energy Perturbation Method

Comparison of Different Machine Learning Approaches to Predict Viscosity of Tri-n-Butyl Phosphate Mixtures Using Experimental Data

Citations: 3

Properties of Tri-Butyl-Phosphate from Polarizable Force Field MD Simulations

Citations: 1

A Revision of Classical Force Fields for Tri-N-Butyl Phosphate Molecular Dynamics Simulations

Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study

Citations: 34

An energetic and kinetic investigation of the role of different atomic grain boundaries in healing radiation damage in nickel

Citations: 31

Assist. Prof. Dr. Jonghyun Eun | Polymer Chemistry | Best Researcher Award

Assist. Prof. Dr. Jonghyun Eun | Polymer Chemistry | Best Researcher Award

Assist. Prof. Dr. Jonghyun Eun , Polymer Chemistry , Professor at Kumoh National Institute of Technology, South Korea

Dr. Jong-Hyun Eun is an Assistant Professor in the Department of Materials Design Engineering at Kumoh National Institute of Technology, Republic of Korea. With a strong background in textile engineering and advanced fiber materials, he specializes in carbon fiber technologies, piezoelectric nanofibers, and composite materials. He earned his integrated Master’s and Ph.D. from Yeungnam University under the mentorship of Prof. Joon-Seok Lee. His postdoctoral research journey included positions at Arizona State University and Yeungnam University, where he advanced his expertise in carbon fiber reinforced plastics (CFRPs), graphene-metal composites, and electrospun nanofibers. Dr. Eun has hands-on experience in fabricating and analyzing high-performance composites and energy harvesting materials, making him a rising researcher in the field. He also contributes actively to teaching, mentoring students in textile and fashion materials design. His recent publications highlight innovations in hydrogen storage, nanofiber processing, and sustainable composite development.

Professional Profile : 

Google Scholar

Orcid 

Summary of Suitability for Award:

Dr. Jong-Hyun Eun demonstrates a strong and dynamic research profile with focused expertise in carbon fiber technology, composite materials, piezoelectric nanofibers, and textile engineering—areas that are highly relevant to both academic advancement and industrial applications. His research is deeply interdisciplinary, integrating materials science, nanotechnology, and energy harvesting, aligning well with global trends in sustainable and smart materials. Dr. Jong-Hyun Eun is highly suitable for nomination for the “Best Researcher Award”. He brings together innovative research, technical excellence, and cross-disciplinary impact. His rapid trajectory from graduate studies to international postdoctoral work and faculty appointment, combined with a productive publication record and active teaching, makes him a strong contender. His ongoing contributions in composite materials and energy harvesting nanofibers address current scientific and technological challenges, fulfilling the criteria for excellence in research.

🎓Education:

Dr. Jong-Hyun Eun holds an integrated Master’s and Doctoral degree in Textile Engineering and Technology from Yeungnam University (2015–2021), where he conducted research under Prof. Joon-Seok Lee. His doctoral work focused on the development of polyethylene-based carbon fibers and composite materials. Prior to that, he completed a B.S. in Fiber and New Materials Design Engineering (2009–2015) at the same university, also under Prof. Lee’s guidance. Throughout his academic journey, Dr. Eun built a solid foundation in textile science, polymer engineering, and nanotechnology. His studies covered a range of topics from sulfonation processes under hydrostatic pressure to advanced electrospinning systems. His rigorous academic training has equipped him with both theoretical knowledge and extensive laboratory experience, paving the way for impactful research in fiber engineering and sustainable composite technologies.

🏢Work Experience:

Dr. Jong-Hyun Eun’s professional experience spans academia and cutting-edge research in fiber science and materials engineering. He currently serves as an Assistant Professor at Kumoh National Institute of Technology. Previously, he was a Postdoctoral Researcher at Arizona State University (2021–2023), focusing on material design and composite innovation. Before that, he held a postdoctoral position at Yeungnam University (2021), continuing his work in textile engineering. During his graduate studies, he also taught various courses at Korea Polytechnic, such as high-tech fiber, woven fabric formation, and textile material analysis. His hands-on experience includes fabricating carbon fiber composites through various molding techniques, developing piezoelectric nanofibers via electrospinning, and analyzing graphene-metal composites. Dr. Eun’s diverse research roles and teaching responsibilities have allowed him to bridge material science with real-world applications.

🏅Awards: 

While specific awards are not listed in the profile provided, Dr. Jong-Hyun Eun’s academic and professional achievements reflect a career of high distinction. Earning competitive postdoctoral positions at prestigious institutions like Arizona State University and Yeungnam University speaks to his expertise and scholarly recognition. His continuous collaboration with renowned Professor Joon-Seok Lee and multiple first-author publications in high-impact journals such as Scientific Reports, Materials & Design, and International Journal of Hydrogen Energy highlight his contributions to materials science and textile engineering. His role as a lead contributor in cutting-edge research on carbon fibers and composite materials demonstrates his leadership and innovation. As his career progresses, he is poised to receive further accolades in recognition of his impactful research and teaching in advanced materials engineering.

🔬Research Focus:

Dr. Jong-Hyun Eun’s research is centered on advanced fiber and composite materials, with a strong focus on sustainability and performance. His expertise includes carbon fiber development from polyethylene, toughening mechanisms in carbon fiber reinforced plastics (CFRPs), and mechanical/impact resistance analysis. He is also deeply engaged in developing piezoelectric nanofiber energy harvesting devices using electrospinning techniques, aiming at efficient wearable energy solutions. Additionally, his research extends to graphene-metal composites, exploring their structural and thermal properties. Through multidisciplinary approaches, Dr. Eun investigates reaction mechanisms, interfacial behavior, and processing-structure-property relationships in fiber-reinforced materials. His work is driven by a commitment to innovation in energy materials, lightweight composites, and next-generation textile engineering, making significant contributions to both academia and industry.

Publication Top Notes:

Effect of MWCNT content on the mechanical and piezoelectric properties of PVDF nanofibers
Citations: 83

Effect of low melting temperature polyamide fiber-interlaced carbon fiber braid fabric on the mechanical performance and fracture toughness of CFRP laminates
Citations: 32

Evaluation of carbon fiber and p-aramid composite for industrial helmet using simple cross-ply for protecting human heads
Authors: S. Kim, J. Lee, C. Roh, J. Eun, C. Kang
Citations: 32

Study on polyethylene-based carbon fibers obtained by sulfonation under hydrostatic pressure
Citations: 14

Effect of the viscosity of polyvinyl chloride resin and weaving structures of polyester fabric on the off-axis mechanical properties of PVC coated fabric
Citations: 9

Study on the NCO index and base knitted fabric substrates on the thermal, chemical, and mechanical properties of solvent-less formulations polyurethane artificial leather
Citations: 8

A study on mechanical properties and thermal properties of UHMWPE/MWCNT composite fiber with MWCNT content and draw ratio
Citations: 7

Effect of fabricating temperature on the mechanical properties of spread carbon fiber fabric composites
Citations: 7

Effect of toughened polyamide-coated carbon fiber fabric on the mechanical performance and fracture toughness of CFRP
Citations: 6

Effect of toughened polyamide/carbon fiber interlace braid fabric on the mechanical performance of CFRP laminates
Citations: 2

Dr. Satyen Kumar Das | Chemical Engineering | Best Researcher Award

Dr. Satyen Kumar Das | Chemical Engineering | Best Researcher Award

Dr. Satyen Kumar Das , Chemical Engineering ,  Chief General Manager at Indian Oil Corporation Limited, R&D Centre , India

Dr. Satyen Kumar Das is a distinguished Chemical Engineer and Chief General Manager at Indian Oil R&D Centre, leading the Refining Technology domain. Since joining Indian Oil in 1995, he has contributed nearly 30 years of cutting-edge research, commercialization, and troubleshooting in petroleum refining, sustainability, and circularity. He is recognized for pioneering indigenous technologies such as Ind-Coker, Needle Coke, INDMAX, and INDEcoP2F, significantly contributing to India’s energy innovation and self-reliance. With over 200 patents (144 granted globally) and 94 technical publications, his work bridges research and industry application seamlessly. Dr. Das is known for driving initiatives in crude-to-chemicals, bio-refinery, waste-to-energy, and CO₂ valorization. He has led the successful deployment of several commercial-scale processes and continues to champion green and circular technologies for a sustainable energy future. His leadership and innovation have earned him several prestigious national accolades, making him a key figure in India’s refining research landscape.

Professional Profile : 

Google Scholar 

Scopus

Summary of Suitability for Award:

Dr. Satyen Kumar Das is a seasoned chemical engineering researcher with nearly three decades of experience at the forefront of petroleum refining technology. As Chief General Manager at Indian Oil R&D, he has spearheaded groundbreaking innovations in residue upgradation, crude-to-chemicals, plastic circularity, and CO₂ valorization—making significant contributions toward energy sustainability and circular economy. He has led the commercialization of six major technologies and supported the operation of four commercial plants. With 210 patents filed (144 granted across multiple jurisdictions including the US, Europe, and India) and 94 journal and conference publications, his research has had both academic impact and industrial translation. Dr. Das has been honored by multiple national bodies, including the Ministry of Petroleum & Natural Gas (GoI), DSIR, and AIMA, for innovations like INDMAX, Needle Coke Technology, and IV- IZOMaxCATR. His work bridges fundamental research, applied technology, and commercial deployment, positioning him as a pioneer in refining technology and sustainable process development. Dr. Satyen Kumar Das exemplifies the qualities sought for the “Best Researcher Award”—originality, industrial relevance, academic excellence, and societal impact. His contributions have not only advanced the frontiers of petroleum research but also addressed critical environmental and sustainability challenges. He is an exceptional candidate for this prestigious recognition.

🎓Education:

Dr. Satyen Kumar Das holds a Ph.D. in Chemical Engineering from the Indian Institute of Technology (IIT) Delhi, where he specialized in advanced refining technologies. He earned his M.Tech in Chemical Engineering from IIT Kanpur, where he developed a strong foundation in process design, catalysis, and fuel technology. He began his academic journey with a B.Tech in Chemical Engineering from Calcutta University, where he demonstrated academic brilliance and curiosity for applied research. His academic path through premier institutions helped him cultivate expertise across petroleum refining, catalysis, process engineering, and materials chemistry. The rigorous and interdisciplinary training he received has been instrumental in his successful translation of R&D projects into commercial technologies. His educational background also laid the groundwork for his future role as a technocrat and innovator in India’s petroleum industry. His continuous learning mindset remains central to his leadership at Indian Oil R&D Centre.

🏢Work Experience:

Dr. Das began his professional journey at Indian Oil’s R&D Centre in 1995. Over nearly three decades, he has grown to become Chief General Manager, heading Refining Technology. From 1995 to 2013, he played a pivotal role in developing processes such as INDMAX, INDALIN, DIST-Extra, and MAXLIN. His technical services and troubleshooting expertise in FCC/RFCC/INDMAX made a significant impact on operational efficiency. From 2014 onward, he has been spearheading key initiatives including Ind-Coker, Crude to Chemicals, Needle Coke, and INDEcoP2F (plastic circularity). He has led technology commercialization efforts, driving innovations like MMO catalysts, Octamax, and IV- IZOMaxCATR. Dr. Das has overseen deployment of over 4 commercial technologies and filed over 210 patents, marking his influence on both national and global energy platforms. His forward-looking leadership also covers futuristic domains such as bio-refinery, CO₂ valorization, and advanced carbon materials, ensuring India’s alignment with energy sustainability goals.

🏅Awards: 

Dr. Satyen Kumar Das has been honored with numerous prestigious awards for his innovation in petroleum refining. He received the NPMP Award for INDMAX and Needle Coke technologies 🧪, and the DSIR Award for INDMAX commercialization 🛢️. The AIMA Award recognized his breakthroughs in R&D and AI integration 🤖. His energy-efficient, eco-friendly technologies, including Anode Grade Coker and IV- IZOMaxCATR, won accolades from the Ministry of Petroleum & Natural Gas (MOP&NG) . Notable recognitions include the Innovation Awards (2019-20, 2022-23, 2023-24) for technologies such as Delayed Coker and INDEcoP2F ♻️. In 2025, he was also awarded the JEWEL OF INDIA 🏅 for his outstanding contributions to petroleum science. These honors are a testament to his commitment to technological excellence, sustainability, and Atmanirbhar Bharat in the energy domain. His award-winning innovations have significantly strengthened India’s refining and circular economy capabilities.

🔬Research Focus:

Dr. Das’s research centers on refining technology innovation, petroleum residue upgrading, and sustainable energy solutions. He focuses on developing high-efficiency catalytic processes such as INDMAX and Ind-Coker 🛢️. His work emphasizes crude-to-chemicals conversion, light olefins production, and high-octane fuel blending components like Octamax and AmyleMax 🔄. A pioneer in circular economy research, he spearheads INDEcoP2F for plastic-to-fuel transformation ♻️. He also works on CO₂ valorization, specialty chemical synthesis, and advanced carbon materials 🌱. With a forward-looking vision, Dr. Das has launched multiple initiatives in bio-refinery, waste-to-energy, and indigenous catalyst development 🔋. His research integrates sustainability, process intensification, and commercial viability, shaping India’s roadmap towards energy security and carbon neutrality. Through 210+ patents and 94 publications, he bridges academic research and industrial application, ensuring innovation meets implementation. His focus continues to align with global trends in green refining and circular chemical engineering.

Publication Top Notes:

1. Multi stage selective catalytic cracking process and a system for producing high yield of middle distillate products from heavy hydrocarbon feedstocks

Authors: D Bhattacharyya, AK Das, AV Karthikeyani, SK Das, P Kasliwal, M Santra, …

Citations: 65

2. CO-hydrogenation of syngas to fuel using silica supported Fe–Cu–K catalysts: Effects of active components

Authors: SK Das, S Majhi, P Mohanty, KK Pant

Citations: 42

3. Process for catalytic cracking of petroleum based feed stocks

Authors: S Mandal, S Kumarshah, D Bhattacharyya, VLN Murthy, AK Das, S Singh, …

Citations: 41

4. CO-hydrogenation over silica supported iron based catalysts: Influence of potassium loading

Authors: SK Das, P Mohanty, S Majhi, KK Pant

Citations: 40

5. Upgradation of undesirable olefinic liquid hydrocarbon streams

Authors: AK Das, S Mandal, S Ghosh, D Bhattacharyya, GS Mishra, JK Dixit, …

Citations: 38

6. Stabilized dual zeolite single particle catalyst composition and a process thereof

Authors: MP Kuvettu, SK Ray, G Ravichandran, V Krishnan, SK Das, S Makhija, …

Citations: 31

7. Molecular-level structural insight into clarified oil by nuclear magnetic resonance (NMR) spectroscopy: estimation of hydrocarbon types and average structural parameters

Authors: S Mondal, A Yadav, R Kumar, V Bansal, SK Das, J Christopher, GS Kapur

Citations: 29

8. Process for simultaneous cracking of lighter and heavier hydrocarbon feed and system for the same

Authors: S Subramani, D Bhattacharyya, R Manna, SK Das, T Sarkar, S Rajagopal

Citations: 19

9. Dissecting the cohesiveness among aromatics, saturates and structural features of aromatics towards needle coke generation in DCU from clarified oil by analytical techniques

Authors: S Mondal, A Yadav, V Pandey, V Sugumaran, R Bagai, R Kumar, …

Citations: 13

10. Process for simultaneous cracking of lighter and heavier hydrocarbon feed and system for the same

Authors: S Subramani, D Bhattacharyya, R Manna, SK Das, T Sarkar, S Rajagopal

Citations: 13

11. Process for the production of needle coke

Authors: D Bhattacharyya, SV Kumaran, BVHP Gupta, P Kumar, AK Das, G Saidulu, …

Citations: 8

12. Delayed coker drum and method of operating thereof

Authors: THVD Prasad, PR Pradeep, SK Das, JK Dixit, G Thapa, D Bhattacharyya, …

Citations: 7

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki , Environmental Chemistry , Jan Evangelista Purkyne University , Czech Republic

Dr. Karim Al Souki is a postdoctoral researcher and assistant professor at the Faculty of Environment, Jan Evangelista Purkyne University (UJEP), Czechia. With a Ph.D. in Earth and Universe Sciences from Lille 1 University, France, his academic journey reflects a strong foundation in plant biology and environmental sciences. Dr. Al Souki’s research spans phytoremediation, bioremediation, biochar utilization, and climate change mitigation through sustainable phytotechnology. He is a key contributor to international projects funded by NATO, Erasmus+, and Interreg, focusing on ecosystem restoration, water management, and environmental biotechnology. As an educator, he has taught courses across Europe on subjects such as environmental biotechnology, phytotechnology, and bio-economy. Dr. Al Souki’s interdisciplinary approach blends ecological theory with applied environmental solutions, making significant contributions to marginal land restoration and water pollution mitigation. His work promotes sustainability, ecological awareness, and environmental resilience through innovation and education.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

With a Ph.D. in Earth and Universe Sciences from Lille 1 University (France), and two Master’s degrees in Phyto-ecology and Plant Biology from Lebanese University, Dr. Karim Al Souki demonstrates a solid and multidisciplinary academic foundation. Dr. Karim Al Souki  leads and contributes to cutting-edge projects on phytoremediation, biochar technology, and environmental biotechnology—directly addressing climate change, pollution mitigation, and sustainable soil management. His research covers analytical techniques (FTIR, TGA, stable isotopes, DNA extraction), linking practical fieldwork with lab-based precision, ensuring both academic rigor and societal relevance. His role as project supervisor in initiatives like IDEAL and NATO-SPS illustrates leadership in shaping future environmental policies and technologies. Dr. Karim Al Souki is an ideal candidate for the “Best Researcher Award”, given his consistent, interdisciplinary contributions to environmental sciences. His research directly supports global sustainability goals through practical, innovative, and scalable solutions. Furthermore, his educational outreach, cross-border collaborations, and commitment to solving real-world ecological problems distinguish him as a researcher of international repute. This award would recognize and further empower his impactful scientific journey.

🎓Education:

Dr. Al Souki pursued his academic studies in biology and environmental sciences. He earned his Bachelor’s degree in General Biology (2008–2010), followed by a Master 1 in Plant Biology and Environment (2010–2011), and a Master 2 in Phyto-ecology, Resources, and Security Applications (2011–2012), all from Lebanese University, Lebanon. He then completed his Ph.D. in Earth and Universe Sciences at LGCgE, ISA-Lille, Lille 1 University of Sciences and Technologies, France (2014–2017). His academic foundation combines ecological sciences, environmental applications, and molecular understanding of plant-soil interactions. This educational pathway equipped him with the necessary tools to integrate ecological theory with practical environmental solutions. His training in Europe and the Middle East enabled him to adopt a multidisciplinary perspective and work in cross-cultural academic and research environments. His education has laid the groundwork for his specialization in environmental biotechnology, phytoremediation, and biochar applications.

🏢Work Experience:

Since October 2018, Dr. Karim Al Souki has been serving as a Post-doctoral researcher and Assistant Professor at UJEP, Czechia, where he teaches and conducts advanced research in environmental sciences. His prior experience includes teaching roles at ESME Sudria (France) and private institutions in Lille, where he lectured in phytoecology, molecular biology, and environmental science. He has supervised and contributed to numerous EU- and NATO-funded projects related to phytotechnology, biochar, soil-plant interactions, and wastewater treatment. His pedagogical contributions span multiple European universities and platforms, such as Erasmus, COIL, and ISA-Lille. He has taught subjects including Bioremediation, Bio-economy, Environmental Biotechnology, and Climate Change. Dr. Al Souki’s interdisciplinary teaching and research experience enable him to link theoretical knowledge with field-based applications, fostering student engagement and scientific problem-solving skills relevant to contemporary ecological challenges.

🏅Awards: 

Dr. Karim Al Souki has been recognized for his impactful research and cross-border educational initiatives. He is the Principal Investigator or Supervisor on several prestigious projects funded by international agencies such as NATO Science for Peace and Security Programme, Interreg (IDEAL project), and Erasmus+, highlighting his leadership in environmental science and sustainability education. He received the UJEP Internal Grant Agency funding multiple times (2021–2023), supporting his innovative work on biochar and Miscanthus x giganteus in soil restoration. He was awarded the Usti nad Labem region grant for young researchers for his study on quinoa in polluted soils. His consistent success in securing competitive research grants attests to the scientific merit and societal relevance of his projects. These accolades recognize his commitment to ecosystem services, educational outreach, and environmental restoration, and affirm his role as a rising figure in applied environmental sciences and international academic collaboration.

🔬Research Focus:

Dr. Al Souki’s research centers on phytotechnology, bioremediation, biochar characterization, and ecosystem service enhancement in marginal and contaminated soils. He specializes in using Miscanthus x giganteus and quinoa to rehabilitate former military lands and toxic-element-polluted environments. His research integrates stable isotope analysis, DNA-based microbial community profiling, and plant physiological assessments to explore rhizospheric interactions, nutrient cycling, and carbon sequestration. His work on biochar, especially its physico-chemical and ecotoxicological properties, supports sustainable agricultural and water reuse practices. His active projects include NATO-funded studies on climate change mitigation and EU-supported educational modules for water sustainability in the Elbe/Labe basin. His interdisciplinary approach links environmental microbiology, plant ecophysiology, and green chemistry, targeting real-world environmental problems with practical, nature-based solutions. His goal is to bridge science and education to improve soil health, water quality, and resilience against climate change.

Publication Top Notes:

1. An overview of potentially toxic element pollution in soil around lead–zinc mining areas

2. A comprehensive evaluation of the environmental and health risks associated with the potential utilization of chars produced from tires, electro-waste plastics and biomass

3. Characterizations of ash derived from the crops’ waste biomass for soil improvement and assisted phytoremediation

4. A 6-year review status on soil pollution in coal mining areas from Europe

5. Extracted rapeseed meal biochar combined with digestate as a soil amendment: Effect on lettuce (Lactuca sativa L.) biomass yield and concentration of bioavailable element fraction in the soil

6. Miscanthus x giganteus stress tolerance and phytoremediation capacities in highly diesel contaminated soils

7. The influence of diesel contaminated soil on Miscanthus x giganteus biomass thermal utilization and pyrolysis products composition

8. Evaluation of Miscanthus × giganteus Tolerance to Trace Element Stress: Field Experiment with Soils Possessing Gradient Cd, Pb, and Zn Concentrations

9. Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate

10. Utilization of Biochar for Eliminating Residual Pharmaceuticals from Wastewater Used in Agricultural Irrigation: Application to Ryegrass

 

 

 

 

Mr. Frédéric Pignon | Chemical Engineering | Best Researcher Award

Mr. Frédéric Pignon | Chemical Engineering | Best Researcher Award

Mr. Frédéric Pignon , Chemical Engineering ,Senior Scientist at CNRS/Laboratoire Rhéologie et Procédés, France

Frédéric Pignon is a Senior Scientist (Directeur de Recherche, DR1) at CNRS, affiliated with the Laboratoire Rhéologie et Procédés (LRP), UMR 5520, Grenoble, France.🇫🇷, he specializes in fluid mechanics and soft matter rheology. With over 25 years of expertise, Pignon has significantly contributed to the understanding of the multiscale structural behavior of anisotropic dispersions under various flow conditions. His pioneering development of in situ experimental setups has enabled novel insights into flow-structure relationships using SAXS, SANS, SALS, and ultrasound techniques. He holds an h-index of 32 📊, with 76 international publications, 2 patents, and numerous invited talks globally . Apart from research, he actively contributes to scientific evaluation committees and review panels including ANR, HCERES, and ESRF. His collaborations span leading institutions in Europe, North America, and Asia, positioning him as a key figure in advanced rheological material research.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Pignon holds a Ph.D. in Fluid Mechanics and Transfer (1997, Grenoble-INP), with prior DEA in the same field. His formal training is strongly aligned with his long-term research focus in rheology and multiscale fluid dynamics. He has published 76 peer-reviewed international journal papers, presented in 97 international conferences (including 8 invited talks), and holds 2 patents. His h-index of 32 demonstrates sustained impact in his field. His research uniquely combines rheometric properties with nanoscale-to-microscale structural characterization using advanced techniques such as SAXS, SALS, and optical methods. These contributions have significantly advanced the understanding of flow-induced behavior in complex fluids and materials. Dr. Frédéric Pignon’s pioneering research, prolific publication record, significant mentoring, leadership in scientific boards, and innovative patent contributions make him exceptionally well-qualified for the “Best Researcher Award”. His work bridges theoretical insight with experimental innovation in fluid mechanics and nanostructured systems, making a deep impact on science and industry alike. He is a model of scientific excellence and leadership.

🎓Education:

Frédéric Pignon pursued higher education in engineering and fluid mechanics in France. In 1993, he earned his D.E.A. (Diplôme d’Études Approfondies) in Fluid Mechanics and Transfer from Grenoble-INP, one of France’s premier engineering institutions 🎓. He deepened his specialization by completing a Ph.D. in Fluid Mechanics and Transfer at the same institution in January 1997, underlining his early interest in the microstructural behavior of complex fluids. His doctoral research laid the foundation for his later pioneering work in multiscale flow characterization. Pignon’s strong academic formation in physics, transport phenomena, and complex systems gave him a robust foundation to innovate in rheometry and structural analysis of soft matter systems. His academic path reflects a consistent focus on multidisciplinary approaches to fluid behavior, bridging physics, materials science, and applied engineering.

🏢Work Experience:

Frédéric Pignon has held leading research positions within the CNRS system for over two decades 🧪. Since October 2013, he serves as Senior Scientist (DR1) at CNRS-LRP, following a 14-year tenure (1999–2013) as Research Scientist (CR1). Earlier, he conducted postdoctoral research at ESRF’s ID28 Beamline (1999) and Laboratoire Rhéologie et Procédés (LRP) (1997–1998) 🔬. His research career is defined by designing cutting-edge experimental cells that integrate rheology with structural probes (SAXS/SANS/optical methods). He supervises Ph.D. students and postdoctoral researchers, participates actively in international collaborations, and leads major research projects across France and Europe. Pignon’s extensive academic and industrial network has facilitated groundbreaking studies on anisotropic particles, biopolymers, and colloids under dynamic conditions. He also contributes to scientific governance through involvement in evaluation panels (ESRF, ANR, HCERES), steering strategic research and innovation.

🏅Awards: 

Frédéric Pignon’s research excellence has been recognized through leadership roles, panel appointments, and competitive research funding . He is a long-standing member of the ESRF Review Committee (Panel C08) (2014–present) and served on France’s ANR CES 09 panel (2018). He also contributed to institutional evaluation through HCERES Committee vague C (2016–2017). As Co-PI of Labex Tec 21 (2013–2021) and scientific coordinator for Carnot PolyNat Institute projects, he has driven interdisciplinary research strategies. Pignon holds two patents, including one on thixotropic hydrogels and another on an ultrasound-enhanced filtration device 🔬. He has secured significant funding from national and regional sources (ANR, SATT, Région Bretagne), supervising several Ph.D. and postdoctoral projects. His work is frequently cited and referenced in the scientific community, and he is a regular reviewer for top-tier journals and national research proposals, having completed 83 international journal reviews and 7 ANR project reviews.

🔬Research Focus:

Frédéric Pignon’s research bridges rheology, soft matter physics, and multiscale characterization. His expertise lies in understanding how anisotropic particles—like cellulose nanocrystals and clay platelets—organize under flow, pressure, or acoustic fields. By developing custom in situ setups integrating rheometers with SAXS, SANS, birefringence, and SALS, he studies how microstructure impacts mechanical properties during dynamic processing. His group investigates orientation, aggregation, concentration polarization, and gelation in suspensions, particularly during cross-flow filtration and ultrasound exposure. He also explores bio-based nanomaterials and the physical behavior of hydrogels, enabling applications in biotechnology and green materials. Collaborating with synchrotron and neutron facilities, he probes structures from nanometer to micrometer scales. Projects like ANR ANISOFILM and Memus (SATT Linksium) showcase his role in advancing filtration, structural control, and nanocomposite design. His research is highly interdisciplinary, combining physics, chemistry, and process engineering.

Publication Top Notes:

1. Multi-scale investigation of the effect of photocurable polyethylene glycol diacrylate (PEGDA) on the self-assembly of cellulose nanocrystals (CNCs)

2. A self-cleaning biocatalytic membrane with adjusted polyphenol deposition for edible oil-water separation

3. A scalable and eco-friendly carbohydrate-based oleogelator for vitamin E controlled delivery

4. Orthotropic organization of a cellulose nanocrystal suspension realized via the combined action of frontal ultrafiltration and ultrasound as revealed by in situ SAXS

5. Viologen-based supramolecular crystal gels: gelation kinetics and sensitivity to temperature

6. Molecular mechanism of casein-chitosan fouling during microfiltration

7. Multiscale investigation of viscoelastic properties of aqueous solutions of sodium alginate and evaluation of their biocompatibility

8. Self-supported MOF/cellulose-nanocrystals materials designed from ultrafiltration

9. Orientation of Cellulose Nanocrystals Controlled in Perpendicular Directions by Combined Shear Flow and Ultrasound Waves Studied by Small-Angle X-ray Scattering

10. Effect of Polymer Length on the Adsorption onto Aluminogermanate Imogolite Nanotubes

Citations: 3​

11. Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS

 

Dr. Siyao Chen | Materials Chemistry | Best Researcher Award

Dr. Siyao Chen | Materials Chemistry | Best Researcher Award

Dr. Siyao Chen , Materials Chemistry , Senior research assistant at City University of Hong Kong , Hong Kong

Dr. Siyao Chen is a Senior Research Assistant at the City University of Hong Kong, specializing in additive manufacturing and polymer-derived ceramics. With an impressive track record in advanced material research, Dr. Chen has published 11 SCI-indexed papers, including two ESI highly cited works, amassing over 610 citations. He serves as an invited editor for Frontiers in Electronics and actively contributes as a peer reviewer for prestigious journals such as Aerospace Science and Technology and the Journal of the European Ceramic Society. His research has made significant strides in 3D/4D ceramic printing, smart sensors, and semiconductor applications. In addition to academic achievements, Dr. Chen has worked on two major research projects, collaborated on four industry consultancies, and is listed as an inventor on three patents. A rising figure in materials science, Dr. Chen’s work integrates cutting-edge technology with real-world applications, contributing meaningfully to the development of intelligent ceramic systems.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Chen has published 11 SCI-indexed papers, including 2 ESI highly cited works, demonstrating high-impact contributions. One of these papers has gathered over 610 citations, a remarkable achievement for an early-career researcher. His work in additive manufacturing, polymer-derived ceramics, and intelligent electronics is not only innovative but also addresses complex, high-tech engineering challenges. These fields are critical in both academic and industrial applications. He serves as an invited editor for Frontiers in Electronics and is a reviewer for top-tier journals like Aerospace Science and Technology and Journal of the European Ceramic Society, indicating recognition by peers in his domain. With 3 patents, 4 consultancy projects, and 2 ongoing research projects, Dr. Chen demonstrates both academic excellence and practical application, bridging the gap between theory and industry. Dr. Siyao Chen’s research excellence, demonstrated by high-impact publications, innovation through patents, editorial and peer-review contributions, and cross-disciplinary industrial collaborations, clearly qualify him as an exceptional candidate for the “Best Researcher Award.” His academic rigor and applied innovation mark him as a rising leader in materials science and engineering research.

🎓Education:

Dr. Siyao Chen earned his doctoral degree from City University of Hong Kong, where he laid the foundation for his expertise in additive manufacturing and ceramic. His academic training emphasized interdisciplinary knowledge at the intersection of materials engineering, mechanical design, and electronic systems. During his time at CityU, Dr. Chen developed critical skills in vat photopolymerization, polymer-derived ceramic processing, and microstructural design of smart ceramics. His graduate research focused on fabricating high-performance ceramic sensors and coatings using 3D/4D printing methods. Throughout his education, he was actively involved in publishing high-impact articles and contributing to collaborative research teams. His studies not only strengthened his theoretical foundation but also fostered practical lab experience, laying the groundwork for his continued academic and industrial research. The combination of rigorous education and hands-on innovation shaped Dr. Chen’s academic identity and enabled him to push boundaries in the field of intelligent ceramic-based electronics.

🏢Work Experience:

Dr. Siyao Chen currently works as a Senior Research Assistant at the City University of Hong Kong, where he leads multiple research efforts in the field of additive manufacturing and ceramic electronics. Over the years, he has contributed to both academic and industrial projects, participating in four consultancy collaborations and leading two significant research endeavors. He has also acted as a project coordinator for the development of smart ceramic sensors, coating systems, and semiconductor devices. His work includes guiding junior researchers, managing experimental workflows, and contributing to grant applications. Dr. Chen serves as a peer reviewer for several SCI-indexed journals and as an invited editor for Frontiers in Electronics, showcasing his academic authority. His multi-disciplinary experience, spanning ceramics, polymer chemistry, and semiconductor devices, equips him to work across diverse research environments. His consistent performance and hands-on innovation have made him a valuable member of the advanced materials research community.

🏅Awards: 

Although early in his career, Dr. Siyao Chen has achieved notable recognition in his field. He is the recipient of multiple citations in high-impact journals, including two ESI Highly Cited Papers — a significant mark of influence and excellence in scholarly research. His publication in Materials Science and Engineering: R: Reports alone has gathered over 550 citations. Additionally, he was invited to join the editorial board of Frontiers in Electronics, a testament to his research integrity and subject matter expertise. His role as a reviewer for high-tier journals such as the Journal of the European Ceramic Society and Aerospace Science and Technology also highlights his academic credibility. Dr. Chen’s patent contributions and collaboration in industrial projects demonstrate the practical impact of his work. With a growing reputation in the materials science community, he is an emerging leader in ceramic additive manufacturing and intelligent electronics.

🔬Research Focus:

Dr. Chen’s primary research interests lie in additive manufacturing, polymer-derived ceramics, and semiconductor applications. He focuses on the design and processing of smart ceramic materials using 3D/4D printing technologies. His work bridges traditional ceramics with modern electronics, enabling innovations in reconfigurable structures, temperature sensors, and electromagnetic devices. A key area of interest is the development of lightweight, high-performance ceramics with tunable properties, particularly for sensing, actuation, and aerospace applications. His recent projects explore vat photopolymerization for SiCN and SiBCN-based ceramics, real-time material behavior modeling, and coating technologies for extreme environments. He is also involved in stimuli-responsive material systems, contributing to the advancement of intelligent electronics. His interdisciplinary research integrates materials engineering, electronic design, and digital fabrication, offering scalable and programmable material solutions for future smart systems. By combining structural innovation with electronic functionality, Dr. Chen aims to reshape how materials are conceived and manufactured.

Publication Top Notes:

Title: Additive manufacturing of structural materials
Citations: 572

Title: Lightweight and geometrically complex ceramics derived from 4D printed shape memory precursor with reconfigurability and programmability for sensing and actuation applications
Citations: 43

Title: Fabrication of polymer-derived SiBCN ceramic temperature sensor with excellent sensing performance
Citations: 17

Title: Fabrication of electrical semi-conductive SiCN ceramics by vat photopolymerization
Citations: 8

Title: 3D/4D additive–subtractive manufacturing of heterogeneous ceramics
Citations: 5

Title: Temperature and frequency dependent conductive behavior study on polymer-derived SiBCN ceramics
Citations: 3

Title: Novel anti-oxidation coating prepared by polymer-derived ceramic for harsh environments up to 1200°C
Citations: 2

Title: Real-time Bayesian model calibration method for C/SiC mechanical behavior considering model bias
Citations: 1

Title: Recent advances in stimuli-responsive materials for intelligent electronics

Title: Oxidation behavior of TiB2 from 600–1400°C considering microstructure evolution, oxidation kinetics, and mechanisms

Title: Evolution of dielectric properties of SiBCN ceramics and its derived wireless passive temperature sensor application

Assoc. Prof. Dr. Akeem Arinkoola | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Akeem Arinkoola | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Akeem Arinkoola , Chemical Engineering ,Ladoke Akintola University of Technology, Ogbomoso, Nigeria

Dr. Akeem Olatunde Arinkoola is an accomplished Associate Professor in the Department of Chemical Engineering at Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Nigeria. With a career spanning both academia and industry, he has significantly contributed to the fields of petroleum and chemical engineering. His expertise covers product development, gas engineering, petroleum production, and uncertainty management. Dr. Arinkoola has successfully led and collaborated on several national and international research projects, including those funded by TETFUND and The Clay Minerals Society, USA. His innovations, such as the patented method for improving rheological properties of Nigerian bentonite clay, have been pivotal in enhancing oil and gas production technologies. He actively consults for major oil and gas companies in Nigeria and has contributed to the optimization of key oil fields. With over 90 publications, a patent, and a book chapter to his credit, he remains a driving force in applied petroleum research and development.

Professional Profile :         

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Akeem Olatunde Arinkoola exhibits a rare combination of academic rigor, innovative research, industrial application, and scientific impact, making him an exceptionally deserving candidate for the “Best Researcher Award”. His work addresses critical global challenges in energy, environment, and sustainable petroleum technologies. He not only meets but exceeds the benchmarks typically associated with award-winning research excellence.

🎓Education:

Dr. Arinkoola holds a Bachelor’s degree in Chemical Engineering and advanced degrees (M.Sc. and Ph.D.) in Petroleum Engineering. His educational journey reflects a strong foundation in core engineering principles and specialized training in oil and gas technologies. Through his postgraduate studies, he explored critical areas like drilling fluid formulation, reservoir modeling, and uncertainty analysis—fields that would later define his academic and consulting career. His Ph.D. work focused on the integration of locally available materials into drilling and production processes, an effort that led to his patented method in bentonite enhancement. His academic training was rooted in the Nigerian university system, and he has since continued to apply this foundation to address local and global challenges in petroleum engineering. His educational background has equipped him with not only technical depth but also interdisciplinary insight into environmental and operational challenges in energy resource management.

🏢Work Experience:

Dr. Arinkoola is an Associate Professor with vast academic and industry experience. At LAUTECH, he teaches and supervises research in petroleum engineering and chemical process development. His experience spans key areas including drilling fluid design, corrosion inhibition, and enhanced oil recovery. In industry, he has served as a consultant to major oil companies such as Total E&P Nigeria Ltd, ADDAX Nigeria Ltd, and Halliburton, providing field-level solutions like reservoir analysis, uncertainty management, and production optimization. Notably, he reduced the history matching time for the Akpo field reservoir and enhanced performance at Abana Field. His consultancy experience also includes the deployment of reservoir modeling templates used in training oil workers. As a project leader and collaborator, he has managed several grant-supported research efforts focused on Nigeria’s unique resource challenges. His dual engagement in academia and the energy industry reflects a balanced, impactful career committed to innovation and capacity building.

🏅Awards: 

Dr. Akeem Arinkoola has received several accolades and recognitions for his impactful contributions to petroleum and chemical engineering. Notably, he was a recipient of the prestigious TETFUND National Research Fund (NRF) for his work on bitumen polymeric modification using nano-additives. His collaborative project with The Clay Minerals Society (CMS), USA, was twice awarded a student research grant in 2016 and 2017—recognizing innovation in drilling fluid development. His patented method to enhance Nigerian bentonite clay reflects his commitment to local content and has been celebrated as a major milestone in Nigerian petroleum research. In industry circles, his consultancy roles have earned him accolades from partner companies for field performance improvements. Furthermore, his contribution as a book chapter author in an Elsevier publication underscores his international recognition. Dr. Arinkoola is also a registered engineer (COREN) and an active member of several prestigious professional organizations including NSE, SPE, and NSChE.

🔬Research Focus:

Dr. Arinkoola’s research is centered on petroleum production optimization, green chemical development, product innovation, and reservoir modeling under uncertainty. He specializes in the design of environmentally friendly drilling fluids, corrosion inhibitors, and enhanced recovery systems using indigenous materials. His pioneering work on improving rheological properties of potassium-based bentonite clay has resulted in a patented method with wide application in the oil industry. Current research efforts include the polymeric modification of bitumen using nano-additives for road durability and heavy oil producibility evaluation in the Niger Delta. He also leads work on chemical additives and polymer synthesis for improved drilling and reservoir performance. His integration of stochastic modeling frameworks has set a new standard for reservoir characterization and uncertainty analysis. Dr. Arinkoola’s research remains committed to solving real-world challenges in oil and gas operations while enhancing local content and sustainability in engineering solutions.

Publication Top Notes:

Title: Green corrosion inhibition and adsorption characteristics of Luffa cylindrica leaf extract on mild steel in hydrochloric acid environment

Citations: 197

Title: Thin layer drying of green microalgae (Chlorella sp.) paste biomass: Drying characteristics, energy requirement and mathematical modeling

Citations: 71

Title: Improving the demulsification process of heavy crude oil emulsion through blending with diluent

Citations: 62

Title: Optimization of operating parameters using response surface methodology for paraffin-wax deposition in pipeline

Citations: 42

Title: Optimization of media components and fermentation conditions for citric acid production from sweet potato peel starch hydrolysate by Aspergillus niger

Citations: 34

Title: Prediction of compressive strength of oil field class G cement slurry using factorial design

Citations: 30

Title: Improved phenol sequestration from aqueous solution using silver nanoparticle modified Palm Kernel Shell Activated Carbon

Citations: 29

Title: Gravimetric and quantitative surface morphological studies of Mangifera indica peel extract as a corrosion inhibitor for mild steel in 1 M HCl solution

Citations: 28

Title: Clay characterization and optimisation of bleaching parameters for palm kernel oil using alkaline activated clays

Citations: 28

Title: Evaluation of thickening time of oil field class G cement slurry at high temperature and pressure using experimental design

Citations: 24

Assist. Prof. Dr Maryam Khajenoori | Green Extraction Award | Best Researcher Award

Assist. Prof. Dr Maryam Khajenoori | Green Extraction Award | Best Researcher Award

Assist. Prof. Dr Maryam Khajenoori , Semnan University , Iran 

Dr. Maryam Khajenoori is an Assistant Professor of Chemical Engineering at Semnan University, Iran. she is a specialist in subcritical water extraction (SWE) and chemical process engineering. Dr. Khajenoori’s academic career centers around sustainable separation processes and nanoparticle synthesis, with extensive research in solubility analysis, green extraction methods, and thermodynamic modeling. She is an accomplished educator, guiding students through advanced engineering mathematics, mass transfer, and environmental biotechnology. A published author in renowned journals, Dr. Khajenoori’s expertise extends to practical applications in chemical engineering and sustainable energy. She is proficient in multiple programming languages and specialized software, utilizing her technical skills to advance both academic research and applied chemical engineering processes.

Professional Profile: 

Google Scholar

Scopus 

Summary of Suitability for Award:

Dr. Maryam Khajenoori’s combination of academic excellence, significant research contributions, and focus on sustainability makes her a strong contender for the “Best Researcher Awards.” Her research on subcritical water extraction and related sustainable chemical processes is not only innovative but also has practical implications for industries like pharmaceuticals, food, and environmental engineering. Given her proven track record of influential publications, successful projects, and teaching roles, she is highly deserving of this recognition. Her work is set to continue making an important impact in both academic and industrial spheres, reaffirming her status as a leading researcher in the field.

🎓Education:

Dr. Khajenoori holds a Ph.D. in Chemical Engineering from Semnan University, specializing in the thermodynamics and kinetics of chemical reactors. She obtained her M.Sc. in Chemical Engineering with a focus on Separation Processes from the same institution , by  following her B.Sc. in Chemical Engineering (Polymer Branch) from Isfahan University of Technology (IUT) . Her foundational education includes a diploma in Mathematics and Physics from Dehkhoda High School in Kashan, Isfahan, Iran. Her academic journey has been marked by a rigorous focus on chemical processes, separation techniques, and sustainable engineering methodologies, paving the way for her research interests in green extraction and solubility of bioactive compounds.

🏢Work Experience:

Dr. Khajenoori has diverse teaching experience at Semnan University, covering subjects such as advanced mass transfer, environmental biotechnology, unit operations, and engineering mathematics. She has also instructed in specialized labs and workshops, including MATLAB, Aspen, and Hysys, to equip students with practical skills. Additionally, her research projects include studies on the thermokinetics of SWE for her Ph.D., superheated water extraction in her M.Sc., and pollutant studies in groundwater from her undergraduate studies. She has also completed numerous projects in CO2 capture, computational fluid dynamics, and molecular dynamics, applying her expertise in both teaching and research for sustainable chemical engineering solutions.

🏅Awards:

Dr. Khajenoori has earned recognition for her research contributions, particularly in the areas of subcritical water extraction and solubility analysis. Her pioneering work on SWE of essential oils has garnered international attention, and she has been invited to present her findings at leading scientific conferences. She has also been recognized within Semnan University for her dedication to both teaching and research, receiving accolades for her contributions to environmental biotechnology and sustainable chemical engineering practices. Additionally, her efforts in green extraction methods have placed her at the forefront of sustainable engineering, further affirming her as a respected figure in the field.

🔬Research Focus:

Dr. Khajenoori’s research primarily explores sustainable and green extraction methods, particularly subcritical water extraction (SWE) for bioactive compounds. Her interests extend to the solubility of valuable compounds like curcumin in SWE conditions, nanoparticle synthesis using environmentally friendly techniques, and pollution treatment processes. She has conducted extensive studies on thermodynamic modeling and the effect of SWE on various essential oils, aiming to optimize extraction efficiency and purity. Through her focus on sustainable practices, Dr. Khajenoori contributes to advancements in eco-friendly chemical engineering and supports the development of alternative extraction techniques to reduce environmental impact.

Publication Top Notes:

  •  Subcritical water extraction
     Citations: 144
  • Proposed models for subcritical water extraction of essential oils
    Citations: 103
  • Mass Transfer: Advances in Sustainable Energy and Environment Oriented Numerical Modeling
    Citations: 71
  •  Subcritical water extraction of essential oils from Zataria multiflora Boiss
    Citations: 63
  • Extraction of Curcumin and Essential Oil from Curcuma longa L. by Subcritical Water via Response Surface Methodology
    Citations: 58

 

 

 

 

Ica Manas-Zloczower | Chemistry | Best Researcher Award

Prof. Ica Manas-Zloczower | Chemistry| Best Researcher Award

Professor at Case Western Reserve University, United States

Ica Manas-Zloczower is a distinguished university professor at Case Western Reserve University, specializing in macromolecular science and chemical engineering. With a career spanning over four decades, she has made significant contributions to the fields of polymer processing, advanced materials, and energy solutions. Her extensive research and leadership roles have positioned her as a prominent figure in both academia and professional societies.

Author Metrics

Google Scholar Profile

Scopus Profile

ORCID Profile

Throughout her career, Ica Manas-Zloczower has published numerous research articles in high-impact journals, contributing significantly to the scientific community. Her work is widely cited, reflecting her influence and expertise in polymer science. Metrics such as citation indices and h-index highlight her prolific output and the impact of her research on advancing knowledge in her field.

  • Total Citations: 5,873
  • Total Documents: 236
  • h-index: 43

Education

Ica earned her Doctor of Science from the Technion – Israel Institute of Technology, where she focused on chemical engineering. Her academic journey began at the Polytechnic Institute in Jassy, Romania, where she received both her B.S. and M.S. degrees. This solid educational foundation has underpinned her subsequent achievements in research and teaching.

Research Focus

Her research primarily centers on polymer processing, recycling technologies, and the development of advanced materials. Ica is particularly interested in mechanochemical methods for the recycling of thermosetting polymers and the enhancement of thermomechanical properties of polymer composites. This focus not only addresses critical environmental issues but also pushes the boundaries of material science.

Professional Journey

Ica’s professional journey includes roles as an assistant professor, associate professor, and now as a distinguished university professor at Case Western Reserve University. She has served as the Associate Dean of Faculty Development and has held leadership positions in several professional organizations, including the International Polymer Processing Society. Her academic and administrative roles demonstrate her commitment to fostering growth in engineering education.

Honors & Awards

Ica has received numerous accolades for her teaching, research, and service. Notable honors include the 2017 Society of Plastics Engineers Fred E. Schwab Education Award and the 2012 George S. Whitby Award for Distinguished Teaching and Research. Her recognition as a Fellow of the Society of Plastics Engineers underscores her contributions to the field.

Publications Noted & Contributions

Ica has authored and co-authored a plethora of articles in leading journals, contributing vital research on topics like polymer recycling and mechanical properties of materials. Her editorial roles in several journals further amplify her impact, as she shapes the discourse in polymer science and engineering. Notable publications include works on vitrimerization and thermomechanical properties of polymers, reflecting her innovative research approach.

Improving Performance of TPU by Controlled Crosslinking of Soft Segments

Journal: Polymer Engineering & Science
Publication Date: August 2024
DOI: 10.1002/pen.26826
Contributors: Lucivan P. Barros Junior, Lucio R. de Souza, Rasoul Rahimzadeh, Ica Manas‐Zloczower
This article explores innovative methods to enhance the performance of thermoplastic polyurethane (TPU) by controlling the crosslinking of its soft segments. The findings contribute to optimizing TPU properties for various applications, particularly in areas requiring enhanced mechanical performance and durability.

A Mechanochemical Approach to Recycle Thermosets Containing Carbonate and Thiourethane Linkages

Journal: Polymer
Publication Date: April 2024
DOI: 10.1016/j.polymer.2024.126877
Contributors: Rasoul Rahimzadeh, Yazhe Han, Ica Manas-Zloczower
This research presents a mechanochemical method for recycling thermosetting polymers with carbonate and thiourethane linkages. The study addresses the critical issue of polymer waste, proposing a viable recycling technique that could significantly impact sustainability in polymer usage.

Thermomechanical Performance of Thermoplastic Polyurethane–Poly(tetrafluoroethylene) Fibril Nanocomposites

Journal: ACS Applied Polymer Materials
Publication Date: July 14, 2023
DOI: 10.1021/acsapm.3c00738
Contributors: Maya Pishvar, Mehrad Amirkhosravi, Ica Manas-Zloczower
This article investigates the thermomechanical properties of nanocomposites made from TPU and poly(tetrafluoroethylene) (PTFE) fibrils. The research contributes to the understanding of composite behavior, highlighting the potential for developing advanced materials with superior mechanical properties.

Porous Hydrogels: Present Challenges and Future Opportunities

Journal: Langmuir
Publication Date: February 14, 2023
DOI: 10.1021/acs.langmuir.2c02253
Contributors: Reza Foudazi, Ryan Zowada, Ica Manas-Zloczower, Donald L. Feke
This publication reviews the current challenges in developing porous hydrogels while identifying future research directions. It serves as a comprehensive resource for researchers in the field, fostering innovation in hydrogel applications.

Thermomechanical Properties of Cross-Linked EVA: A Holistic Approach

Journal: ACS Applied Polymer Materials
Publication Date: February 10, 2023
DOI: 10.1021/acsapm.2c01928
Contributors: Kimberly Miller McLoughlin, Amin Jamei Oskouei, Michelle K. Sing, Alireza Bandegi, Sarah Mitchell, Jayme Kennedy, Thomas G. Gray, Ica Manas-Zloczower
This article presents a comprehensive analysis of the thermomechanical properties of cross-linked ethylene-vinyl acetate (EVA). By utilizing a holistic approach, the study enhances understanding of the relationship between processing conditions and material performance.

Research Timeline

Over the years, Ica’s research has evolved, with early work focusing on basic polymer processing principles and later expanding into advanced recycling technologies and material characterization. This timeline illustrates her adaptability and foresight in addressing emerging challenges in materials science, making significant contributions to both academia and industry.

Conclusion

Ica Manas-Zloczower’s career is marked by a dedication to research, teaching, and professional service in the field of macromolecular science and engineering. Her contributions not only advance scientific understanding but also inspire future generations of engineers. As she continues to push the boundaries of polymer science, her legacy will undoubtedly influence the direction of research and education in the field.

Shripad Patil | Material chemistry | Young Scientist Award

Dr. Shripad Patil | Material chemistry | Young Scientist Award 

 Doctorate at Aragen Life Science, Hyderabad, India

Dr. Shripad Mukundrao Patil is an accomplished scientist specializing in Organic Chemistry, currently serving as an Assistant Professor at Rayat Shikshan Sanstha’s Dada Patil Mahavidyalaya in Karjat, Maharashtra, India. With a Ph.D. from Lovely Professional University, Punjab, his research focuses on the synthesis and application of magnetically recyclable silica-coated nanoparticles in organic transformations. His career reflects a commitment to academic excellence and innovation in green chemistry methodologies, leveraging his expertise to advance sustainable practices in chemical synthesis.

Author Metrics

ORCID Profile

Google Scholar Profile

Dr. Patil has established a significant scholarly presence with 18 research papers published in prestigious journals indexed in Scopus and Web of Science. His publications have garnered a total of 156 citations, underscoring his impact in the field of Organic Chemistry. His work is characterized by its pioneering use of magnetically recyclable nanocatalysts, contributing to advancements in catalysis and environmental sustainability within the pharmaceutical and chemical industries.

Education

Dr. Patil’s academic journey includes a Ph.D. in Organic Chemistry from Lovely Professional University, Punjab, awarded in 2023. Prior to this, he completed his M.Sc. and B.Sc. in Organic Chemistry at Dada Patil College, Karjat, Pune. His educational background has equipped him with a solid foundation in theoretical and practical aspects of chemistry, essential for his subsequent research endeavors and teaching career.

Research Focus

Dr. Patil’s research is centered on the development and application of magnetically recyclable silica-coated nanoparticles as catalysts in organic transformations. His work aims to enhance the efficiency and sustainability of chemical processes by minimizing environmental impact and optimizing resource utilization. Through innovative synthesis methods and rigorous characterization techniques, he contributes to the advancement of green chemistry principles and their practical implementation in industrial settings.

Professional Journey

Dr. Patil’s professional journey encompasses diverse roles including Assistant Professor at Rayat Shikshan Sanstha’s Dada Patil Mahavidyalaya, Karjat. He has effectively taught a range of chemistry courses, mentored students in research, and actively participated in academic conferences and workshops globally. His commitment to research excellence and academic leadership is evident in his contributions to curriculum development and his role as a mentor to aspiring chemists.

Honors & Awards

Throughout his career, Dr. Patil has received recognition for his contributions to Organic Chemistry, including a Ph.D. Award from Lovely Professional University, Punjab. He has also secured funding through grants such as the Seed Money Grant from Dada Patil Mahavidyalaya, Karjat, underscoring his ability to attract support for innovative research initiatives. His international patent for a novel process involving silica-coated nanoparticles further highlights his impact and recognition within the scientific community.

Publications Noted & Contributions

Dr. Patil’s research publications have made notable contributions to the field, particularly in the area of magnetically recoverable nanocatalysts and their applications in organic synthesis. His papers have been published in esteemed journals like Royal Society of Chemistry Advances and American Chemical Society Omega, showcasing his expertise in designing sustainable catalytic systems and their practical implications for industrial chemistry.

Malic Acid as a Green Catalyst for the N-Boc Protection under Solvent-free Condition

  • Journal: Letters in Organic Chemistry, 2024
  • DOI: 10.2174/0115701786278928231218113855
  • Contributors: Ashok Pise; Shripad M. Patil; Ajit P. Ingale
  • Summary: This article explores the use of malic acid as an eco-friendly catalyst for the N-Boc protection of compounds under solvent-free conditions, highlighting Dr. Patil’s commitment to sustainable catalytic processes.

Magnetite-supported montmorillonite (K10) (nanocat-Fe-Si-K10): an efficient green catalyst for multicomponent synthesis of amidoalkyl naphthol

  • Journal: RSC Advances, 2023
  • DOI: 10.1039/D3RA01522J
  • Contributors: Shripad M. Patil; Runjhun Tandon; Nitin Tandon; Iqubal Singh; Ashwini Bedre; Vilas Gade
  • Summary: This publication focuses on magnetite-supported montmorillonite as a catalyst for the multicomponent synthesis of amidoalkyl naphthol, illustrating Dr. Patil’s research in developing efficient heterogeneous catalysts.

Novel Silica-coated Magnetic Nanoparticles and Their Synthetic Applications

  • Journal: Iranian Journal of Catalysis, 2023
  • DOI: 10.30495/ijc.2023.1998671.2054
  • Contributors: Shripad Patil
  • Summary: Dr. Patil’s solo-authored article discusses novel silica-coated magnetic nanoparticles and their applications in synthetic chemistry, emphasizing advancements in nanotechnology for catalytic purposes.

[EMIm][BH3CN] Ionic Liquid as an Efficient Catalyst for the Microwave-Assisted One-Pot Synthesis of Triaryl Imidazole Derivatives

  • Journal: Letters in Organic Chemistry, 2023
  • DOI: 10.2174/1570178620666230510122033
  • Contributors: Rajesh K. Manjul; Suresh T. Gaikwad; Vilas B. Gade; Anjali S. Rajbhoj; Manohar K. Jopale; Shripad M. Patil; Dhananjay N. Gaikwad; Dayanand M. Suryavanshi; Santosh P. Goskulwad; Suvarna D. Shinde
  • Summary: This collaborative effort highlights the use of an ionic liquid as a catalyst for the microwave-assisted synthesis of triaryl imidazole derivatives, showcasing Dr. Patil’s role in interdisciplinary research on innovative catalytic systems.

Recent Progress in Fe3O4 Nanoparticles and Their Green Applications in Organic Transformations

  • Journal: Iranian Journal of Catalysis, 2023
  • DOI: 10.30495/ijc.2023.1991397.2024
  • Contributors: Shripad Patil; Ashwini Bedre
  • Summary: This review article co-authored by Dr. Patil explores recent advancements in the use of Fe3O4 nanoparticles for green applications in organic transformations, providing a comprehensive overview of sustainable nanocatalysts.

These publications underscore Dr. Shripad M. Patil’s research prowess and contributions to the development of sustainable and efficient catalytic systems, enhancing the field of Organic Chemistry with innovative solutions for chemical synthesis.

Research Timeline

Dr. Patil’s research timeline spans from his doctoral studies at Lovely Professional University, Punjab, culminating in significant projects such as the development of magnetically recyclable nanocatalysts. His continuous engagement in research activities underscores his dedication to advancing knowledge in Organic Chemistry, focusing on novel catalyst design and application-driven research for sustainable chemical processes.

Collaborations and Projects

Dr. Patil actively collaborates with international researchers, including partnerships with institutions like King Saud University, Riyadh, Saudi Arabia. These collaborations have enriched his research endeavors, fostering cross-cultural exchange and innovative approaches to nanocatalyst development. His projects emphasize collaborative efforts aimed at addressing global challenges in chemistry through interdisciplinary research and technological innovation.

These paragraphs provide a detailed breakdown of Dr. Shripad Mukundrao Patil’s academic background, research focus, professional journey, honors, publications, and collaborative efforts, reflecting his contributions and achievements in Organic Chemistry.