Ms. NTUMBA LOBO | Physical Chemistry | Best Researcher Award

Ms. NTUMBA LOBO | Physical Chemistry | Best Researcher Award

Ms. NTUMBA LOBO | Physical Chemistry | PhD student at NAGOYA INSTITUTE OF TECHNOLOGY, Japan

Ntumba Lobo, a Congolese researcher, is a Ph.D. student and research assistant at Nagoya Institute of Technology, Japan. She specializes in semiconductor materials, focusing on carrier recombination effects in perovskites. She holds a Master’s degree from Shibaura Institute of Technology, Japan, in hydrogen storage materials, and an M.Sc. in Nuclear Physics from Addis Ababa University, Ethiopia. With experience in international collaborations, she was an exchange researcher at Friedrich-Alexander-UniversitΓ€t Erlangen-NΓΌrnberg, Germany. Ntumba has participated in several scientific conferences and published extensively in high-impact journals. She has also held teaching and research positions, including at the University of Kinshasa and the Centre RΓ©gional de Recherche NuclΓ©aire de Kinshasa. Her work contributes significantly to materials science and renewable energy applications.

Professional Profile :Β  Β  Β  Β  Β 

Google Scholar

Orcid

ScopusΒ Β 

Summary of Suitability for Award:

Ntumba Lobo is an exceptional researcher with a strong multidisciplinary background in semiconductor materials, energy storage, and nuclear physics. Her Ph.D. research at Nagoya Institute of Technology, Japan, focuses on metal halide perovskites, lithium tantalate, and carrier dynamics, contributing significantly to the development of advanced semiconductor materials. She has demonstrated excellence in research through multiple international collaborations, including an exchange program at Friedrich-Alexander-UniversitΓ€t Erlangen-NΓΌrnberg, Germany. Her expertise in material characterization techniques such as Time-Resolved Photoluminescence (TRPL), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) has led to high-impact publications and conference presentations. Ntumba Lobo’s extensive research contributions, global collaborations, and expertise in semiconductor and energy materials make her a strong candidate for the “Best Researcher Award.” Her work is not only innovative but also has a significant impact on the future of optoelectronic devices and sustainable energy solutions. Her dedication to scientific excellence, combined with her ability to work across disciplines, positions her as a deserving recipient of this prestigious recognition.

πŸŽ“Education:

Ntumba Lobo is currently pursuing a Ph.D. in Science and Engineering at Nagoya Institute of Technology, Japan, specializing in semiconductor materials (expected completion in September 2025). She was an exchange student at i-MEET, Friedrich-Alexander-UniversitΓ€t Erlangen-NΓΌrnberg, Germany, in 2022, where she worked on single and polycrystal semiconductor materials. She obtained a Master’s degree in Science and Engineering from Shibaura Institute of Technology, Japan (2018-2020), focusing on energy storage materials. Before that, she completed an M.Sc. in Nuclear Physics from Addis Ababa University, Ethiopia (2014-2016), with a dissertation on nuclear fusion reactions. Her academic journey began with a B.Sc. (Honors) in Physics from the University of Kinshasa, Democratic Republic of the Congo (2012), where she contributed to non-destructive characterization of reinforced concrete using ultrasound methods. Her diverse educational background in physics, material science, and engineering has equipped her with expertise in semiconductor research and energy materials.

🏒Work Experience:

Ntumba Lobo has extensive experience in research and teaching. Since 2020, she has been a Research Assistant at Nagoya Institute of Technology, working on semiconductor materials and device characterization. She has completed multiple internships, including at OSM Group Co., Ltd. (Japan, 2019) and For Delight Co. Ltd. (Japan, 2018), where she gained industry exposure. Her research career started with an internship at the Centre RΓ©gional de Recherche NuclΓ©aire de Kinshasa (2016-2017) in nuclear physics. She also worked as a Teaching Assistant at the University of Kinshasa (2013-2014) and taught physics, scientific drawing, and technology at Liziba High School (2012-2013). Her hands-on expertise in material characterization techniques, including Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and photoconductivity measurements, has contributed to multiple high-impact publications. Her professional experience spans academic, industrial, and research institutions, making her a well-rounded scientist in semiconductor and energy materials.

πŸ…Awards:Β 

Ntumba Lobo has been recognized for her contributions to material science and semiconductor research. She received funding for an exchange research program at Friedrich-Alexander-UniversitΓ€t Erlangen-NΓΌrnberg, Germany (2022), where she worked on advanced semiconductor materials. Her research on energy storage materials during her Master’s at Shibaura Institute of Technology was highly appreciated. She has presented her work at prestigious conferences, including the 16th International Symposium on Metal-Hydrogen Systems (China, 2018) and the Solid-State Devices and Materials Conference (Japan, 2023). She also participated in specialized training programs such as the Summer School on Space Weather in Kinshasa (2011) and Advanced Python Programming and Geographic Information Systems training in Addis Ababa (2016). Her continuous engagement in international research collaborations and conferences showcases her commitment to scientific advancement.

πŸ”¬Research Focus:

Ntumba Lobo’s research focuses on semiconductor materials, particularly metal halide perovskites and their carrier dynamics. She investigates surface recombination, carrier lifetime, and trapping effects in single and polycrystalline materials using techniques like Microwave Photoconductivity Decay (Β΅PCD) and Time-Resolved Photoluminescence (TRPL). Her work extends to lithium tantalate and its photoconductance properties. She has also contributed to the field of hydrogen storage materials, analyzing the effects of TiOβ‚‚, Nbβ‚‚Oβ‚…, and TiHβ‚‚ catalysts on magnesium hydride. Additionally, her expertise in nuclear physics has allowed her to explore neutron-induced reactions and fusion mechanisms. By integrating her knowledge in physics, materials science, and engineering, she aims to develop efficient, stable, and high-performance materials for energy storage and semiconductor applications. Her research is pivotal in advancing next-generation optoelectronic devices and sustainable energy solutions.

Publication Top Notes:

Stability investigation of the Ξ³-MgHβ‚‚ phase synthesized by high-energy ball milling

Citations: 27

Stable quasi-solid-state zinc-ion battery based on the hydrated vanadium oxide cathode and polyacrylamide-organohydrogel electrolyte

Citations: 13

Trapping effects and surface/interface recombination of carrier recombination in single- or poly-crystalline metal halide perovskites

Citations: 9

Study of ²⁰Ne Induced Reaction in ⁡⁹Co: Incomplete and Complete Fusion

Citations: 3

Effect of TiOβ‚‚ + Nbβ‚‚Oβ‚… + TiHβ‚‚ Catalysts on Hydrogen Storage Properties of Magnesium Hydride

Citations: 2

La Super SymΓ©trie en Physique Quantique

Citations: 1

Mitigation of carrier trapping effects on carrier lifetime measurements with continuous-wave laser illumination for Pb-based metal halide perovskite materials

Transport and business improvement in the province of South-Ubangi (Democratic Republic of the Congo)

 

Mrs. Ralitsa Uzunova | Physical Chemistry | Best Researcher Award

Mrs. Ralitsa Uzunova | Physical Chemistry | Best Researcher Award

Mrs. Ralitsa Uzunova | Physical Chemistry | PhD student/ Researcher at Department of Chemical and Pharmaceutical Engineering, sofia university, Bulgaria

Ralitsa Ivanova Uzunova is a dedicated Ph.D. student and researcher in the Department of Chemical and Pharmaceutical Engineering at Sofia University β€œSt. Kliment Ohridski.” With a strong background in chemistry, she holds a Bachelor’s degree in “Chemistry” and a Master’s in “Medicinal Chemistry.” Over the past seven years, she has actively contributed to various research projects, particularly in surfactant solutions, interfacial tension, and adsorption studies. She has participated in 13 national and international conferences, delivering nine oral presentations, including at the prestigious 37th European Colloid and Interface Society Conference and the 19th European Student Colloid Conference. Her collaborations extend to industry giants like Unilever and S.C. Johnson, as well as the National Science Fund of Bulgaria. Ralitsa’s work focuses on understanding volatile molecules’ adsorption-desorption mechanisms, which are crucial in cosmetics, household products, and pharmaceuticals. Her dedication to research has led to two indexed journal publications, benefiting the broader scientific community.

Professional Profile :Β  Β  Β  Β  Β 

Orcid

ScopusΒ Β 

Summary of Suitability for Award:

Ralitsa Ivanova Uzunova is an emerging researcher in the field of Chemical and Pharmaceutical Engineering, specializing in surface chemistry, interfacial tension, and adsorption phenomena. With a strong academic background (Bachelor’s in Chemistry and Master’s in Medicinal Chemistry), she has gained seven years of research experience at Sofia University β€œSt. Kliment Ohridski.” Her participation in eight research projects, two indexed journal publications, and four industry collaborations with Unilever, S. C. Johnson, and others demonstrate her contribution to applied research. Additionally, her active engagement in national and international conferences (including the 37th European Colloid and Interface Society Conference) highlights her role in scientific dissemination. Her work on volatile molecules used in cosmetics and household formulations has both theoretical significance and industrial application, aligning well with the criteria for excellence in research. Ralitsa Ivanova Uzunova is a deserving candidate for the “Best Researcher Award”, given her multifaceted contributions to chemical engineering research, industrial collaborations, and scientific impact. Her interdisciplinary expertise in cosmetics, pharmaceuticals, and surface chemistry showcases her ability to bridge academia and industry, making her an ideal contender for this prestigious recognition.

πŸŽ“Education:

Ralitsa Ivanova Uzunova pursued her higher education in chemistry with a keen interest in interdisciplinary applications. She obtained her Bachelor’s degree in Chemistry from Sofia University β€œSt. Kliment Ohridski,” where she built a strong foundation in chemical principles and analytical techniques. Following her undergraduate studies, she completed a Master’s degree in Medicinal Chemistry, focusing on bioactive compounds and their applications in pharmaceuticals and healthcare. Currently, she is pursuing a Ph.D. in Chemical and Pharmaceutical Engineering, specializing in surfactant solutions, interfacial tension, and adsorption phenomena. Throughout her academic journey, she has been actively engaged in research and has collaborated with industrial partners on multiple projects. Her educational background has equipped her with expertise in static and dynamic interfacial tension, cleaning mechanisms, and volatile molecule adsorption-desorption processes. Ralitsa continues to expand her knowledge through research collaborations, conference presentations, and scientific publications.

🏒Work Experience:

Ralitsa Ivanova Uzunova has amassed seven years of experience in research and academia while working in the Department of Chemical and Pharmaceutical Engineering at Sofia University. Her expertise spans static and dynamic interfacial tension, surfactant solutions, and oil drop attachment/detachment studies. She has contributed to eight research projects, collaborating with industry leaders such as Unilever, S. C. Johnson, and the National Science Fund of Bulgaria. Additionally, she has been involved in four consultancy/industry projects, applying her knowledge to real-world challenges in cosmetics and household chemistry. Ralitsa has actively participated in 13 national and international conferences, delivering nine oral presentations, including at prestigious European colloid conferences. Her research has resulted in two indexed journal publications, contributing valuable insights into volatile molecule interactions. Her work is instrumental in developing formulations for personal care and industrial applications, bridging the gap between scientific research and industrial needs.

πŸ…Awards:Β 

Ralitsa Ivanova Uzunova has been recognized for her exceptional contributions to the field of chemical and pharmaceutical engineering. She has received multiple accolades for her oral presentations at international conferences, particularly at the 37th European Colloid and Interface Society Conference and the 19th European Student Colloid Conference, where her work on interfacial tension and surfactant solutions was highly appreciated. As a member of the Bulgarian Association of Cosmetologists, she has contributed significantly to research in cosmetics and household chemistry. Her research collaborations with Unilever and S. C. Johnson have also been acknowledged for their impact on industrial formulations. Additionally, her involvement in National Science Fund of Bulgaria projects has played a crucial role in advancing knowledge in volatile molecule adsorption-desorption mechanisms. Ralitsa is currently nominated for the Best Researcher Award, recognizing her dedication to scientific excellence and innovation in colloid and interface science.

πŸ”¬Research Focus:

Ralitsa Ivanova Uzunova’s research focuses on static and dynamic interfacial tension, surfactant solutions, and volatile molecule interactions. Her work explores the bulk properties and adsorption behaviors of surfactants, which are crucial in cleaning, cosmetics, and pharmaceutical applications. She investigates the attachment/detachment of oil drops, enhancing formulations for detergents, skincare, and industrial surfactants. A significant part of her research delves into volatile molecule adsorption and desorption at interfaces, examining compounds like menthol, geraniol, linalool, benzyl acetate, and citronellol, widely used in personal care products and medicine. Her studies provide critical insights into optimizing formulations for enhanced stability, efficiency, and sustainability. Through collaborations with Unilever, S. C. Johnson, and the National Science Fund of Bulgaria, she applies her findings to industrial applications. Her work contributes to improving product performance, environmental sustainability, and the development of novel surfactant-based systems, making significant advancements in colloid and interface science.

Publication Top Notes:

“Quantitative characterization of the mass transfer of volatile amphiphiles between vapor and aqueous phases: Experiment vs theory”​

“Kinetics of transfer of volatile amphiphiles (fragrances) from vapors to aqueous drops and vice versa: Interplay of diffusion and barrier mechanisms”

Prof. Behrooz Zargar | Analytical Chemistry | Best Researcher Award

Prof. Behrooz Zargar | Analytical Chemistry | Best Researcher Award

Prof. Behrooz Zargar | Analytical Chemistry | Full Professor in Analytical Chemistry/Researcher/Lecturer at Shahid Chamran University of Ahvaz, IranΒ 

Prof. Behrooz Zargar is a distinguished Full Professor of Analytical Chemistry at Shahid Chamran University of Ahvaz, Iran, with over two decades of academic and research excellence. His expertise spans electrochemistry, nano-chemistry, solar cells, and environmental remediation. He has published over 60 high-impact research papers and actively collaborates with organizations such as ISO and the Iranian Safety and Environment Committee. As the Founder and Head of the Central Laboratory at Shahid Chamran University, he has played a pivotal role in advancing analytical techniques. His research has contributed significantly to pesticide analysis, mycotoxin detection, and nanomaterial-based pollutant degradation. His commitment to academia is reflected in his editorial appointments, research collaborations, and mentorship of numerous students. With an impressive citation index of 2143, Prof. Zargar’s groundbreaking work has influenced various industrial and environmental sectors, making him a leading figure in analytical and environmental chemistry.

Professional Profile :Β  Β  Β  Β  Β 

Google Scholar

Orcid

ScopusΒ 

Summary of Suitability for Award:

Prof. Behrooz Zargar, a distinguished Professor of Analytical Chemistry at Shahid Chamran University of Ahvaz, has made remarkable contributions to analytical chemistry, particularly in nanotechnology, electrochemistry, and environmental chemistry. With over 60 publications in high-impact journals (SCI, Scopus indexed), a citation index of 2143, and extensive research in solar cells, solid-phase extraction, and photo-degradation, his scientific impact is substantial. His research collaborations, including work with ISO Organization and national standardization committees, demonstrate his leadership in applied scientific advancements. Additionally, his industry projects on food safety and environmental toxin analysis highlight his contributions to public health and sustainability. With a proven track record of pioneering research, industry collaborations, and leadership in analytical chemistry, Prof. Zargar stands as a highly deserving candidate for the “Best Researcher Award.” His groundbreaking research in nano-chemistry and solar cell technology continues to drive innovation, making him an excellent choice for this prestigious recognition.

πŸŽ“Education:

Prof. Behrooz Zargar holds a Ph.D. in Analytical Chemistry (2001) from Shahid Chamran University of Ahvaz. He earned his Master’s degree in Analytical Chemistry (1996) from the same institution, building a strong foundation in instrumental analysis and environmental monitoring. His Bachelor’s degree in Applied Chemistry (1992) from Isfahan University of Technology laid the groundwork for his interest in chemical applications for industrial and environmental solutions. Prior to university education, he completed a Diploma in Experimental Sciences, fostering his analytical skills early on. His academic journey reflects a commitment to precision, innovation, and interdisciplinary research. Over the years, he has integrated electrochemical, spectroscopic, and chromatographic techniques into his research, making significant contributions to chemical science. His education has been instrumental in shaping his expertise in nano-chemistry, separation sciences, and environmental remediation, areas where he continues to make impactful discoveries.

🏒Work Experience:

Prof. Zargar’s academic career spans over two decades at Shahid Chamran University of Ahvaz, where he has held various positions. He served as an Assistant Professor (2002-2009), progressing to Associate Professor (2009-2017), and was promoted to Full Professor in 2017. With a Grade 32 ranking, he has contributed extensively to teaching, research, and institutional leadership. He has collaborated with ISO, developed national safety and environmental standards, and played a key role in nanotechnology advancements. His consultancy work has influenced industries by assessing toxic residues in food, environmental contaminants, and industrial pollutants. As the Founder and Head of the Central Laboratory at Shahid Chamran University, he has enhanced research infrastructure, fostering innovation. His experience extends to mentoring Ph.D. and Master’s students, shaping the next generation of chemists. His expertise in solar cells, electroless plating, corrosion, and electrochemical preconcentration has made him a respected figure in analytical and industrial chemistry.

πŸ…Awards:Β 

Prof. Behrooz Zargar’s contributions to analytical chemistry and environmental sciences have earned him numerous accolades. He was recognized for 10 years of excellent service to ISO/TC 17/SC 1/ WG 74 in 2025 for his contributions to steel chemical composition analysis. His work in nanotechnology and environmental monitoring has been acknowledged by national and international scientific committees. As a key member of the Iranian Safety and Environment Committee, he has shaped national policies on chemical safety and environmental sustainability. His editorial appointments in high-impact journals further highlight his scholarly influence. His innovative work in photo-degradation, nano-based solid-phase extraction, and pesticide residue analysis has led to several research grants and industrial collaborations. His role in the development of national analytical standards in Khuzestan, Iran, reflects his commitment to advancing chemical safety regulations. Prof. Zargar’s outstanding research contributions and institutional leadership make him a highly esteemed scientist.

πŸ”¬Research Focus:

Prof. Zargar’s research spans analytical, environmental, and industrial chemistry, with a strong emphasis on nanotechnology applications. His work in electrochemical preconcentration and separation techniques has improved trace-level detection of contaminants in food and water. His nano-chemistry expertise has advanced solar cell technology, particularly FeSβ‚‚/TiOβ‚‚-based solar cells. He has pioneered printed-based voltammetric selective electrodes for precise electrochemical analysis. His work in photo-degradation of cyanide ions using nanomaterials has significant environmental implications. He has developed aerogel-based solid-phase extraction methods for efficient pollutant removal. His industrial research includes toxic residue detection in grains, milk, and bread. His collaboration with ISO and the Iranian Nanotechnology Committee has led to the establishment of new safety and environmental guidelines. His research continues to bridge analytical chemistry with environmental sustainability, contributing to the development of safer chemical practices and advanced material applications.

Publication Top Notes:

​A nano curcumin–multi-walled carbon nanotube composite as a fluorescence chemosensor for trace determination of celecoxib in serum samples​

​An effervescence-assisted dispersive liquid–liquid micro-extraction of captopril based on hydrophobic deep eutectic solvent​

Citations: 8​

​Determination of Tetracycline Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Followed by HPLC–UV System​​

​Over-oxidized carbon paste electrode modified with pretreated carbon nanofiber for the simultaneous detection of epinephrine and uric acid in the presence of ascorbic acid​​

​Dendrimer-modified magnetic nanoparticles as a sorbent in dispersive micro-solid phase extraction for preconcentration of metribuzin in a water sample​​

​Synthesis and dye adsorption studies of the {dibromo(1,1β€²-(1,2-ethanediyl)bis(3-methyl-imidazole-2-thione)dicopper(i)}n polymer and its conversion to CuO nanospheres for photocatalytic and antibacterial applications​​

​Adsorption and removal of ametryn using graphene oxide nano-sheets from farm waste water and optimization using response surface methodology​​

​Application of vortex-assisted solid-phase extraction for the simultaneous preconcentration of Cd(ii) and Pb(ii) by nano clinoptilolite modified with 5(p-dimethylaminobenzylidene) rhodanine​​

​Metal oxide/TiOβ‚‚ nanocomposites as efficient adsorbents for relatively high temperature Hβ‚‚S removal​​

​Novel magnetic hollow zein nanoparticles for preconcentration of chlorpyrifos from water and soil samples prior to analysis via high-performance liquid chromatography (HPLC)​

**Synthesis of an ion-imprinted sorbent by surface imprinting of magnetized carbon nanotubes for determination

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | SCIENTIFIC OFFICER/H at NATIONAL CENTER FOR COMPOSITIONAL CHARACTERISATION OF MATERIALS,Β  India

Shekhar Raparthi is a Scientific Officer / H at the National Centre for Compositional Characterisation of Materials (NCCCM), BARC, Hyderabad. With over three decades of expertise in analytical chemistry, he specializes in trace and ultra-trace characterization of metals, alloys, and high-purity materials. His pioneering work in glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry has significantly advanced compositional analysis. Holding a Ph.D. in Chemistry from JNTU, Hyderabad (2008), he has published extensively in reputed international journals and served as a peer reviewer. Currently leading the ultra-trace analysis section at NCCCM since 2023, he is an esteemed member of India Society for Mass Spectrometry (ISMAS) and Indian Society of Analytical Science (ISAS). His contributions to spectrometric techniques have practical applications in industrial and nuclear material characterization, making him a respected figure in analytical and green chemistry research.

Professional Profile :Β  Β  Β  Β  Β 

ScopusΒ Β 

Summary of Suitability for Award:

Dr. Shekhar Raparthi is a highly accomplished researcher specializing in trace and ultra-trace characterization of materials using mass and spectrometric techniques. With over 32 publications in high-impact journals, an h-index of 14, and 631 citations, he has made significant contributions to analytical chemistry. His pioneering research includes the development of infrared spectroscopic methods, glow discharge quadrupole mass spectrometry (GD-QMS), and novel electrolyte cathode discharge atomic emission spectrometric sources. These innovations have advanced material characterization techniques, benefiting the scientific community and industries dealing with high-purity materials, metals, and alloys. Dr. Raparthi’s extensive research contributions, innovative methodologies, and commitment to advancing analytical chemistry make him an ideal candidate for the “Best Researcher Award.” His work has been recognized through numerous international publications, and his role as the head of the ultra-trace analysis section at NCCCM, BARC, further solidifies his impact in the field.

πŸŽ“Education:

Shekhar Raparthi pursued his M.Sc. in Chemistry from the University of Hyderabad in 1993, where he developed a strong foundation in analytical chemistry. Following this, he underwent a one-year orientation program at BARC in 1994, gaining specialized training in advanced compositional characterization techniques. His academic journey culminated in a Ph.D. in Chemistry from Jawaharlal Nehru Technological University (JNTU), Hyderabad, in 2008. His doctoral research focused on the development of advanced mass spectrometric methodologies for the ultra-trace analysis of metals and high-purity materials. Over the years, he has continuously expanded his expertise through research, peer-reviewed publications, and participation in international analytical chemistry conferences. His educational background has been instrumental in his ability to innovate in trace and ultra-trace analysis techniques, making significant contributions to the field of analytical chemistry.

🏒Work Experience:

Shekhar Raparthi began his professional career in 1994 as a Scientific Officer/C at NCCCM, BARC, Hyderabad, specializing in the compositional characterization of various materials. Over the past 30 years, he has developed novel analytical methodologies for metals, alloys, and high-purity materials using mass spectrometric and spectroscopic techniques. His expertise includes glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry, contributing to advancements in trace and ultra-trace analysis. His work has been widely recognized, leading to 32 publications in reputed international journals. Since 2023, he has been heading the ultra-trace analysis section at NCCCM, overseeing critical research in compositional characterization. He is also an active peer reviewer for international journals. With extensive experience in spectrometric techniques, Shekhar Raparthi plays a key role in material characterization for nuclear, industrial, and high-tech applications.

πŸ…Awards:Β 

Shekhar Raparthi has received several accolades for his significant contributions to analytical chemistry and mass spectrometry. His infrared spectroscopic method for oxygen quantification in TiClβ‚„ was widely appreciated in the titanium industry, earning him recognition in the field. His research on glow discharge quadrupole mass spectrometry and matrix volatilization methodologies for ultra-trace characterization of high-purity germanium has been published in top international journals, including Analytical Chemistry. His expertise in trace element analysis has made him a valuable asset to BARC and the Indian scientific community. As a distinguished member of ISMAS and ISAS, he actively contributes to the advancement of analytical sciences in India. While he has not listed specific awards, his impactful research, numerous peer-reviewed publications, and leadership in ultra-trace analysis solidify his reputation as a leading scientist in compositional characterization.

πŸ”¬Research Focus:

Shekhar Raparthi’s research revolves around trace and ultra-trace characterization of materials using advanced mass spectrometric and spectroscopic techniques. His work plays a crucial role in ensuring the purity and compositional accuracy of metals, alloys, and high-purity materials. He has pioneered glow discharge quadrupole mass spectrometry (GD-QMS) for detecting impurities at ultra-trace levels. Additionally, his development of matrix volatilization methodologies has enhanced the characterization of high-purity germanium, a material critical in semiconductor and radiation detection applications. His innovations in electrolyte cathode discharge atomic emission spectrometry (ECD-AES) have improved the sensitivity and precision of trace element analysis. His research significantly contributes to nuclear, industrial, and advanced material applications, ensuring high accuracy in material compositional studies. As the head of the ultra-trace analysis section at NCCCM, his expertise in **

Publication Top Notes:

In-situ Ti–Ir and ammonium thiocyanate modifiers for improvement of sensitivity of Sc to sub parts per billion levels and its accurate quantification in coal fly ash and red mud by GFAAS

Hydrophobicity induced graphene oxide based dispersive micro solid phase extraction of strontium from seawater and groundwater prior to GFAAS determination

Direct determination of ultra-trace sodium in reactor secondary coolant waters and other waters by electrolyte cathode discharge atomic emission spectrometry

Citation Count: 1

 

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R ,Inorganic Chemistry, GOVERNMENT POLYTECHNIC COLLEGE, EZHUKONE, KOLLAM, KERALA, India

Dr. Minitha R. is an Associate Professor with over 14 years of teaching and 15 years of research experience in chemistry. She holds an M.Sc., M.Phil., NET, UGC-JRF, and Ph.D. Her expertise spans organic, coordination, supramolecular, and inorganic chemistry. She has served in key academic roles, including NSS Programme Officer and Chief Superintendent of Examinations. A dedicated researcher, Dr. Minitha has guided students and undertaken projects like developing a chemosensor for metal ion detection. She has organized multiple national seminars and actively participates in international conferences and workshops.

Professional Profile :Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β 

Orcid

ScopusΒ Β 

Summary of Suitability for Award:

Dr. Minitha R., an accomplished Associate Professor with 15 years of research experience, has significantly contributed to the field of Inorganic Chemistry, particularly in Coordination Chemistry, Supramolecular Chemistry, and Organic Chemistry. With a strong publication record, she has authored several impactful research papers in highly reputed journals, covering diverse topics such as metal complexes, chemosensors, molecular structures, and spectroscopic studies. Dr. Minitha R. is an exceptional candidate for the “Best Researcher Award,” given her proven research excellence, scholarly contributions, and leadership in the scientific community. Her extensive work in metal-based coordination complexes, chemosensors, and supramolecular chemistry, along with her active role in mentoring and academic leadership, makes her a highly deserving nominee.

πŸŽ“Education:

Dr. Minitha R. holds a Ph.D. in Chemistry and has qualified for the NET and UGC-JRF. She completed her M.Sc. and M.Phil. in Chemistry, demonstrating academic excellence throughout. Her education provided her with a strong foundation in inorganic chemistry, particularly in complex synthesis, supramolecular interactions, and chemosensing applications. Her academic journey was driven by a passion for molecular recognition, ligand design, and structural chemistry. She has actively participated in seminars and workshops to enhance her knowledge and keep up with evolving research trends.

🏒Work Experience:

With 14 years of teaching and 15 years of research experience, Dr. Minitha R. has handled Organic, Inorganic, and Physical Chemistry courses. She has successfully guided research scholars, fostering innovations in supramolecular and coordination chemistry. Apart from teaching, she has played key roles as an NSS Programme Officer, Nature Club Coordinator, Chief Superintendent of Examinations, and Young Innovators Programme Facilitator. She has also organized national seminars and workshops on emerging trends in chemistry, enhancing academic collaboration and knowledge dissemination.

πŸ…Awards:Β 

Dr. Minitha R. has been recognized for her outstanding contributions to academia and research. She served as the NSS Programme Officer (2021-2022), demonstrating her commitment to student welfare and community service. As the Nature Club Coordinator (2019-2020), she played a crucial role in promoting environmental awareness. Her leadership extended to being the Chief Superintendent of Examinations (2020-2021), ensuring smooth academic assessments. Additionally, she facilitated the Young Innovators Programme (2019), fostering creativity and scientific curiosity among students. Her research endeavors were supported by a KSCSTE-funded M.Sc. student project, where she developed a chemosensor for metal ion detection. These roles reflect her dedication to education, research, and institutional development.

πŸ”¬Research Focus:

Dr. Minitha R. specializes in Inorganic Chemistry, with a keen interest in Organic Chemistry, Coordination Chemistry, and Supramolecular Chemistry. Her research explores the synthesis and characterization of novel metal complexes, particularly those with biological and chemosensory applications. She has contributed significantly to the development of pyrazolylhydrazone-based metal complexes, dioxo molybdenum(VI) compounds, and benzothiazolium salts. Her work also extends to fluorescent hydrazones and ruthenium(II) complexes, emphasizing their structural and functional properties. Additionally, her studies on five-coordinate Zn(II) complexes highlight their potential in nonlinear optical applications. Through her research, she aims to bridge the gap between fundamental chemistry and real-world applications, particularly in materials science, catalysis, and medicinal chemistry.

Publication Top Notes:

Formation of dicyano ruthenium(II) complex mediated by triethylamine via deprotonation of hydrazonochroman-2,4-dione
Synthesis, spectroscopic and biological studies of metal complexes of an ONO donor pyrazolylhydrazone – Crystal structure of ligand and Co(II) complex
Studies of some dioxo molybdenum(VI) complexes of a polydentate ligand
One pot synthesis of 1–(3–methyl–4H–benzo[1,4]thiazin–2–yl)-ethanone and its antimicrobial properties
Β Synthesis, spectral, and magnetic studies of benzothiazolium tetrachlorocuprate salts: crystal structure and semiconducting behavior of bis[2-(4-methoxyphenyl)benzothiazolium] tetrachlorocuprate(II)
Fluorescent coumarin-based hydrazone: Synthesis, crystal structure, and spectroscopic studies
FT-IR, FT-Raman and computational study of 1H-2,2-dimethyl-3H-phenothiazin-4[10H]-one
Synthesis, crystal structure, spectral analysis, and NLO studies of five-coordinate Zn(II) complexes of hydrazochromandione
Β Chemosensing study of 1,4-Benzothiazine generated from acetylacetone

 

Dr. Hongjian Qin | Organic Chemistry | Best Researcher Award

Dr. Hongjian Qin | Organic Chemistry | Best Researcher Award

Dr. Hongjian Qin , Shanghai Institute of Materia Medica, CAS , China

Dr. Hongjian Qin is an accomplished researcher in sustainable and green chemistry, with expertise in drug process development and medicinal administration. He earned his Ph.D. in Organic Chemistry from the Chinese Academy of Sciences, being recognized as an Excellent Graduate in 2024. Dr. Hongjian Qin’s contributions to the field span over three years, emphasizing environmentally friendly pharmaceutical synthesis and active pharmaceutical ingredient (API) development. Currently serving as Research Director at Topharman Company Limited, he continues to advance innovative solutions in drug development. His work includes mentoring students, enhancing resource recovery, and participating in COVID-19 research. With numerous impactful publications, Dr. Hongjian Qin is a dedicated professional committed to promoting sustainability and advancing solutions for global environmental challenges.

Professional Profile:

ScopusΒ 

Summary of Suitability for Award:

Dr. Hongjian Qin is an exemplary candidate for the “Best Researcher Awards,” with a distinguished career in sustainable and green chemistry. His pioneering research in eco-friendly pharmaceutical synthesis has significantly contributed to reducing industrial waste and enhancing process efficiency, aligning with global sustainability objectives. Dr. Hongjian Qin’s innovative work on ligand-free catalysis, large-scale API production, and impurity profiling reflects his expertise in developing practical solutions for complex challenges in organic chemistry and medicinal chemistry. Dr. Hongjian Qin’s research excellence, innovative contributions, and global impact make him a highly deserving candidate for the “Best Researcher Awards.” His work not only addresses critical scientific challenges but also fosters sustainable practices in drug development, making a lasting impact on both academia and industry.

πŸŽ“Education:

Dr. Hongjian Qin holds a Ph.D. in Organic Chemistry from the Chinese Academy of Sciences , specializing in process development of drug substances and medicinal administration. His doctoral work was conducted at the Key Laboratory of Plant Resources and Chemistry in Arid Regions, showcasing expertise in sustainable pharmaceutical synthesis. He completed a Master of Engineering in Organic Chemistry from Guangxi University, focusing on the process development of drug substances. Dr. Qin’s academic journey began with a Bachelor of Science in Organic Chemistry from Guangxi University . His educational foundation combines rigorous theoretical knowledge with practical applications, preparing him to address complex challenges in green and sustainable chemistry.

🏒Work Experience:

Dr. Hongjian Qin’s professional journey spans over a decade, focusing on pharmaceutical synthesis and sustainable chemistry. As Research Director at Topharman Company Limited (2024–present), he spearheads innovations in active pharmaceutical ingredients (APIs) and emphasizes good manufacturing practices (GMP). Previously, as a Research Assistant at the Shanghai Institute of Materia Medica (2021–2024), he supported COVID-19 research projects, trained students, and enhanced pharmaceutical waste recovery techniques. At the Xinjiang Engineering Research Centre for Key Technologies and Processes of Ethnomedicine (2015–2021), Dr. Hongjian Qin led projects on sustainable API production and industrial resource recovery. His experiences reflect a blend of academic research and industrial application, driving advancements in pharmaceutical science.

πŸ…Awards:Β 

Dr. Hongjian Qin has received numerous accolades for his contributions to sustainable chemistry. He was honored as an Excellent Graduate in 2024 by the University of Chinese Academy of Sciences for his outstanding academic achievements during his Ph.D. studies. His work on sustainable pharmaceutical synthesis earned him recognition at various national and international conferences. Dr. Hongjian Qin has been instrumental in developing innovative processes for drug substances, garnering appreciation from industrial partners. Additionally, his mentorship roles and administrative contributions at research institutions have been commended, underscoring his commitment to advancing science and education.

πŸ”¬Research Focus:

Dr. Hongjian Qin’s research focuses on sustainable and green chemistry, particularly in the process development of drug substances. He has worked extensively on optimizing synthesis methods for pharmaceutical intermediates, reducing waste, and improving efficiency in drug manufacturing. His innovative approaches emphasize the use of eco-friendly reagents and catalysts, aligning with global sustainability goals. His recent work includes developing ligand-free copper-catalyzed cyclization methods, novel iron-catalyzed cross-coupling reactions, and efficient large-scale processes for active pharmaceutical ingredients (APIs). Dr. Hongjian Qin is dedicated to advancing environmentally responsible techniques in pharmaceutical synthesis, ensuring both industrial viability and ecological preservation.

Publication Top Notes:

1. Direct Esterification of Amides by the Dimethylsulfate-Mediated Activation of Amide C–N Bonds

Authors: Qin, H.; Han, Z.; Bonku, E.M.; Shen, J.; Aisa, H.A.

Year: 2024

Citations: 0

2. An Alternative Approach to Synthesize Sildenafil via Improved Copper-Catalyzed Cyclization

Authors: Odilov, A.; Gong, X.; Qin, H.; Yang, F.; Shen, J.

Year: 2024

Citations: 0

3. Impurity Study of Tecovirimat (Open Access)

Authors: Bonku, E.M.; Qin, H.; Odilov, A.; Wang, X.; Shen, J.

Year: 2024

Citations: 1

4. Improved and Ligand-Free Copper-Catalyzed Cyclization for an Efficient Synthesis of Benzimidazoles from o-Bromoarylamine and Nitriles (Open Access)

Authors: Bonku, E.M.; Qin, H.; Odilov, A.; Aisa, H.A.; Shen, J.

Year: 2024

Citations: 2

5. Direct Reductive N-Alkylation of Amines with Carboxylic Esters

Authors: Zhang, Y.; Bonku, E.M.; Yang, X.; Shen, J.; Qin, H.

Year: 2024 (In Press)

Citations: 0

6. Iron-Catalyzed Cross-Coupling Reactions of Alkyl Grignard Reagents with Alkenyl Carbonate

Authors: Qin, H.; Yang, X.; Mintah Bonku, E.; Shen, J.; Akber Aisa, H.

Year: 2024 (In Press)

Citations: 0

7. A Review of the Synthetic Strategies Toward the Antiviral Drug Tecovirimat (Review Article)

Authors: Bonku, E.M.; Qin, H.; Odilov, A.; Zhu, F.; Shen, J.

Year: 2024 (In Press)

Citations: 0

8. An Improved Iodine-Catalyzed Aromatization Reaction and Its Application in the Synthesis of a Key Intermediate of Cannabidiol

Authors: Abduahadi, S.; Bonku, E.M.; Qin, H.; Aisa, H.A.; Shen, J.

Year: 2024 (In Press)

Citations: 0

9. Optimized Synthesis of the Key Intermediate of Telmisartan via the Cyclization of 2-Bromoarylamine with n-Butyronitrile

Authors: Qin, H.; Mintah Bonku, E.; Odilov, A.; Zhu, F.; Aisa, H.A.

Year: 2023

Citations: 1

10. Efficient Large-Scale Process for Tecovirimat via Reactive Distillation for the Preparation of Cycloheptatriene

Authors: Bonku, E.M.; Qin, H.; Odilov, A.; Guma, S.D.; Shen, J.

Year: 2023

Citations: 4

 

 

 

 

 

Dr. Frank Alexis | Materials Chemistry | Best Researcher Award

Dr. Frank Alexis | Materials Chemistry | Best Researcher Award

Dr. Frank Alexis , Universidad San Francisco de Quito , Ecuador

Dr. Frank Alexis is a Full Professor in the Department of Chemical Engineering at Universidad San Francisco de Quito, Ecuador. With a Ph.D. in Materials Science Engineering from Nanyang Technological University, his career spans academia, research, and industry. Renowned for his expertise in nanotechnology, drug delivery, and biomaterials, Dr. Alexis has contributed significantly to science, with 138 publications and over 11,300 citations. As a mentor and innovator, he has founded companies, guided minority students, and influenced global research through his work as an editor and reviewer for prestigious journals.

Professional Profile:

Orcid

Scopus

Summary of Suitability for Award:

Dr. Frank Alexis is an exemplary candidate for the “Best Researcher Awards,” combining academic brilliance, impactful research, and inspirational mentorship. His multidisciplinary innovations, global recognition, and dedication to advancing science make him a highly deserving contender for this honor. Dr. Frank Alexis is an accomplished researcher and educator with exceptional contributions to materials science, bioengineering, and nanotechnology. His diverse expertise spans academia, industry, and editorial roles, demonstrating a well-rounded career in advancing science and mentoring future researchers. Dr.Β  FrankΒ  Alexis has 138 publications with over 11,315 citations, showcasing the global impact of his work.

πŸŽ“Education:

Dr. Frank Alexis holds a Ph.D. in Materials Science Engineering from Nanyang Technological University (Singapore), a Master’s degree in Materials Science and Interfaces from Technological University of Montpellier (France), and a Bachelor’s degree in Chemistry from the same institution. His academic journey reflects a blend of international education, encompassing advanced training in materials science, chemistry, and interdisciplinary applications pivotal for his pioneering contributions to nanotechnology and drug delivery systems.

🏒Work Experience:

Dr. Alexis has held prominent academic positions globally, including Full Professor roles at Universidad San Francisco de Quito and Yachay Tech in Ecuador. He served as Vice Chancellor of Research and Innovation at Yachay Tech and a tenured Associate Professor of Bioengineering at Clemson University. His industry experience spans roles at Stericoat Inc., LEK Consulting, Polymed Inc., and GearJump Technologies. Additionally, he contributed to groundbreaking biomaterials research at MIT and Brigham and Women’s Hospital, shaping the fields of nanomedicine and drug delivery.

πŸ…Awards:Β 

Dr. Alexis has received numerous accolades, including recognition as a Top 2% Researcher globally in nanotechnology and chemistry and Best Researcher by CEDIA. His inventive contributions have earned him awards like Best Inventor and Best Academic Invention. A mentor to minority students, he received the PEER & WISE Mentorship Award and recognition from Nature Biotechnology as a Top Translational Junior Faculty. His honors reflect his profound impact on research, mentorship, and innovation.

πŸ”¬Research Focus:

Dr. Alexis specializes in nanotechnology, biomaterials, and drug delivery systems, focusing on designing advanced materials for healthcare and environmental applications. His interdisciplinary research spans the development of sensors, biodegradable polymers, and functional nanomaterials. His work integrates chemistry, biology, and engineering to tackle challenges in medical diagnostics, therapeutic delivery, and sustainable technologies.

Publication Top Notes:

  • Colorimetric sensor for copper and lead using silver nanoparticles functionalized with fluoresceinamine isomerΒ 
    • Citations: 1
  • Photochromic sensing of La³⁺ and Lu³⁺ ions using poly(caprolactone) fibers doped with spiropyran dyes
    • Citations: 2
  • Synergistic Antibacterial Properties of Silver Nanoparticles and Its Reducing Agent from Cinnamon Bark Extract
    • Citations: 1
  • Water soluble spiropyran for Hg²⁺ sensing in water
    • Citations: 3
  • Users’ opinion about synthetic, bio- and nano-biopesticides
    • Citations: 3

 

 

 

 

 

 

Mr. Lei Mou | Analytical Chemistry Award | Young Scientist Award

Mr. Lei Mou | Analytical Chemistry Award | Young Scientist Award

Mr. Lei Mou ,Guangzhou Medical University, China

Lei Mou is a Research Associate at the Terasaki Institute for Biomedical Innovation, Los Angeles, specializing in biosensors, wearable devices, and organ-on-a-chip technology. With a robust background in biomedical engineering and materials science, Lei completed a Ph.D. from the National Center for Nanoscience and Technology (NCNST) under Prof. Xingyu Jiang. His work integrates advanced microfluidic and biosensor platforms aimed at enhancing clinical diagnostics and wearable health monitoring. With extensive research and technical skills, he has contributed to innovative approaches in immunoassay technology, HPV detection, and biosignal computing. Lei’s contributions to nanobiotechnology are also reflected in his numerous patents, high-impact publications, and presentations at international conferences.

Professional Profile:

Google Scholar

Summary of Suitability for Award:

Lei Mou demonstrates strong potential for the “Young Scientist Award,” with impressive accomplishments in biomedical engineering, especially in clinical biosensors, wearable devices, and organs-on-a-chip technology. His academic foundation is rooted in a Ph.D. from the Chinese Academy of Sciences, where he specialized in biomaterials and point-of-care diagnostic platforms, laying a solid groundwork for his current innovative research.

πŸŽ“Education:

Lei Mou earned his Ph.D. in Biomedical Engineering from the National Center for Nanoscience and Technology, Chinese Academy of Sciences (2016-2020), where he researched biosensors and microfluidic devices under Prof. Xingyu Jiang’s mentorship. His undergraduate studies in Materials Science and Engineering were completed at the University of Science and Technology Beijing (USTB) in 2016, as part of the Excellent Engineer Training Program. Here, he laid the foundation for his expertise in nanomaterials and engineering design, achieving numerous accolades for academic excellence. Lei’s educational path has emphasized interdisciplinary research, equipping him with a skill set to bridge materials science, biomedical engineering, and clinical applications effectively.

🏒Work Experience:

Lei Mou is currently a Research Associate at the Terasaki Institute for Biomedical Innovation (TIBI), where he focuses on the development of organ-on-a-chip systems and advanced biosensors. Prior to this, he was a Researcher at the Third Affiliated Hospital of Guangzhou Medical University, where he specialized in clinical biosensors and wearable device technology. Lei’s professional experience has enabled him to develop high-sensitivity immunoassay platforms and contribute to significant projects in health-related microfluidic applications. His work bridges clinical settings and advanced engineering, bringing laboratory innovations closer to real-world applications.

πŸ…Awards:

Lei Mou has earned numerous awards for his academic and research excellence, including the Director’s Scholarship at NCNST and the First Class Scholarship for Master’s Students, recognizing him as a top 3% student. During his undergraduate studies, he received the prestigious 86 Alumni Scholarship, the National Scholarship from China’s Ministry of Education, and the Beijing Outstanding Graduates Award. His achievements reflect his commitment to excellence and innovation in his field, with honors that highlight his performance and contributions to biomedical engineering and materials science.

πŸ”¬Research Focus:

Lei Mou’s research focuses on microfluidic immunoassays, wearable biosensors, and organs-on-a-chip technologies. He specializes in integrating nanotechnology with biomedical engineering to develop advanced diagnostic tools for healthcare. His work includes creating chemiluminescence immunoassay platforms that amplify biomarker signals using gold nanoparticles, as well as developing portable devices for detecting high-risk HPV strains. His research has significant implications for personalized medicine and remote diagnostics, aiming to improve accessibility and precision in clinical diagnostics and healthcare monitoring.

Publication Top Notes:

  • Surface chemistry of gold nanoparticles for health-related applications
    • Citations: 277
  • Microfluidics‐based biomaterials and biodevices
    • Citations: 183
  • Materials for microfluidic immunoassays: a review
    • Citations: 154
  • Printable metal-polymer conductors for highly stretchable bio-devices
    • Citations: 130
  • Highly stretchable and biocompatible liquid metal‐elastomer conductors for self‐healing electronics
    • Citations: 109

 

 

 

 

Charles Perrin | Chemistry and Materials Science | Best Researcher Award

Prof Dr. Charles Perrin | Chemistry and Materials Science | Best Researcher Award

Β Professor at Distinguished Professor Emeritus of UCSD, United States

Professor Dr. Charles L. Perrin, born on July 22, 1938, in Pittsburgh, PA, is a distinguished professor emeritus at UC San Diego, where he has served since 1964. πŸŽ“ He holds an A.B. summa cum laude in Chemistry from Harvard College (1959) and a Ph.D. in Organic Chemistry from Harvard University (1963). πŸ’ Married to Marilyn Heller Perrin, they have two sons. πŸ‘¨β€πŸ‘©β€πŸ‘¦β€πŸ‘¦ Dr. Perrin’s career is marked by numerous awards, including the Alfred P. Sloan Foundation Fellowship, the ACS James Flack Norris Award, and multiple teaching excellence awards at UCSD. πŸ… His research in physical-organic chemistry encompasses molecular structure, reaction mechanisms, NMR methods, and hydrogen bonding. πŸ§ͺ He has authored over 190 scientific articles and has made significant contributions, such as the synthesis of malonic anhydrides and elucidating proton exchange mechanisms in amides. πŸ“š Dr. Perrin has also served as a consultant, expert witness, and editorial board member, and has chaired and organized various scientific conferences. πŸŒπŸ”¬

Professional Profile:

EducationπŸŽ“

Professor Dr. Charles L. Perrin’s education is rooted in his outstanding academic achievements. πŸŽ“ He graduated summa cum laude with an A.B. in Chemistry from Harvard College in 1959. πŸ›οΈ He then pursued a Ph.D. in Organic Chemistry under the guidance of Frank H. Westheimer at Harvard University, completing it in 1963. πŸ“œ Following his doctorate, he was awarded an NSF Post-Doctoral Fellowship to work with Andrew Streitwieser, Jr., at the University of California, Berkeley, further solidifying his expertise in the field. πŸ”¬

 

Professional Experience πŸ“š

Professor Dr. Charles L. Perrin has had a distinguished professional career at UC San Diego, where he began as an Assistant Professor of Chemistry in 1964. πŸ‘¨β€πŸ« He was promoted to Associate Professor in 1971 and became a full Professor in 1980. 🌟 In 2018, he was honored as a Distinguished Professor Emeritus and was recalled to active service. πŸŽ“ Over the decades, he has made significant contributions to physical-organic chemistry, published over 190 scientific articles, and received numerous prestigious awards. πŸ… Dr. Perrin has also served as a consultant, expert witness, and member of several editorial boards, and has chaired and organized key scientific conferences, solidifying his reputation as a leading figure in his field. 🌍

Research Interest πŸ”

Professor Dr. Charles L. Perrin’s research interests lie in the realm of physical-organic chemistry, focusing on the molecular structure and mechanisms of organic reactions. πŸ§ͺ His work includes the study of malonic anhydrides, NMR methods for chemical kinetics, and proton exchange kinetics in amides and related compounds. πŸ”„ He delves into solvation and hydrogen bonding, stereoelectronic control in the cleavage of tetrahedral intermediates and acyl shifts, as well as kinetic and equilibrium isotope effects. πŸ”¬ Dr. Perrin also explores the symmetry of hydrogen bonds, anomeric effects, conformational analysis, and steric hindrance to ionic solvation, alongside nonradical reactions of p-benzyne diradicals and the chemistry of resulting “naked” aryl anions. 🌐 πŸ§¬πŸ’»

Award and Honor🌟 

Professor Dr. Charles L. Perrin has received numerous awards and honors throughout his distinguished career. πŸ… He was elected to Phi Beta Kappa at Harvard College in 1958 and received an Alfred P. Sloan Foundation Fellowship in 1967-69. 🌟 He was honored with a Special HEW Research Fellowship at GΓΆteborgs Universitet in Sweden (1972-73) and was named a Fellow of the American Association for the Advancement of Science in 1984. πŸ”¬ Dr. Perrin has been recognized for his teaching excellence with multiple awards from UCSD, including the Revelle College Excellence in Teaching Awards (1977, 1993) and the UCSD Chancellor’s Associates’ Faculty Excellence Award for Teaching in 2001. πŸŽ“ He received the prestigious ACS James Flack Norris Award in Physical Organic Chemistry in 2015 and was named the Distinguished Scientist Award of the ACS San Diego Section in 2017. 🌍 Additionally, he has held various visiting professorships and lectureships worldwide, further cementing his status as a leading figure in his field. 🌐

 

Research Skills πŸ”¬Β 

Professor Dr. Charles L. Perrin possesses exceptional research skills in physical-organic chemistry. πŸ§ͺ He is adept at utilizing NMR methods for chemical kinetics and developing innovative techniques such as variable-temperature NMR and magnetization-transfer and 2D-NMR methods for multisite kinetics. πŸ”„ His expertise includes synthesizing complex molecules like malonic anhydrides and elucidating reaction mechanisms at the molecular level. πŸ”¬ Dr. Perrin has a keen ability to investigate proton exchange kinetics, solvation, hydrogen bonding, and stereoelectronic effects, making significant contributions to understanding the fundamental principles governing organic reactions. 🌟 His work also includes the application of isotopic perturbation and kinetic isotope effects, showcasing his comprehensive analytical and experimental capabilities. 🌐

 

AchievementsΒ πŸ… πŸ†

Professor Dr. Charles L. Perrin has made numerous groundbreaking achievements in physical-organic chemistry. πŸ§ͺ He recognized the generality of ipso substitution and introduced the related terminology. πŸ“š He authored the textbook “Mathematics for Chemists” and ACS Audio Courses on “Probability and Statistics for Chemists” and “Calculus for Chemists.” πŸ”¬ His work elucidated the mechanisms of proton exchange in amides, peptides, and proteins, and he synthesized malonic anhydrides, classic molecules sought for 70 years. πŸ”„ Dr. Perrin developed innovative NMR methods, discovered a chain mechanism for proton exchange, and made significant advancements in understanding the Curtin-Hammett Principle. 🌐 He critically assessed stereoelectronic control, evaluated the anomeric effect, and measured the rate of NH4+ rotation within its solvent cage. πŸ” His research demonstrated the nonexistence of the reverse anomeric effect, elucidated the symmetry of hydrogen bonds, and developed an accurate NMR titration method. 🌟 He also discovered new reactions involving p-benzyne and demonstrated nonadditivity of secondary deuterium isotope effects on basicities.

 

PublicationsπŸ“–πŸ“š

Symmetry of Hydrogen Bonds: Application of NMR Method of Isotopic Perturbation and Relevance of Solvatomers

  • Publication: Molecules, 2023, 28(11), 4462 πŸ“„
  • Author: Perrin, C.L.
  • Citations: 1 πŸ”¬

My First Publication

  • Publication: Journal of Physical Or
  • ganic Chemistry, 2022, 35(11), e4302 πŸ“„
  • Author: Perrin, C.L.
  • Citations: 0 🚫

The Complete Mechanism of an Aldol Condensation in Water

  • Publication: Physical Chemistry Chemical Physics, 2022, 24(31), pp. 18978–18982 πŸ“„
  • Authors: Perrin, C.L., Kim, J.
  • Citations: 1 πŸ”¬

Nucleophilic Addition of Enolates to 1,4-Dehydrobenzene Diradicals Derived from Enediynes: Synthesis of Functionalized Aromatics

  • Publication: ACS Omega, 2022, 7(26), pp. 22930–22937 πŸ“„
  • Authors: Shrinidhi, A., Perrin, C.L.
  • Citations: 2 πŸ”¬πŸ”¬

Malonic Anhydrides, Challenges from a Simple Structure

  • Publication: Journal of Organic Chemistry, 2022, 87(11), pp. 7006–7012 πŸ“„
  • Author: Perrin, C.L.
  • Citations: 0 🚫

Glossary of Terms Used in Physical Organic Chemistry (IUPAC Recommendations 2021)

  • Publication: Pure and Applied Chemistry, 2022, 94(4), pp. 353–534 πŸ“„
  • Authors: Perrin, C.L., Agranat, I., Bagno, A., Uggerud, E., Williams, I.H.
  • Citations: 19 πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬

Ipso

  • Publication: Journal of Organic Chemistry, 2021, 86(21), pp. 14245–14249 πŸ“„
  • Author: Perrin, C.L.
  • Citations: 6 πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬πŸ”¬

Comment on β€œTopography of the Free Energy Landscape of Claisen-Schmidt Condensation: Solvent and Temperature Effects on the Rate-Controlling Step” by N. D. Coutinho, H. G. Machado, V. H. Carvalho-Silva and W. A. da Silva

  • Publication: Physical Chemistry Chemical Physics, 2021, 23(38), pp. 22199–22201 πŸ“„
  • Author: Perrin, C.L.
  • Citations: 1 πŸ”¬

Cyclohexeno[3,4]cyclodec-1,5-diyne-3-ene: A Convenient Enediyne

  • Publication: Organic Letters, 2021, 23(17), pp. 6911–6915 πŸ“„
  • Authors: Shrinidhi, A., Perrin, C.L.
  • Citations: 2 πŸ”¬πŸ”¬

Enthalpic and Entropic Contributions to the Basicity of Cycloalkylamines

  • Publication: Chemical Science, 2020, 11(32), pp. 8489–8494 πŸ“„
  • Authors: Perrin, C.L., Shrinidhi, A.
  • Citations: 3 πŸ”¬πŸ”¬πŸ”¬