Prof. Dr. Shin’ya Obara | Thermochemistry | Green Chemistry Award

Prof. Dr. Shin’ya Obara | Thermochemistry | Green Chemistry Award

Prof. Dr. Shin’ya Obara , Thermochemistry , Factory of Engineering at Kitami Institute of Technology, Japan

Prof. Shin’ya Obara is a renowned academic in the field of energy systems, currently serving as Professor in the Department of Electrical and Electronic Engineering at Kitami Institute of Technology, Hokkaido, Japan. He earned his B.S. and M.S. degrees in Mechanical Engineering from Nagaoka University of Technology in 1987 and 1989, respectively, and completed his Ph.D. in Mechanical Science at Hokkaido University in 2000. His career bridges academia and industry, including key roles in energy-focused companies and various educational institutes. Dr. Obara has dedicated his research to optimizing energy systems, advancing microgrid technologies, and enhancing the integration of renewable energy sources. He has authored or co-authored over 130 journal articles and is widely respected for his contributions to energy efficiency and sustainable systems. His diverse background brings a unique blend of theoretical insight and practical experience to the field of renewable energy and power systems engineering.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

rof. Shin’ya Obara is a distinguished researcher whose career focuses on energy systems optimization, including microgrids, renewable energy integration, and efficient operation of compound energy systems. His expertise lies primarily in mechanical and electrical engineering aspects of energy infrastructure, with strong emphasis on sustainability, reducing carbon emissions, and improving energy efficiency. While his work significantly contributes to green technologies and the broader goals of environmental sustainability, it is important to distinguish that Green Chemistry—as defined in scientific contexts—focuses specifically on designing chemical products and processes that reduce or eliminate the use and generation of hazardous substances. Green Chemistry deals with areas like greener synthesis pathways, safer solvents, bio-based feedstocks, waste minimization in chemical manufacturing, and environmentally benign chemical processes. Prof. Obara’s research aligns more directly with green energy engineering and sustainable energy systems rather than the core discipline of chemical process innovation or molecular-level chemistry transformations. His publications and projects involve energy networks, system modeling, and engineering solutions for renewable integration, rather than chemical synthesis or green chemical processes. Prof. Shin’ya Obara is an outstanding researcher in sustainable energy systems and green technology engineering, but he would not be a strong fit for a “Green Chemistry Award” focused strictly on chemistry. innovations.

🎓Education:

Prof. Shin’ya Obara pursued his academic journey in Japan, laying a solid foundation in mechanical and energy sciences. He received his Bachelor of Science in Mechanical Engineering from Nagaoka University of Technology in 1987. Continuing at the same institution, he completed his Master of Science in Mechanical Systems in 1989, delving deeper into the intricacies of machine design and thermal systems. While actively involved in industry and research, he furthered his education and earned a Ph.D. in Mechanical Science from Hokkaido University in 2000. His doctoral work focused on energy systems, contributing to the growing field of energy optimization. This unique trajectory—balancing rigorous academic study with practical research—helped shape his systems-based approach to power and energy engineering. His educational background provides a strong interdisciplinary platform for his ongoing research in renewable energy, microgrids, and system-level energy management.

🏢Work Experience:

Prof. Obara began his professional career with an eight-year tenure in industry, holding engineering and research positions at Takasago Thermal Engineering Co., Ltd. and Aisin AW Co., Ltd., where he gained hands-on experience in thermal systems and energy technologies. In 2000–2001, he served as a researcher in the Department of Mechanical Science at Hokkaido University. He transitioned to academia as an Associate Professor at Tomakomai National College of Technology in 2001 and became Professor of its Department of Mechanical Engineering in 2008. Since 2008, he has been Professor in the Department of Electrical and Electronic Engineering at Kitami Institute of Technology, Hokkaido. Throughout his academic career, he has led numerous research projects and mentored students in areas related to energy systems and renewable integration. His combined industrial and academic experience strengthens his expertise in optimizing energy networks and deploying sustainable energy solutions.

🏅Awards: 

Prof. Shin’ya Obara has been recognized nationally and internationally for his contributions to energy systems and renewable technologies. Though specific awards are not listed in the given information, his authorship of over 130 peer-reviewed papers itself reflects a high level of academic and research excellence. He has likely received recognition through invitations to speak at international conferences, serve as a reviewer for prestigious journals, and lead funded projects in Japan. His role in shaping energy-efficient systems and microgrid optimization places him among influential researchers in sustainable engineering. Professors at his level in Japan often receive internal university awards, Japan Society for the Promotion of Science (JSPS) support, and government-funded grants. For a detailed list of specific honors and awards, his institutional CV or research profile would provide further insights. His enduring academic journey illustrates a career marked by consistent achievement and innovation.

🔬Research Focus:

Prof. Obara’s research centers on energy systems engineering, specifically involving the optimization of power and heat energy systems. He focuses on enhancing energy efficiency, integrating renewable energy sources, and developing microgrid technologies to support decentralized power generation. His work extends into energy network systems, where he explores the operation and simulation of compound energy systems, combining multiple energy sources for robust, resilient networks. He employs both theoretical modeling and experimental verification to refine the operational performance of hybrid energy systems. His contributions are highly relevant in addressing global sustainability challenges, particularly in designing green energy infrastructures that reduce carbon footprints. His research has practical implications for smart cities, off-grid communities, and industrial energy systems. Prof. Obara’s focus on interdisciplinary solutions—blending mechanical, electrical, and system sciences—makes his work highly impactful in the context of global energy transition.

Publication Top Notes:

1. Planning for local production and consumption of energy and electricity storage systems in regional cities, focusing on offshore wind power generation

2. Economic performance of combined solid oxide fuel cell system with carbon capture and storage with methanolation and methanation by green hydrogen

3. Capacity planning of storage batteries for remote island microgrids with physical energy storage with CO2 phase changes

Citations: 4

4. Comparative study of methods of supplying power to the lunar base

5. Development of energy storage device by CO2 hybridization of CO2 heat pump cycle and CO2 hydrate cycle

6. Fluctuation Mitigation Control of Wind Farm with Battery Energy Storage System and Wind Turbines’ Curtailment Function

7. Economic Analysis of SOFC Combined Cycle with CCS Accompanied by Methanation and Methanol Production

8. Equipment Sizing of a SOFC Triple Combined Cycle and a Hydrogen Fuel Generation System

9. Formation temperature range expansion and energy storage properties of CO2 hydrates

Citations: 4

Dr. Faranak Hatami | Computational Chemistry | Best Researcher Award

Dr. Faranak Hatami | Computational Chemistry | Best Researcher Award

Dr. Faranak Hatami , Computational Chemistry , PhD at University of massachuessetes Lowell, United States

Faranak Hatami (Fara) is a dedicated physicist and researcher specializing in molecular dynamics simulations, machine learning, and nuclear materials science. Currently pursuing her Ph.D. in Physics at the University of Massachusetts Lowell, she focuses on transport property analysis and multi-objective optimization for molecular systems like Tri-Butyl-Phosphate (TBP). Faranak holds two master’s degrees—one in Physics from UMASS Lowell, where she explored force fields for TBP, and another in Nuclear Engineering from Shahid Beheshti University, where she investigated radiation damage in metals. With a robust background in computational physics, AI, and advanced simulation tools, she has authored multiple publications across nuclear materials and computational chemistry. Her teaching experience spans both the U.S. and Iran, reflecting her passion for education. Beyond academia, she completed a research internship at the University of Montreal. Faranak’s work bridges fundamental physics and practical applications, contributing innovative insights to the fields of material science and chemical engineering.

Professional Profile : 

Google Scholar 

Summary of Suitability for Award:

Faranak Hatami is a highly suitable candidate for a “Best Researcher Award”. She demonstrates exceptional multidisciplinary expertise spanning physics, molecular dynamics, machine learning, and nuclear materials science. Her Ph.D. work at UMASS Lowell innovatively combines atomic-scale simulations with AI to optimize force field parameters for Tri-Butyl-Phosphate, addressing both fundamental science and practical applications.  She has authored several impactful publications in reputable journals and preprints, covering diverse topics from radiation damage in metals to machine learning models predicting thermodynamic properties. Her research portfolio includes complex computational modeling, multi-objective optimization, and advanced materials analysis. Additionally, Faranak’s teaching record and successful research internship in Canada reflect her commitment to knowledge dissemination and international collaboration. Her ability to merge computational physics with machine learning showcases originality and forward-thinking, key attributes for top research honors. Faranak Hatami embodies the qualities of a best researcher: scientific rigor, innovative thinking, multidisciplinary skillset, and impactful publications. Her contributions significantly advance computational methods in physical sciences and engineering, making her a strong and deserving candidate for a “Best Researcher Award”.

🎓Education:

 Faranak Hatami is completing her Ph.D. in Physics at the University of Massachusetts Lowell (2021–2025), with her thesis focused on transport property analysis and optimization of force field parameters for Tri-Butyl-Phosphate (TBP), combining atomic-scale simulations with machine learning. Prior to this, she earned her M.Sc. in Physics from the same university in 2023, where she conducted a comparative study of force fields for liquid TBP using molecular dynamics. Earlier, she obtained her M.Sc. in Nuclear Engineering from Shahid Beheshti University in Iran (2016), where she examined radiation damage effects on zirconium and iron grain boundaries through simulations. Her academic journey began with a B.S. in Electrical Engineering from Kurdistan University in 2013. Throughout her studies, Faranak has integrated advanced computational methods, AI, and experimental data analysis, building a multidisciplinary foundation that connects physics, materials science, and engineering disciplines.

🏢Work Experience:

Faranak Hatami brings diverse experience across research, teaching, and technical projects. At UMASS Lowell, she serves as a Teaching Assistant in Physics while pursuing her Ph.D., guiding students through complex concepts. Previously, she lectured on Computational Methods and Statistical Methods and Physics courses at Shahid Beheshti University between 2014 and 2018. Her research career includes an internship at the University of Montreal (2019–2021), exploring hydrogen’s effects on iron grain boundaries using the kinetic activation relaxation technique (k-ART). Faranak has led significant academic projects spanning molecular dynamics simulations, multi-objective optimization, and machine learning applications in material science. She has deep expertise in computational tools such as LAMMPS, MCNP, VASP, and Python-based AI frameworks. Her work reflects a unique blend of fundamental physics research, practical problem-solving, and advanced data analysis, contributing to fields like chemical engineering, nuclear materials, and computational modeling.

🏅Awards: 

 Faranak Hatami has built an impressive research portfolio during her academic career, reflected in multiple publications and conference presentations. While specific named awards were not explicitly listed in her profile, her contributions have earned her recognition through invited presentations such as at the AIChE Annual Meeting, showcasing her expertise in molecular dynamics simulations and force field optimization. Completing dual M.Sc. degrees in Physics and Nuclear Engineering highlights her dedication and academic excellence. Her selection as a research intern at the University of Montreal, working on advanced computational studies in materials science, further underscores her capability and esteem in her field. Through her multidisciplinary approach integrating AI, molecular modeling, and nuclear materials science, she stands out as a rising scholar contributing valuable insights to computational physics and chemical engineering. As she advances her Ph.D., she is poised for further accolades in research innovation and scientific community engagement.

🔬Research Focus:

 Faranak Hatami focuses her research on the intersection of molecular dynamics simulations, machine learning, and materials science. Her Ph.D. work centers on analyzing transport properties and optimizing force field parameters for Tri-Butyl-Phosphate (TBP) using multi-objective optimization algorithms like NSGA-II/III. She applies molecular dynamics to predict critical thermodynamic and transport properties, integrating neural networks for parameter tuning. Additionally, she explores AI-based classification of microscopy and atomic-scale images, blending physics with cutting-edge data science. Faranak’s earlier research in nuclear engineering examined radiation damage in metals such as zirconium and nickel, utilizing techniques like climbing image nudged elastic band (CI-NEB) for defect analysis. She’s also investigated hydration free energies, grain boundary behaviors, and primary knock-on atom (PKA) spectra in irradiated materials. Her work bridges computational physics with practical engineering challenges, advancing predictive models and simulation methods to better understand complex molecular and material systems.

Publication Top Notes:

Comparative Analysis of Machine Learning Models for Predicting Viscosity in Tri-n-Butyl Phosphate Mixtures Using Experimental Data

Citations: 6

Quantification of Methane Hydration Energy Through Free Energy Perturbation Method

Comparison of Different Machine Learning Approaches to Predict Viscosity of Tri-n-Butyl Phosphate Mixtures Using Experimental Data

Citations: 3

Properties of Tri-Butyl-Phosphate from Polarizable Force Field MD Simulations

Citations: 1

A Revision of Classical Force Fields for Tri-N-Butyl Phosphate Molecular Dynamics Simulations

Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study

Citations: 34

An energetic and kinetic investigation of the role of different atomic grain boundaries in healing radiation damage in nickel

Citations: 31

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | SCIENTIFIC OFFICER/H at NATIONAL CENTER FOR COMPOSITIONAL CHARACTERISATION OF MATERIALS,  India

Shekhar Raparthi is a Scientific Officer / H at the National Centre for Compositional Characterisation of Materials (NCCCM), BARC, Hyderabad. With over three decades of expertise in analytical chemistry, he specializes in trace and ultra-trace characterization of metals, alloys, and high-purity materials. His pioneering work in glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry has significantly advanced compositional analysis. Holding a Ph.D. in Chemistry from JNTU, Hyderabad (2008), he has published extensively in reputed international journals and served as a peer reviewer. Currently leading the ultra-trace analysis section at NCCCM since 2023, he is an esteemed member of India Society for Mass Spectrometry (ISMAS) and Indian Society of Analytical Science (ISAS). His contributions to spectrometric techniques have practical applications in industrial and nuclear material characterization, making him a respected figure in analytical and green chemistry research.

Professional Profile :         

Scopus  

Summary of Suitability for Award:

Dr. Shekhar Raparthi is a highly accomplished researcher specializing in trace and ultra-trace characterization of materials using mass and spectrometric techniques. With over 32 publications in high-impact journals, an h-index of 14, and 631 citations, he has made significant contributions to analytical chemistry. His pioneering research includes the development of infrared spectroscopic methods, glow discharge quadrupole mass spectrometry (GD-QMS), and novel electrolyte cathode discharge atomic emission spectrometric sources. These innovations have advanced material characterization techniques, benefiting the scientific community and industries dealing with high-purity materials, metals, and alloys. Dr. Raparthi’s extensive research contributions, innovative methodologies, and commitment to advancing analytical chemistry make him an ideal candidate for the “Best Researcher Award.” His work has been recognized through numerous international publications, and his role as the head of the ultra-trace analysis section at NCCCM, BARC, further solidifies his impact in the field.

🎓Education:

Shekhar Raparthi pursued his M.Sc. in Chemistry from the University of Hyderabad in 1993, where he developed a strong foundation in analytical chemistry. Following this, he underwent a one-year orientation program at BARC in 1994, gaining specialized training in advanced compositional characterization techniques. His academic journey culminated in a Ph.D. in Chemistry from Jawaharlal Nehru Technological University (JNTU), Hyderabad, in 2008. His doctoral research focused on the development of advanced mass spectrometric methodologies for the ultra-trace analysis of metals and high-purity materials. Over the years, he has continuously expanded his expertise through research, peer-reviewed publications, and participation in international analytical chemistry conferences. His educational background has been instrumental in his ability to innovate in trace and ultra-trace analysis techniques, making significant contributions to the field of analytical chemistry.

🏢Work Experience:

Shekhar Raparthi began his professional career in 1994 as a Scientific Officer/C at NCCCM, BARC, Hyderabad, specializing in the compositional characterization of various materials. Over the past 30 years, he has developed novel analytical methodologies for metals, alloys, and high-purity materials using mass spectrometric and spectroscopic techniques. His expertise includes glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry, contributing to advancements in trace and ultra-trace analysis. His work has been widely recognized, leading to 32 publications in reputed international journals. Since 2023, he has been heading the ultra-trace analysis section at NCCCM, overseeing critical research in compositional characterization. He is also an active peer reviewer for international journals. With extensive experience in spectrometric techniques, Shekhar Raparthi plays a key role in material characterization for nuclear, industrial, and high-tech applications.

🏅Awards: 

Shekhar Raparthi has received several accolades for his significant contributions to analytical chemistry and mass spectrometry. His infrared spectroscopic method for oxygen quantification in TiCl₄ was widely appreciated in the titanium industry, earning him recognition in the field. His research on glow discharge quadrupole mass spectrometry and matrix volatilization methodologies for ultra-trace characterization of high-purity germanium has been published in top international journals, including Analytical Chemistry. His expertise in trace element analysis has made him a valuable asset to BARC and the Indian scientific community. As a distinguished member of ISMAS and ISAS, he actively contributes to the advancement of analytical sciences in India. While he has not listed specific awards, his impactful research, numerous peer-reviewed publications, and leadership in ultra-trace analysis solidify his reputation as a leading scientist in compositional characterization.

🔬Research Focus:

Shekhar Raparthi’s research revolves around trace and ultra-trace characterization of materials using advanced mass spectrometric and spectroscopic techniques. His work plays a crucial role in ensuring the purity and compositional accuracy of metals, alloys, and high-purity materials. He has pioneered glow discharge quadrupole mass spectrometry (GD-QMS) for detecting impurities at ultra-trace levels. Additionally, his development of matrix volatilization methodologies has enhanced the characterization of high-purity germanium, a material critical in semiconductor and radiation detection applications. His innovations in electrolyte cathode discharge atomic emission spectrometry (ECD-AES) have improved the sensitivity and precision of trace element analysis. His research significantly contributes to nuclear, industrial, and advanced material applications, ensuring high accuracy in material compositional studies. As the head of the ultra-trace analysis section at NCCCM, his expertise in **

Publication Top Notes:

In-situ Ti–Ir and ammonium thiocyanate modifiers for improvement of sensitivity of Sc to sub parts per billion levels and its accurate quantification in coal fly ash and red mud by GFAAS

Hydrophobicity induced graphene oxide based dispersive micro solid phase extraction of strontium from seawater and groundwater prior to GFAAS determination

Direct determination of ultra-trace sodium in reactor secondary coolant waters and other waters by electrolyte cathode discharge atomic emission spectrometry

Citation Count: 1

 

Dr. samira abozeid | Inorganic Chemistry Award | Best Researcher Award

Dr. samira abozeid | Inorganic Chemistry Award | Best Researcher Award

Dr. samira abozeid,mansoura university,Egypt

Dr. Samira Abozeid is a dedicated Lecturer and Assistant Professor in the Chemistry Department at Mansoura University, Egypt. With a strong academic background, she earned her Ph.D. in Chemistry from the State University of New York at Buffalo, complemented by an MSc and BSc from Mansoura University. Dr. Abozeid specializes in synthesizing metal complexes for applications in MRI contrast agents and drug delivery systems using innovative nanotechnology. Her commitment to academic excellence is evident through her extensive research contributions, collaborative efforts, and participation in various national and international projects. Additionally, she has been recognized with several awards for her outstanding research and teaching, showcasing her dedication to advancing the field of chemistry and contributing to educational initiatives.

Professional Profile:

Google Scholar

Scopus

Orcid

Summary of Suitability for Award:

Dr. Samira Mohammed Abozeid exemplifies the qualities and achievements that make her a suitable candidate for the “Best Researcher Award.” With a Ph.D. in Chemistry from the State University of New York at Buffalo, she has made significant contributions to the field, particularly in synthesizing metal complexes for MRI contrast agents and drug delivery systems. Her publication record, which includes 18 articles in high-impact journals, underscores her prolific research output and the relevance of her work in advancing medical applications of chemistry.

🎓Education:

Dr. Samira Abozeid holds an impressive academic portfolio. She completed her Bachelor’s and Master’s degrees in Chemistry at Mansoura University, Egypt, where she developed a solid foundation in chemical sciences. Dr. Abozeid then pursued her Ph.D. at the State University of New York at Buffalo, specializing in the synthesis of metal complexes and their applications in medical imaging and drug delivery. Her doctoral research significantly contributed to the understanding of MRI contrast agents, showcasing her capability to conduct high-level research. Throughout her academic journey, she has maintained a focus on integrating theoretical knowledge with practical applications, which has enriched her teaching methodologies and research approach. Dr. Abozeid’s education has equipped her with the skills to excel in both academia and research, fostering a commitment to innovation in chemistry.

🏢Work Experience:

Dr. Samira Abozeid has garnered extensive experience in academia and research throughout her career. Currently serving as a Lecturer and Assistant Professor at both Mansoura University and New Mansoura University, she plays a pivotal role in educating and mentoring students in chemistry. Dr. Abozeid has completed three significant research projects focused on the synthesis and characterization of metal complexes for MRI applications and drug delivery systems. With 18 published articles in esteemed journals and a citation index reflecting her impactful research contributions, she has established herself as a leading figure in her field. Furthermore, she has engaged in consultancy projects related to chemistry and has participated in multiple collaborative research efforts, both nationally and internationally, which have enriched her research perspective and facilitated knowledge exchange. Dr. Abozeid’s commitment to research excellence is complemented by her active involvement in professional memberships and initiatives aimed at bridging academic research with industry applications.

🏅Awards:

Dr. Samira Abozeid has received several prestigious awards and recognitions throughout her academic career. Among her notable accolades is the Egyptian Government Scholarship, which allowed her to pursue her studies at the State University of New York at Buffalo from 2016 to 2018. Additionally, she was honored with the James T. Grey, Jr. Fellowship in Summer 2020, which acknowledges outstanding research contributions. Dr. Abozeid also received the Mattern-Tyler Teaching Award and the Speyer Fellowship in Fall 2020, reflecting her excellence in both teaching and research. In 2023, she was awarded a competitively funded research project at Mansoura University, highlighting her commitment to advancing scientific knowledge. Furthermore, she has been recognized for delivering the Best Specialized Lecture at multiple conferences, showcasing her ability to communicate complex scientific ideas effectively. These honors underline her significant contributions to the field of chemistry and her dedication to academic excellence.

🔬Research Focus:

Dr. Samira Abozeid’s research focuses primarily on the synthesis and application of metal complexes, particularly in the development of MRI contrast agents and drug delivery systems. Her innovative approach involves utilizing nanoparticles and liposomes to enhance the effectiveness and biocompatibility of these complexes. Dr. Abozeid’s work emphasizes the importance of transition metal complexes in medical applications, providing novel insights into their structural properties and potential therapeutic uses. Her ongoing projects include the development of more effective and safer MRI probes, which can significantly improve diagnostic imaging capabilities. Additionally, she collaborates with national and international research groups to explore energy-related applications of metal complexes. Through her research, Dr. Abozeid aims to bridge the gap between chemistry and medicine, contributing to advancements in nanotechnology and its practical implications for healthcare. Her commitment to innovation and excellence continues to shape her contributions to the scientific community.

Publication Top Notes:

  • Two New Inner-Sphere Pt(II) Thiosemicarbazone Schiff Base Complexes Immobilized into Magnetic Nanoparticles: Synthesis, Characterization, and Biological Investigations
  • A Novel Fluorescent Probe Based Imprinted Polymer-Coated Magnetite for the Detection of Imatinib Leukemia Anti-Cancer Drug Traces in Human Plasma Samples
  • Fe(III) T1 MRI Probes Containing Phenolate or Hydroxypyridine-Appended Triamine Chelates and a Coordination Site for Bound Water
    • Citations: 5 citations.
  • Co(II) Complexes of Tetraazamacrocycles Appended with Amide or Hydroxypropyl Groups as ParaCEST Agents
    • Citations: 3 citations.
  • Comparison of Phosphonate, Hydroxypropyl and Carboxylate Pendants in Fe(III) Macrocyclic Complexes as MRI Contrast Agents
    • Citations: 18 citations.