Assist. Prof. Dr Maryam Khajenoori | Green Extraction Award | Best Researcher Award

Assist. Prof. Dr Maryam Khajenoori | Green Extraction Award | Best Researcher Award

Assist. Prof. Dr Maryam Khajenoori , Semnan University , Iran 

Dr. Maryam Khajenoori is an Assistant Professor of Chemical Engineering at Semnan University, Iran. she is a specialist in subcritical water extraction (SWE) and chemical process engineering. Dr. Khajenoori’s academic career centers around sustainable separation processes and nanoparticle synthesis, with extensive research in solubility analysis, green extraction methods, and thermodynamic modeling. She is an accomplished educator, guiding students through advanced engineering mathematics, mass transfer, and environmental biotechnology. A published author in renowned journals, Dr. Khajenoori’s expertise extends to practical applications in chemical engineering and sustainable energy. She is proficient in multiple programming languages and specialized software, utilizing her technical skills to advance both academic research and applied chemical engineering processes.

Professional Profile: 

Google Scholar

Scopus 

Summary of Suitability for Award:

Dr. Maryam Khajenoori’s combination of academic excellence, significant research contributions, and focus on sustainability makes her a strong contender for the “Best Researcher Awards.” Her research on subcritical water extraction and related sustainable chemical processes is not only innovative but also has practical implications for industries like pharmaceuticals, food, and environmental engineering. Given her proven track record of influential publications, successful projects, and teaching roles, she is highly deserving of this recognition. Her work is set to continue making an important impact in both academic and industrial spheres, reaffirming her status as a leading researcher in the field.

🎓Education:

Dr. Khajenoori holds a Ph.D. in Chemical Engineering from Semnan University, specializing in the thermodynamics and kinetics of chemical reactors. She obtained her M.Sc. in Chemical Engineering with a focus on Separation Processes from the same institution , by  following her B.Sc. in Chemical Engineering (Polymer Branch) from Isfahan University of Technology (IUT) . Her foundational education includes a diploma in Mathematics and Physics from Dehkhoda High School in Kashan, Isfahan, Iran. Her academic journey has been marked by a rigorous focus on chemical processes, separation techniques, and sustainable engineering methodologies, paving the way for her research interests in green extraction and solubility of bioactive compounds.

🏢Work Experience:

Dr. Khajenoori has diverse teaching experience at Semnan University, covering subjects such as advanced mass transfer, environmental biotechnology, unit operations, and engineering mathematics. She has also instructed in specialized labs and workshops, including MATLAB, Aspen, and Hysys, to equip students with practical skills. Additionally, her research projects include studies on the thermokinetics of SWE for her Ph.D., superheated water extraction in her M.Sc., and pollutant studies in groundwater from her undergraduate studies. She has also completed numerous projects in CO2 capture, computational fluid dynamics, and molecular dynamics, applying her expertise in both teaching and research for sustainable chemical engineering solutions.

🏅Awards:

Dr. Khajenoori has earned recognition for her research contributions, particularly in the areas of subcritical water extraction and solubility analysis. Her pioneering work on SWE of essential oils has garnered international attention, and she has been invited to present her findings at leading scientific conferences. She has also been recognized within Semnan University for her dedication to both teaching and research, receiving accolades for her contributions to environmental biotechnology and sustainable chemical engineering practices. Additionally, her efforts in green extraction methods have placed her at the forefront of sustainable engineering, further affirming her as a respected figure in the field.

🔬Research Focus:

Dr. Khajenoori’s research primarily explores sustainable and green extraction methods, particularly subcritical water extraction (SWE) for bioactive compounds. Her interests extend to the solubility of valuable compounds like curcumin in SWE conditions, nanoparticle synthesis using environmentally friendly techniques, and pollution treatment processes. She has conducted extensive studies on thermodynamic modeling and the effect of SWE on various essential oils, aiming to optimize extraction efficiency and purity. Through her focus on sustainable practices, Dr. Khajenoori contributes to advancements in eco-friendly chemical engineering and supports the development of alternative extraction techniques to reduce environmental impact.

Publication Top Notes:

  •  Subcritical water extraction
     Citations: 144
  • Proposed models for subcritical water extraction of essential oils
    Citations: 103
  • Mass Transfer: Advances in Sustainable Energy and Environment Oriented Numerical Modeling
    Citations: 71
  •  Subcritical water extraction of essential oils from Zataria multiflora Boiss
    Citations: 63
  • Extraction of Curcumin and Essential Oil from Curcuma longa L. by Subcritical Water via Response Surface Methodology
    Citations: 58

 

 

 

 

Dr. samira abozeid | Inorganic Chemistry Award | Best Researcher Award

Dr. samira abozeid | Inorganic Chemistry Award | Best Researcher Award

Dr. samira abozeid,mansoura university,Egypt

Dr. Samira Abozeid is a dedicated Lecturer and Assistant Professor in the Chemistry Department at Mansoura University, Egypt. With a strong academic background, she earned her Ph.D. in Chemistry from the State University of New York at Buffalo, complemented by an MSc and BSc from Mansoura University. Dr. Abozeid specializes in synthesizing metal complexes for applications in MRI contrast agents and drug delivery systems using innovative nanotechnology. Her commitment to academic excellence is evident through her extensive research contributions, collaborative efforts, and participation in various national and international projects. Additionally, she has been recognized with several awards for her outstanding research and teaching, showcasing her dedication to advancing the field of chemistry and contributing to educational initiatives.

Professional Profile:

Google Scholar

Scopus

Orcid

Summary of Suitability for Award:

Dr. Samira Mohammed Abozeid exemplifies the qualities and achievements that make her a suitable candidate for the “Best Researcher Award.” With a Ph.D. in Chemistry from the State University of New York at Buffalo, she has made significant contributions to the field, particularly in synthesizing metal complexes for MRI contrast agents and drug delivery systems. Her publication record, which includes 18 articles in high-impact journals, underscores her prolific research output and the relevance of her work in advancing medical applications of chemistry.

🎓Education:

Dr. Samira Abozeid holds an impressive academic portfolio. She completed her Bachelor’s and Master’s degrees in Chemistry at Mansoura University, Egypt, where she developed a solid foundation in chemical sciences. Dr. Abozeid then pursued her Ph.D. at the State University of New York at Buffalo, specializing in the synthesis of metal complexes and their applications in medical imaging and drug delivery. Her doctoral research significantly contributed to the understanding of MRI contrast agents, showcasing her capability to conduct high-level research. Throughout her academic journey, she has maintained a focus on integrating theoretical knowledge with practical applications, which has enriched her teaching methodologies and research approach. Dr. Abozeid’s education has equipped her with the skills to excel in both academia and research, fostering a commitment to innovation in chemistry.

🏢Work Experience:

Dr. Samira Abozeid has garnered extensive experience in academia and research throughout her career. Currently serving as a Lecturer and Assistant Professor at both Mansoura University and New Mansoura University, she plays a pivotal role in educating and mentoring students in chemistry. Dr. Abozeid has completed three significant research projects focused on the synthesis and characterization of metal complexes for MRI applications and drug delivery systems. With 18 published articles in esteemed journals and a citation index reflecting her impactful research contributions, she has established herself as a leading figure in her field. Furthermore, she has engaged in consultancy projects related to chemistry and has participated in multiple collaborative research efforts, both nationally and internationally, which have enriched her research perspective and facilitated knowledge exchange. Dr. Abozeid’s commitment to research excellence is complemented by her active involvement in professional memberships and initiatives aimed at bridging academic research with industry applications.

🏅Awards:

Dr. Samira Abozeid has received several prestigious awards and recognitions throughout her academic career. Among her notable accolades is the Egyptian Government Scholarship, which allowed her to pursue her studies at the State University of New York at Buffalo from 2016 to 2018. Additionally, she was honored with the James T. Grey, Jr. Fellowship in Summer 2020, which acknowledges outstanding research contributions. Dr. Abozeid also received the Mattern-Tyler Teaching Award and the Speyer Fellowship in Fall 2020, reflecting her excellence in both teaching and research. In 2023, she was awarded a competitively funded research project at Mansoura University, highlighting her commitment to advancing scientific knowledge. Furthermore, she has been recognized for delivering the Best Specialized Lecture at multiple conferences, showcasing her ability to communicate complex scientific ideas effectively. These honors underline her significant contributions to the field of chemistry and her dedication to academic excellence.

🔬Research Focus:

Dr. Samira Abozeid’s research focuses primarily on the synthesis and application of metal complexes, particularly in the development of MRI contrast agents and drug delivery systems. Her innovative approach involves utilizing nanoparticles and liposomes to enhance the effectiveness and biocompatibility of these complexes. Dr. Abozeid’s work emphasizes the importance of transition metal complexes in medical applications, providing novel insights into their structural properties and potential therapeutic uses. Her ongoing projects include the development of more effective and safer MRI probes, which can significantly improve diagnostic imaging capabilities. Additionally, she collaborates with national and international research groups to explore energy-related applications of metal complexes. Through her research, Dr. Abozeid aims to bridge the gap between chemistry and medicine, contributing to advancements in nanotechnology and its practical implications for healthcare. Her commitment to innovation and excellence continues to shape her contributions to the scientific community.

Publication Top Notes:

  • Two New Inner-Sphere Pt(II) Thiosemicarbazone Schiff Base Complexes Immobilized into Magnetic Nanoparticles: Synthesis, Characterization, and Biological Investigations
  • A Novel Fluorescent Probe Based Imprinted Polymer-Coated Magnetite for the Detection of Imatinib Leukemia Anti-Cancer Drug Traces in Human Plasma Samples
  • Fe(III) T1 MRI Probes Containing Phenolate or Hydroxypyridine-Appended Triamine Chelates and a Coordination Site for Bound Water
    • Citations: 5 citations.
  • Co(II) Complexes of Tetraazamacrocycles Appended with Amide or Hydroxypropyl Groups as ParaCEST Agents
    • Citations: 3 citations.
  • Comparison of Phosphonate, Hydroxypropyl and Carboxylate Pendants in Fe(III) Macrocyclic Complexes as MRI Contrast Agents
    • Citations: 18 citations.

 

 

 

 

Dr. Seyed Mohammad Amini | Green Chemistry Award | Best Researcher Award

Dr. Seyed Mohammad Amini | Green Chemistry Award | Best Researcher Award

Dr. Seyed Mohammad Amini | Iran University of Medical Sciences | Iran

Seyed Mohammad Amini, Ph.D., is a dedicated scientist and Assistant Professor at the Radiation Biology Research Center, Iran University of Medical Sciences, specializing in medical nanotechnology. Born on February 1, 1986, he has over a decade of experience in research and development, particularly in biopharmaceuticals, nanotechnology for drug delivery, and imaging. His work has led to innovations in nanoparticle-based formulations for cancer diagnostics and therapy, including pioneering techniques in hyperthermia and photodynamic therapy. Dr. Amini’s contributions extend to clinical radiology with hands-on expertise in CT and MRI systems. He is fluent in Persian, Kurdish, and English and actively contributes to interdisciplinary projects involving teams of scientists worldwide.

Professional Profile:

Google Scholar

Orcid

Scopus

Summary of Suitability for Award:

Dr. Seyed Mohammad Amini stands as a highly qualified candidate for the “Best Researcher Award” due to his extensive expertise and contributions across several interdisciplinary fields within nanomedicine and biomedical applications. With a Ph.D. and M.Sc. in Medical Nanotechnology from Tehran University of Medical Sciences, he has amassed over 12 years of research and development experience in biopharmaceutical drug development, drug delivery systems, and radiological technology. Dr. Amini’s unique cross-functional research has demonstrated excellence in both theoretical and applied sciences, especially in his innovative work on metal and metal oxide nanostructures, which are pivotal in radiation therapy, photodynamic therapy, and hyperthermia for cancer treatment.

🎓Education:

Dr. Amini completed his Ph.D. in Medical Nanotechnology from Tehran University of Medical Sciences (2012-2017), where he specialized in nanoliposomal formulations for controlled cancer drug delivery, supervised by distinguished professors such as Dr. Sharmin Kharrazi and Prof. Jaafari. His Master’s degree (2010-2012) in Medical Nanotechnology from the same university included developing gold nanoparticles for enhanced photodynamic cancer treatment. His academic journey began with a Bachelor’s degree in Radiology (2008-2010) at Tehran University of Medical Sciences, where he gained foundational knowledge in imaging systems and radiology practice. His academic achievements include ranking among the top candidates in national entrance exams for each degree level in Iran.

🏢Work Experience:

With 12 years of extensive R&D experience, Dr. Amini has developed expertise in biopharmaceutical nanotechnology and medical imaging, holding a position as Assistant Professor at the Radiation Biology Research Center, Iran University of Medical Sciences, since 2017. His research spans across drug delivery systems, synthesis of biogenic nanoparticles, and biosensors for targeted drug delivery, along with four years of practical experience as a radiology technologist. Notable projects include developing gold nanoparticles for photodynamic therapy and metal oxide nanoparticles for antimicrobial and theranostic applications. He has contributed significantly to the field of medical nanotechnology with over 50 peer-reviewed publications, patents, and collaborative research grants, proving his capability to lead interdisciplinary teams and communicate effectively across scientific fields.

🏅Awards:

Dr. Amini’s academic excellence is demonstrated by his achievements, such as ranking first in the 2014 Comprehensive Exam for Ph.D. students in Medical Nanotechnology and being awarded the honor of excellence for his M.Sc. thesis by the Iranian Nanotechnology Initiative Council. He ranked second nationally in Iran’s Ph.D. entrance exam in 2012 and has consistently placed highly in national competitions, including the National Nano Competition (7th place, 2012). Dr. Amini’s contributions to medical nanotechnology, specifically in nanoformulations for cancer treatment, have earned him multiple awards and patents for innovative theranostic systems, showcasing his impact in nanomedicine.

🔬Research Focus:

Dr. Amini’s research expertise spans five main areas: nanotechnology for radiotherapy, hyperthermia treatments, photodynamic therapy, green synthesis of nanoparticles, and theranostic applications. He leads pioneering work in developing multifunctional nanoparticles for cancer therapy, including nanostructures for precise thermal and photodynamic treatment. His contributions to biogenic metal nanoparticles for radiosensitization and antimicrobial purposes have furthered the capabilities of non-toxic, plant-based nanomaterial synthesis. Additionally, Dr. Amini has contributed to biosensor innovation by bioconjugating nanostructures with biomolecules for targeted diagnostics and treatments. His research aims to bridge diagnostic and therapeutic applications with nanoparticle-enabled platforms to achieve safer, more effective cancer therapies.

Publication Top Notes:

  1. “Preparation of antimicrobial metallic nanoparticles with bioactive compounds”
    • Citations: 146
  2. “Metal nanoparticles synthesis through natural phenolic acids”
    • Citations: 107
  3. “Evaluation of size, morphology, concentration, and surface effect of gold nanoparticles on X-ray attenuation in computed tomography”
    • Citations: 74
  4. “Safety of nanotechnology in food industries”
    • Citations: 73
  5. “Expression analysis of circulating plasma long noncoding RNAs in colorectal cancer: The relevance of lncRNAs ATB and CCAT1 as potential clinical hallmarks”

 

 

 

Mr. Anil kumar Gautam | Green Synthesis Award | Material Chemistry Award

Mr. Anil kumar Gautam | Green Synthesis Award | Material Chemistry Award

Mr. Anil kumar Gautam | Babasaheb Bhimrao Ambedkar University lucknow  |India

Dr. Anil K. Gautam, born in 1987, is a dynamic researcher specializing in nanochemistry, currently pursuing a Ph.D. at Babasaheb Bhimrao Ambedkar University, Lucknow. With a strong foundation in synthetic organic chemistry, he has pioneered innovative methodologies for green synthesis of nanoparticles. His research focuses on the anticancer and antibacterial properties of various nanocomposites derived from natural extracts. A committed lifelong learner, Dr. Gautam actively participates in national and international conferences, presenting his groundbreaking findings. Fluent in English and Hindi, he balances his professional endeavors with personal commitments, living in Lucknow with his family. His dedication to sustainable practices and innovative research reflects a deep commitment to advancing the field of chemistry.

Professional Profile:

Orcid 

Summary of Suitability for Award:

Mr. Anil kumar Gautam is highly suitable for the Material Chemistry Award due to their innovative approach to sustainable nanomaterial synthesis, strong technical expertise, and impactful research contributions. Their focus on environmentally friendly practices and their active engagement in the scientific community align well with the award’s objectives.

🎓Education:

Dr. Anil K. Gautam holds a Ph.D. in Chemistry from Babasaheb Bhimrao Ambedkar University, Lucknow, where he is focused on the “Green Synthesis of Nanomaterials and Evaluation of its Cytotoxicity.” His academic journey began with a Master’s in Chemistry from Dr. Shakuntala Misra National Rehabilitation University, Lucknow, where he honed his expertise in organic synthesis. Prior to that, he earned a Bachelor of Science degree from Christian P.G. College, Lucknow, solidifying his foundational knowledge in scientific principles. Dr. Gautam’s educational background reflects a strong commitment to understanding and innovating within the field of chemistry, particularly in nanotechnology. His ongoing research continues to contribute significantly to his academic institution and the broader scientific community.

🏢Work Experience:

Dr. Anil K. Gautam has extensive research experience during his Ph.D. at Babasaheb Bhimrao Ambedkar University, focusing on the development of new synthetic methodologies in nanochemistry. He has led several innovative projects, including the green synthesis of CeO2/CeCu/CuO nanocomposites and their evaluation for anticancer and antibacterial properties. Dr. Gautam’s experience encompasses the preparation of plant extracts and the characterization of synthesized nanomaterials through advanced techniques such as XRD, FTIR, SEM, and HPLC. He has also contributed to multiple oral presentations at prestigious conferences, showcasing his research findings on various nanomaterials. His collaborative approach and rigorous analytical skills have positioned him as a valuable asset in research settings, driving forward the exploration of sustainable chemistry and its applications.

🏅Awards:

Dr. Anil K. Gautam’s contributions to the field of chemistry have been recognized through various accolades throughout his academic career. His innovative research on green synthesis of nanomaterials has garnered him invitations to present at international conferences, emphasizing his status as an emerging expert in nanochemistry. Although specific awards have not been detailed, his work’s impact is evident in his published research and participation in prominent scientific forums. His commitment to sustainable practices in chemistry and the successful application of his research findings further highlight his dedication to advancing the field. Dr. Gautam’s continuous engagement in academia and research reflects a strong potential for future recognition as he continues to contribute meaningfully to scientific knowledge and practice.

🔬Research Focus:

Dr. Anil K. Gautam’s research focus lies in nanochemistry, particularly the green synthesis of nanoparticles and nanocomposites using natural extracts. His pioneering work involves developing eco-friendly methodologies to synthesize various metal oxides and their composites, emphasizing their potential applications in anticancer and antibacterial therapies. His studies on the structural properties of nanoparticles, coupled with their functional evaluations, contribute significantly to the understanding of nanomaterials in biomedical applications. Additionally, Dr. Gautam explores the synthesis of heterojunction nanocomposites for photocatalytic degradation of organic pollutants, aiming to enhance environmental sustainability. Through rigorous experimental design and literature analysis, he seeks to stay at the forefront of advancements in nanotechnology, bridging the gap between sustainable practices and innovative research in chemistry. His dedication to addressing complex challenges through his research positions him as a key contributor to the evolving landscape of nanoscience.

Publication Top Notes:

Green Synthesis of Pistia stratiotes Ag/AgCl Nanomaterials and Their Anti-Bacterial Activity

 

 

 

Dr. Azza Hassoon | Metallodrugs | Best Researcher Award

Dr. Azza Hassoon | Metallodrugs | Best Researcher Award

Dr.Azza Hassoon,Mansoura University,Egypt

Dr. Azza Ahmed Mousad Megahed Hassoon is a Lecturer in the Department of Chemistry at Mansoura University, Egypt. Specializing in inorganic chemistry, she holds a Ph.D. from the University of Szeged, Hungary, where she graduated with honors. Dr. Hassoon’s research focuses on metal complex synthesis and bioinorganic chemistry, contributing to over seven publications in respected journals. She has also been recognized with various awards and scholarships, including the RSC Research Fund grant and travel awards for international conferences. An active participant in global conferences and summer schools, she is a member of the Spanish Royal Society of Chemistry (RSEQ).

Professional Profile:

Google Scholar

Orcid

Scopus

Summary of Suitability for Award:

Dr. Azza Ahmed Mousad Megahed Hassoon would be a strong candidate for a “Best Researcher Award.” Her contributions to inorganic and bioinorganic chemistry, especially in the synthesis and study of metallodrugs, demonstrate a significant impact on her field. Her international research experiences, including funded collaborations and recognition from prestigious societies like the RSC and RSEQ, underscore her commitment to advancing metallodrug research. Her impressive publication record, coupled with active involvement in global conferences and summer schools, reflect both her dedication to research excellence and her ongoing engagement with the scientific community.

🎓Education:

Dr. Azza Ahmed Mousad Megahed Hassoon a B.Sc. in Chemistry with honors from Mansoura University, Egypt, in 2012, achieving an impressive 85.52% grade. They went on to earn an M.Sc. in Inorganic Chemistry from the same institution in 2016. Recently, they completed a Ph.D. in Inorganic Chemistry at the University of Szeged, Hungary, in 2023, also graduating with honors.

🏢Work Experience:

Dr. Azza Ahmed Mousad Megahed Hassoon has accumulated extensive work experience in the Chemistry Department at Mansoura University, Egypt. She began her academic career as a Demonstrator from December 2012 to February 2016, where she supported faculty members in laboratory courses and student instruction. Following this role, she was appointed as an Assistant Lecturer from February 2016 to August 2023, during which she contributed to both teaching and research activities. In August 2023, she advanced to the position of Lecturer, where she continues to engage in teaching, mentoring students, and conducting research in inorganic chemistry. Her progressive roles reflect her commitment to academic excellence and her contributions to the field

🏅Awards:

Dr. Azza Ahmed Mousad Megahed Hassoon has received several prestigious awards and scholarships throughout her academic career. Notably, she was granted the Stipendium Hungaricum Scholarship for her Ph.D. at the University of Szeged, Hungary, from February 2019 to April 2023. Her contributions to the field have also been recognized through various Travel Awards for international conferences, including the International Conference on Metal-Binding Peptides (MBP) in July 2022 and the 16th International Symposium on Applied Bioinorganic Chemistry in June 2023. In 2024, she secured an RSC Research Fund Grant of £5000 to further her research. Additionally, Dr. Hassoon served as a Visiting Scholar at Brigham Young University in the USA from February to August 2016 and participated in a Visiting Summer School at JINR-Dubna, Russia, in May-June 2015, enhancing her international exposure and collaboration in the field of inorganic chemistry.

🔬Research Focus:

Dr. Azza Ahmed Mousad Megahed Hassoon specializes in Inorganic Chemistry, concentrating on metal complex synthesis and bioinorganic chemistry. Her research includes investigating metallodrugs and their applications in biological systems, which underscores her commitment to understanding the interactions between metal complexes and biological molecules. This focus not only highlights her academic expertise but also her contributions to developing innovative solutions in the field of chemistry, enhancing our understanding of how these compounds can be utilized in medical applications.

Publication Top Notes:

  • Synthesis, single crystal X-ray, spectroscopic characterization and biological activities of Mn²⁺, Co²⁺, Ni²⁺, and Fe³⁺ complexes
    • Citations: 20
  • New Square-Pyramidal Oxovanadium (IV) Complexes Derived from Polydentate Ligand (L1)
    • Citations: 19
  • Peptide-based chemical models for lytic polysaccharide monooxygenases
    • Citations: 5
  • Characterization of copper(II) specific pyridine containing ligands: Potential metallophores for Alzheimer’s disease therapy
    • Citations: 5
  • The interaction of half-sandwich (η⁵-Cp) Rh (III) cation with histidine containing peptides and their ternary species with (N, N) bidentate ligands*

 

Ica Manas-Zloczower | Chemistry | Best Researcher Award

Prof. Ica Manas-Zloczower | Chemistry| Best Researcher Award

Professor at Case Western Reserve University, United States

Ica Manas-Zloczower is a distinguished university professor at Case Western Reserve University, specializing in macromolecular science and chemical engineering. With a career spanning over four decades, she has made significant contributions to the fields of polymer processing, advanced materials, and energy solutions. Her extensive research and leadership roles have positioned her as a prominent figure in both academia and professional societies.

Author Metrics

Google Scholar Profile

Scopus Profile

ORCID Profile

Throughout her career, Ica Manas-Zloczower has published numerous research articles in high-impact journals, contributing significantly to the scientific community. Her work is widely cited, reflecting her influence and expertise in polymer science. Metrics such as citation indices and h-index highlight her prolific output and the impact of her research on advancing knowledge in her field.

  • Total Citations: 5,873
  • Total Documents: 236
  • h-index: 43

Education

Ica earned her Doctor of Science from the Technion – Israel Institute of Technology, where she focused on chemical engineering. Her academic journey began at the Polytechnic Institute in Jassy, Romania, where she received both her B.S. and M.S. degrees. This solid educational foundation has underpinned her subsequent achievements in research and teaching.

Research Focus

Her research primarily centers on polymer processing, recycling technologies, and the development of advanced materials. Ica is particularly interested in mechanochemical methods for the recycling of thermosetting polymers and the enhancement of thermomechanical properties of polymer composites. This focus not only addresses critical environmental issues but also pushes the boundaries of material science.

Professional Journey

Ica’s professional journey includes roles as an assistant professor, associate professor, and now as a distinguished university professor at Case Western Reserve University. She has served as the Associate Dean of Faculty Development and has held leadership positions in several professional organizations, including the International Polymer Processing Society. Her academic and administrative roles demonstrate her commitment to fostering growth in engineering education.

Honors & Awards

Ica has received numerous accolades for her teaching, research, and service. Notable honors include the 2017 Society of Plastics Engineers Fred E. Schwab Education Award and the 2012 George S. Whitby Award for Distinguished Teaching and Research. Her recognition as a Fellow of the Society of Plastics Engineers underscores her contributions to the field.

Publications Noted & Contributions

Ica has authored and co-authored a plethora of articles in leading journals, contributing vital research on topics like polymer recycling and mechanical properties of materials. Her editorial roles in several journals further amplify her impact, as she shapes the discourse in polymer science and engineering. Notable publications include works on vitrimerization and thermomechanical properties of polymers, reflecting her innovative research approach.

Improving Performance of TPU by Controlled Crosslinking of Soft Segments

Journal: Polymer Engineering & Science
Publication Date: August 2024
DOI: 10.1002/pen.26826
Contributors: Lucivan P. Barros Junior, Lucio R. de Souza, Rasoul Rahimzadeh, Ica Manas‐Zloczower
This article explores innovative methods to enhance the performance of thermoplastic polyurethane (TPU) by controlling the crosslinking of its soft segments. The findings contribute to optimizing TPU properties for various applications, particularly in areas requiring enhanced mechanical performance and durability.

A Mechanochemical Approach to Recycle Thermosets Containing Carbonate and Thiourethane Linkages

Journal: Polymer
Publication Date: April 2024
DOI: 10.1016/j.polymer.2024.126877
Contributors: Rasoul Rahimzadeh, Yazhe Han, Ica Manas-Zloczower
This research presents a mechanochemical method for recycling thermosetting polymers with carbonate and thiourethane linkages. The study addresses the critical issue of polymer waste, proposing a viable recycling technique that could significantly impact sustainability in polymer usage.

Thermomechanical Performance of Thermoplastic Polyurethane–Poly(tetrafluoroethylene) Fibril Nanocomposites

Journal: ACS Applied Polymer Materials
Publication Date: July 14, 2023
DOI: 10.1021/acsapm.3c00738
Contributors: Maya Pishvar, Mehrad Amirkhosravi, Ica Manas-Zloczower
This article investigates the thermomechanical properties of nanocomposites made from TPU and poly(tetrafluoroethylene) (PTFE) fibrils. The research contributes to the understanding of composite behavior, highlighting the potential for developing advanced materials with superior mechanical properties.

Porous Hydrogels: Present Challenges and Future Opportunities

Journal: Langmuir
Publication Date: February 14, 2023
DOI: 10.1021/acs.langmuir.2c02253
Contributors: Reza Foudazi, Ryan Zowada, Ica Manas-Zloczower, Donald L. Feke
This publication reviews the current challenges in developing porous hydrogels while identifying future research directions. It serves as a comprehensive resource for researchers in the field, fostering innovation in hydrogel applications.

Thermomechanical Properties of Cross-Linked EVA: A Holistic Approach

Journal: ACS Applied Polymer Materials
Publication Date: February 10, 2023
DOI: 10.1021/acsapm.2c01928
Contributors: Kimberly Miller McLoughlin, Amin Jamei Oskouei, Michelle K. Sing, Alireza Bandegi, Sarah Mitchell, Jayme Kennedy, Thomas G. Gray, Ica Manas-Zloczower
This article presents a comprehensive analysis of the thermomechanical properties of cross-linked ethylene-vinyl acetate (EVA). By utilizing a holistic approach, the study enhances understanding of the relationship between processing conditions and material performance.

Research Timeline

Over the years, Ica’s research has evolved, with early work focusing on basic polymer processing principles and later expanding into advanced recycling technologies and material characterization. This timeline illustrates her adaptability and foresight in addressing emerging challenges in materials science, making significant contributions to both academia and industry.

Conclusion

Ica Manas-Zloczower’s career is marked by a dedication to research, teaching, and professional service in the field of macromolecular science and engineering. Her contributions not only advance scientific understanding but also inspire future generations of engineers. As she continues to push the boundaries of polymer science, her legacy will undoubtedly influence the direction of research and education in the field.

Taotao Lu | Environmental Chemistry | Best Researcher Award

Taotao Lu | Environmental Chemistry | Best Researcher Award

Doctorate at Yangzhou University, China

Taotao Lu is an Assistant Professor at Yangzhou University, specializing in the transport and transformation of environmental pollutants in soil and groundwater. With a robust research portfolio, he focuses on the impact of low-molecular-weight organic acids on emerging contaminants, as well as the hydrochemical characteristics of groundwater in karst areas. His commitment to environmental health is reflected in his extensive publications and innovative research projects aimed at understanding and mitigating pollution’s effects.

Author Metrics

Scopus Profile

Taotao Lu has an impressive citation index with 886 total citations and an h-index of 19, indicating a strong impact in his field. His work is widely recognized and published in top-tier journals, showcasing the relevance and importance of his research on environmental pollutants and their implications for public health.

  • Citations: 882 citations across 597 documents
  • Total Documents: 57
  • h-index: 19

Education

Details regarding Taotao Lu’s educational background may include relevant degrees, institutions attended, and areas of study. This information is crucial in understanding his foundational expertise and qualifications in environmental science and related fields.

Research Focus

Dr. Lu’s research focuses primarily on the transport and transformation of emerging contaminants in soil and groundwater. He also investigates mineral migration mechanisms and their implications for environmental health, alongside conducting hydrochemical assessments to evaluate groundwater quality and associated health risks.

Professional Journey

Taotao Lu’s professional journey reflects a dedication to environmental science and academia. His career includes various research roles and collaborative projects that enhance his expertise in environmental pollutants and contribute to the scientific community’s understanding of groundwater contamination and health risks.

Honors & Awards

Dr. Lu’s contributions to environmental science have been recognized through various honors and awards, which underscore his commitment to advancing knowledge in the field and his role in promoting sustainable practices.

Publications Noted & Contributions

His extensive publication record includes influential papers in leading journals such as Science of The Total Environment and Water Research. These publications reflect his significant contributions to understanding environmental pollutants and their impacts, with key studies addressing topics like nanoplastics transport and health risk assessments.

Optimizing stormwater runoff treatment: The role of two-stage tandem rain gardens

  • Authors: Tang, S., Song, Y., Wang, Y., Cheng, N., Lu, T.
  • Journal: Environmental Research
  • Year: 2024
  • Volume: 262
  • Article ID: 119831

Effects of low-molecular-weight organic acids on the transport of polystyrene nanoplastics: An insight at the structure of organic acids

  • Authors: Chen, F., Wei, X., Gong, Y., Chen, D., Lu, T.
  • Journal: Science of the Total Environment
  • Year: 2024
  • Volume: 949
  • Article ID: 175204

Transport of graphene oxide in the capillary fringe: Insights from sandbox experiments and numerical simulation

  • Authors: Lu, T., Chen, F., Liu, X., Peng, H., Tang, S.
  • Journal: Emerging Contaminants
  • Year: 2024
  • Volume: 10(3)
  • Article ID: 100308

Influence of surfactant molecular features on tetracycline transport in saturated porous media of varied surface heterogeneities

  • Authors: Wang, F., Shang, J., Zhang, Q., Farooq, U., Qi, Z.
  • Journal: Water Research
  • Year: 2024
  • Volume: 255
  • Article ID: 121501

Insight into the effects of low-molecular-weight aromatic acids on biochar colloid-assisted transport of Cd²⁺ through saturated porous media

  • Authors: Zhang, Y., Ding, G., Zhao, Z., Chen, W., Qi, Z.
  • Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
  • Year: 2024
  • Volume: 685
  • Article ID: 133306

Research Timeline

Taotao Lu’s research timeline outlines his major projects, publications, and milestones throughout his academic career. This timeline provides a comprehensive view of his ongoing commitment to advancing research in environmental science.

Conclusion

Dr. Taotao Lu’s accomplishments as an environmental chemist are commendable, reflecting his dedication to understanding pollutants and their impacts. By focusing on collaborative efforts and public engagement, he can further amplify the ultimate reach of his research, ensuring it contributes meaningfully to environmental sustainability and public health.

 

Khalid Khan | Organic Chemistry | Best Researcher Award

Assoc Prof Dr. Khalid Khan | Organic Chemistry | Best Researcher Award

Associate Professor at Islamia College University, Peshawar, Pakistan

Dr. Khalid Khan is an accomplished chemist with extensive expertise in organic chemistry and medicinal research. He obtained his PhD from Huazhong University of Science and Technology in China, focusing on the design and synthesis of novel dendro-calix[4]arenes. Currently, he serves as an Associate Professor at Islamia College University in Peshawar, Pakistan, where he leads various research projects and supervises graduate and undergraduate students. His work has significantly contributed to the field of drug discovery, particularly in computational and medicinal chemistry.

Author Metrics

Scopus Profile

Dr. Khan has published over 25 research articles in reputable journals, showcasing his research impact and contribution to the field of chemistry. His work has garnered numerous citations, reflecting the relevance and influence of his research on both national and international platforms. His publication metrics highlight his active engagement in advancing scientific knowledge, particularly in the areas of antiviral drug development and nanotechnology.

  • Citations: 414 citations across 379 documents
  • Documents: 21 published works
  • h-index: 9

Education

Dr. Khan completed his PhD in Chemistry from Huazhong University of Science and Technology, China (2008-2013), where he conducted groundbreaking research on nonionic amphiphilic dendro-calix[4]arenes. He holds a Master’s degree in Chemistry from the University of Peshawar (2002-2004), where he graduated with first-class honors, and a Bachelor’s degree in Biological Science from Government College Peshawar (2000-2002).

Research Focus

Dr. Khan’s research primarily revolves around organic chemistry, with a special focus on the synthesis and characterization of bioactive compounds. He is particularly interested in the development of antiviral agents and the computational modeling of drug interactions with viral proteins. His innovative research projects often explore the structure-activity relationships of compounds to enhance therapeutic efficacy.

Professional Journey

Beginning his career as a lecturer in 2005, Dr. Khan progressively advanced to the role of Associate Professor in 2020 at Islamia College University. Throughout his tenure, he has significantly contributed to the academic environment by designing curricula, supervising research, and engaging in community service. His professional journey is marked by a commitment to education, research, and the development of future scientists.

Honors & Awards

Dr. Khan has received several prestigious awards, including the Pakistan and Chinese Government Cultural Exchange Scholarship for his doctoral studies. He was recognized as the topper in his Master’s program, reflecting his dedication and excellence in the field of chemistry. His achievements have earned him a respected place among his peers in academia.

Publications Noted & Contributions

Among his numerous publications, key works include research on the design and synthesis of novel dendro-calix[4]arenes, antiviral drug development, and the characterization of compounds with potential therapeutic applications. His contributions have advanced understanding in various areas of organic chemistry and nanotechnology, facilitating further research in these domains.

Homology modeling and molecular docking study of metabotropic glutamate receptor 5 variant F: An attempt to develop drugs for treating CNS diseases

  • Authors: Ahmad, N., Khan, K., Rashid, H.U., Ullah, R., Ali, E.A.
  • Journal: Zeitschrift für Physikalische Chemie
  • Year: 2024
  • Volume: 238, Issue 8, Pages 1551–1577
  • Citations: 1

Direct synthesis, characterization, in vitro and in silico studies of simple chalcones as potential antimicrobial and antileishmanial agents

  • Authors: Ur Rashid, H., Khan, S., Irum, Shah, T., Khan, K.
  • Journal: Royal Society Open Science
  • Year: 2024
  • Volume: 11, Article 240410
  • Citations: 0

Homology modeling and molecular docking study of corticotrophin-releasing hormone: An approach to treat stress-related diseases

  • Authors: Ahmad, N., Khan, K., Khan, S.W., Ullah, R., Ali, E.A.
  • Journal: Open Chemistry
  • Year: 2024
  • Volume: 22, Article 20240069
  • Citations: 0

Biological investigations of Aspergillus ficuum via in vivo, in vitro and in silico analyses

  • Authors: Shah, Z.A., Khan, K., Shah, T., Muhammad, A., Rashid, H.
  • Journal: Scientific Reports
  • Year: 2023
  • Volume: 13, Article 17260
  • Citations: 1

Insights into metabolic and pharmacological profiling of Aspergillus ficuum through bioinformatics and experimental techniques

  • Authors: Shah, Z.A., Khan, K., Rashid, H.U., Jaremko, M., Iqbal, Z.
  • Journal: BMC Microbiology
  • Year: 2022
  • Volume: 22, Article 295
  • Citations: 4

Research Timeline

Dr. Khan’s research trajectory spans over a decade, beginning with his PhD studies from 2008 to 2013, followed by various research projects involving computational analyses and synthesis of organic compounds. His ongoing projects encompass a wide range of studies aimed at understanding and inhibiting viral proteins, particularly related to SARS-CoV-2 and other pathogenic viruses.

Collaborations and Projects

Dr. Khan has collaborated with both national and international researchers on diverse projects, enhancing the scope and impact of his research. These collaborations have resulted in joint publications and a collective effort to address significant challenges in medicinal chemistry and virology. His ability to work across disciplines and institutions underscores his commitment to collaborative scientific inquiry.

Conclusion

Dr. Khalid Khan’s recognition as a Best Researcher reflects his significant contributions to organic chemistry and medicinal research. His publication record and collaborative efforts enhance his impact within the scientific community. By addressing areas for improvement, such as increasing citation metrics and expanding research diversification, Dr. Khan can further strengthen his position as a leader in his field. His commitment to education and research not only benefits his students but also contributes to the broader scientific landscape, making his work essential for advancements in drug discovery and public health.

Kazuaki Iahihara | Chemistry and Materials Science | Best Researcher Award Nagoya University

Prof Dr Kazuaki Iahihara | Chemistry and Materials Science | Best Researcher Award

 Graduate School of Engineering of Nagoya University, Japan

🎓 Prof. Dr. Kazuaki Ishihara was born on April 26, 1963, in Aichi Prefecture, Japan. He completed his Bachelor’s, Master’s, and Doctorate in Engineering at Nagoya University under the supervision of Professor Hisashi Yamamoto. 🌏 He was a visiting scholar at the University of California, Berkeley, in 1987, and a postdoctoral fellow at Harvard University under Professor E. J. Corey from 1991 to 1992. Since 2002, he has been a full professor at Nagoya University’s Department of Biotechnology. 🏅 Prof. Ishihara’s work has earned him numerous accolades, including the JSPS Prize, the IBM Science Prize, and the Chemistry Leader Award 2023. His research focuses on developing catalytic organic reactions for green chemistry, with significant contributions in designing chiral Brønsted acid–Lewis acid combined catalysts, superacids, and hypervalent iodine catalysts. 🧪 He has published 289 original papers, 139 review articles, and holds 87 patents. Additionally, Prof. Ishihara is actively involved in editorial roles for several scientific journals, including the Asian Journal of Organic Chemistry.

Professional Profile:

Education

🎓 Prof. Dr. Kazuaki Ishihara completed his entire higher education at Nagoya University in Japan. He earned his Bachelor of Engineering degree (1982-1986), followed by a Master of Engineering (1986-1988), and finally a Doctor of Engineering (1988-1991), all under the supervision of Professor Hisashi Yamamoto. 🌏 During his doctoral studies, he was a visiting scholar for three months in 1987 at the University of California, Berkeley, under Professor Clayton H. Heathcock. His doctoral thesis was titled “Studies on Stereoselective Reactions of Acetals.”

 

Professional Experience

 

🏢 Prof. Dr. Kazuaki Ishihara began his professional career as a Postdoctoral Fellow at Harvard University under Professor E. J. Corey from 1991 to 1992. He then returned to Nagoya University, where he served as an Assistant Professor in the Department of Applied Chemistry (1992-1994) and later in the Department of Biotechnology (1994-1997). 🧪 He was promoted to Associate Professor at the Research Center of Waste and Emission Management (1997-2001) and subsequently in the Department of Biotechnology (2001-2002). Since 2002, he has held the position of Full Professor in the Department of Biotechnology, Graduate School of Engineering at Nagoya University. Throughout his career, Prof. Ishihara has made significant contributions to the field of green chemistry and the design of innovative catalysts.

Research Interest

🔬 Prof. Dr. Kazuaki Ishihara has dedicated his research to the advancement of catalytic organic reactions and processes with a strong emphasis on green chemistry. His work spans several key areas, including the design of chiral Brønsted acid–Lewis acid combined catalysts, superacids, and hypervalent iodine catalysts. 🧪 He has also focused on developing dehydrative condensation catalysts, artificial cyclases for synthesizing optically active polycyclic terpenoids, and recoverable and reusable catalysts. 🧬 Since 2009, his research has extended to supramolecular acid–base combined catalysts. Prof. Ishihara’s innovative contributions aim to create environmentally benign synthetic methods, enhancing the sustainability and efficiency of chemical processes.

Award and Honor

🏆 Prof. Dr. Kazuaki Ishihara has received numerous prestigious awards and honors throughout his illustrious career. Early in his career, he was awarded the JSPS Fellowship for Japanese Junior Scientists (1988-1991) and the Yamada Science Foundation Fellowship for Studying Abroad (1991-1992). 🥇 His groundbreaking research earned him the 10th Inoue Research Award for Young Scientists (1994) and the 45th Young Chemist Award from the Chemical Society of Japan (1996). He has also been honored with the 21st Japan IBM Science Prize (2007), the 27th Inoue Prize for Science (2011), and the Chemistry Leader Award 2023. 📜 Other notable accolades include multiple Asian Core Program Lectureship Awards, the SSOCJ Daiichi-Sankyo Award for Medicinal Organic Chemistry (2012), the Yazaki Academic Award (2013), and the CSJ Award (2017). 🌟 Prof. Ishihara’s commitment to green chemistry and innovative catalyst design has cemented his reputation as a leading figure in his field, earning him fellowships and awards from esteemed organizations worldwide.

 

Research Skills

 

🧑‍🔬 🧬 Prof. Dr. Kazuaki Ishihara is renowned for his exceptional research skills in the field of organic chemistry, particularly in developing innovative catalytic processes. He excels in the design and synthesis of chiral Brønsted acid–Lewis acid combined catalysts, superacids, and hypervalent iodine catalysts. 🧪 His expertise extends to creating dehydrative condensation catalysts and artificial cyclases for the synthesis of optically active polycyclic terpenoids. 🧬 Prof. Ishihara is adept at designing recoverable and reusable catalysts, as well as supramolecular acid–base combined catalysts. His comprehensive approach to research, which emphasizes environmental sustainability, has led to significant advancements in green chemistry and the development of efficient, eco-friendly synthetic methods.

Publications

  • Asymmetric direct aldol reaction assisted by water and a proline‐derived tetrazole catalyst
    🧑‍🔬 H Torii, M Nakadai, K Ishihara, S Saito, H Yamamoto
    📰 Angewandte Chemie International Edition 43 (15), 1983-1986
    📅 2004
    🔢 674 citations
  • 3, 4, 5-Trifluorobenzeneboronic acid as an extremely active amidation catalyst
    🧑‍🔬 K Ishihara, S Ohara, H Yamamoto
    📰 The Journal of Organic Chemistry 61 (13), 4196-4197
    📅 1996
    🔢 584 citations
  • Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides
    🧑‍🔬 K Ishihara, M Kubota, H Kurihara, H Yamamoto
    📰 The Journal of Organic Chemistry 61 (14), 4560-4567
    📅 1996
    🔢 539 citations
  • Enantioselective Kita oxidative spirolactonization catalyzed by in situ generated chiral hypervalent iodine (III) species
    🧑‍🔬 M Uyanik, T Yasui, K Ishihara
    📰 Angewandte Chemie International Edition 12 (49), 2175-2177
    📅 2010
    🔢 487 citations
  • Quaternary ammonium (hypo) iodite catalysis for enantioselective oxidative cycloetherification
    🧑‍🔬 M Uyanik, H Okamoto, T Yasui, K Ishihara
    📰 Science 328 (5984), 1376-1379
    📅 2010
    🔢 448 citations
  • Enantioselective halocyclization of polyprenoids induced by nucleophilic phosphoramidites
    🧑‍🔬 A Sakakura, A Ukai, K Ishihara
    📰 Nature 445 (7130), 900-903
    📅 2007
    🔢 404 citations
  • Direct condensation of carboxylic acids with alcohols catalyzed by hafnium (IV) salts
    🧑‍🔬 K Ishihara, S Ohara, H Yamamoto
    📰 Science 290 (5494), 1140-1142
    📅 2000
    🔢 395 citations
  • 2-Iodoxybenzenesulfonic acid as an extremely active catalyst for the selective oxidation of alcohols to aldehydes, ketones, carboxylic acids, and enones with oxone
    🧑‍🔬 M Uyanik, M Akakura, K Ishihara
    📰 Journal of the American Chemical Society 131 (1), 251-262
    📅 2009
    🔢 370 citations
  • In situ generated (hypo) iodite catalysts for the direct α‐oxyacylation of carbonyl compounds with carboxylic acids
    🧑‍🔬 M Uyanik, D Suzuki, T Yasui, K Ishihara
    📰 Angewandte Chemie International Edition 23 (50), 5331-5334
    📅 2011
    🔢 369 citations
  • Highly enantioselective catalytic Diels-Alder addition promoted by a chiral bis (oxazoline)-magnesium complex
    🧑‍🔬 EJ Corey, K Ishihara
    📰 Tetrahedron Letters 33 (45), 6807-6810
    📅 1992
    🔢 368 citations
  • Scandium trifluoromethanesulfonate as an extremely active acylation catalyst
    🧑‍🔬 K Ishihara, M Kubota, H Kurihara, H Yamamoto
    📰 Journal of the American Chemical Society 117 (15), 4413-4414
    📅 1995
    🔢 329 citations
  • Hypervalent iodine-mediated oxidation of alcohols
    🧑‍🔬 M Uyanik, K Ishihara
    📰 Chemical Communications, 2086-2099
    📅 2009
    🔢 307 citations
  • A new chiral BLA promoter for asymmetric aza Diels-Alder and Aldol-type reactions of imines
    🧑‍🔬 K Ishihara, M Miyata, K Hattori, T Tada, H Yamamoto
    📰 Journal of the American Chemical Society 116 (23), 10520-10524
    📅 1994
    🔢 283 citations
  • Widely useful DMAP-catalyzed esterification under auxiliary base-and solvent-free conditions
    🧑‍🔬 A Sakakura, K Kawajiri, T Ohkubo, Y Kosugi, K Ishihara
    📰 Journal of the American Chemical Society 129 (47), 14775-14779
    📅 2007
    🔢 281 citations
  • Catalysis with in situ‐generated (hypo) iodite ions for oxidative coupling reactions
    🧑‍🔬 M Uyanik, K Ishihara
    📰 ChemCatChem 4 (2), 177-185
    📅 2012
    🔢 270 citations