Larissa Magalhães de Almeida Melo | Analytical Chemistry | Women Researcher Award

Dr. Larissa Magalhães de Almeida Melo | Analytical Chemistry | Women Researcher Award

Pos doctor at Federal University of the Jequitinhonha and Mucuri Valleys | Brazil

Larissa Magalhães de Almeida Melo is a Brazilian researcher specializing in analytical and forensic chemistry, with an emphasis on electrochemical detection methods for drugs of abuse. She is currently pursuing her Ph.D. at the Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM) under Prof. Dr. Wallans Torres Pio dos Santos. Her doctoral research focuses on developing portable, field-deployable methods for drug screening. In 2024, she undertook a Sandwich Ph.D. program at Manchester Metropolitan University with Prof. Craig Banks, further advancing her work in colorimetric and electrochemical sensors. With over 160 citations and an H-index of 9, Larissa has contributed significantly to high-impact journals in analytical chemistry. She combines her expertise in electrochemical sensing, device fabrication, and forensic toxicology to innovate rapid and cost-effective screening technologies. Her international collaborations and technical contributions highlight her growing influence in modern forensic science and public health monitoring.

Professional Profile

Google Scholar

Orcid

Education 

Larissa Melo’s academic journey demonstrates a progressive dedication to chemistry and engineering. She is currently a Ph.D. fellow (2021–2025) at UFVJM in Brazil, where her research involves the development of portable methods for forensic drug detection. In 2024, she participated in a Sandwich Ph.D. at Manchester Metropolitan University under Prof. Craig Banks. Prior to her doctorate, she earned a Master’s degree in Analytical Chemistry (2019–2021) from UFVJM, where she developed a screening method for synthetic tryptamines. She also completed a Bachelor’s in Chemical Engineering (2018–2023) and another in Science and Technology (2014–2018) at UFVJM. Her foundational education includes a technical course in Electrical Technology (2010–2013) from the Federal Institute of Espírito Santo. This solid multidisciplinary background has equipped her with strong skills in analytical instrumentation, electrochemistry, materials science, and chemical engineering, all of which support her advanced research in forensic applications.

Professional Experience 

Larissa Melo brings strong academic and research experience, particularly in forensic electrochemistry. Her doctoral work (2021–2025) at UFVJM focuses on creating portable devices for the electrochemical detection of synthetic drugs. In 2024, she joined Manchester Metropolitan University under a Sandwich Ph.D. program, working with Prof. Craig Banks on hybrid sensor systems. During her Master’s (2019–2021), she developed a fast electrochemical method for tryptamine detection. She has co-authored over 20 peer-reviewed publications in top journals, often collaborating with multidisciplinary teams on drug screening innovations using screen-printed electrodes, colorimetric methods, and 3D-printed analytical tools. Larissa has also contributed to critical reviews and sensor fabrication methods. Her experience includes technical work with disposable electrodes, boron-doped diamond sensors, and voltammetry. Additionally, she’s actively involved in developing environmentally friendly, field-portable diagnostic tools. Larissa’s practical and collaborative work underscores her capability in applying chemistry to real-world forensic and public health challenges.

Awards and Honors 

While specific awards are not explicitly listed, Larissa Melo’s research impact and international engagements reflect significant academic recognition. She was competitively selected for a Sandwich Ph.D. fellowship at Manchester Metropolitan University (2024), a testament to her research excellence and international collaboration skills. Her publication record includes articles in top-tier journals such as Electrochimica Acta, Talanta, TrAC, and Sensors and Actuators B: Chemical, often as the first or lead author. She has amassed over 165 citations and holds an H-index of 9, highlighting her work’s influence in analytical and forensic chemistry. Larissa’s interdisciplinary research on electrochemical and colorimetric methods for drug detection showcases her contribution to forensic science innovation. Her rapid rise as a productive early-career researcher, mentorship by globally recognized experts like Prof. Wallans dos Santos and Prof. Craig Banks, and verified academic credentials on the Lattes platform further confirm her growing stature in scientific communities.

Research Interests 

Larissa Melo’s research interests center around analytical chemistry, electrochemical sensing, and forensic science. Her work focuses on the development of rapid, portable, and cost-effective electrochemical and colorimetric detection methods for drugs of abuse. She is particularly interested in screen-printed electrodes, boron-doped diamond sensors, and 3D-printed electrochemical cells to detect substances such as synthetic cathinones, cannabinoids, tryptamines, amphetamines, and hallucinogens. Her interdisciplinary approach combines chemical engineering principles, material science, and electroanalysis to improve point-of-care diagnostics. Larissa also explores hybrid detection platforms combining colorimetric and electrochemical signals, enhancing sensitivity and specificity for field-based forensic analysis. She contributes to critical reviews and technical innovations in clinical toxicology, pharmaceutical analysis, and biosensors. Her goal is to make analytical methods more accessible, environmentally friendly, and applicable in real-time settings, such as customs, crime scenes, and emergency rooms.

Publication Top Notes

  1. Portable analytical methods for detecting synthetic cannabinoid receptor agonists: a critical review

  2. A dual colorimetric-electrochemical platform based on bromocresol green for the selective detection of atropine

  3. Selective screening of synthetic cathinones, amphetamines, piperazines, and phenethylamines using voltammetry

  4. Electrochemistry of the synthetic tryptamine 5-MeO-MiPT at glassy carbon and screen-printed electrodes

  5. Novel colorimetric-electrochemical methods for selective identification and quantification of Scopolamine

  6. Use of a lab-made disposable screen-printed sensor with boron-doped diamond for N-ethylpentylone detection

  7. Combined colorimetric and electrochemical screening method for selective detection of MDMA

  8. Electrochemical methods for determination of acetaminophen in biological matrices: a critical review

  9. Selective screening of NBOHs, NBOMes, and LSD using a 3D-Printed electrochemical double cell

  10. Electrochemical detection of mephedrone using a graphene screen-printed electrode

  11. Electrochemical method for detecting synthetic cannabinoids in e-cigarette and biological samples

  12. Chemically deposited boron-doped diamond screen-printed electrodes for manganese detection

  13. Colorimetric-Electrochemical Combined Method for Detection of Drugs in Blotter Papers

  14. SMART 3D-printed electrochemical cell for on-site and forensic analysis

  15. Oxygen plasma-treated graphite sheet electrodes for methamphetamines

  16. Fast screening of MDEA using carbon screen-printed electrode and voltammetry

  17. Electrochemical detection of 1-benzylpiperazine on carbon screen-printed electrode

  18. Screening method for detection of 1-(3-chlorophenyl)piperazine in forensic samples

  19. Selective screening method for MDPT using carbon nanofiber screen-printed electrodes

  20. Detection of LSD in forensic samples using carbon nanotube screen-printed electrodes

  21. Detection of 2C-B using environmentally friendly screen-printed electrodes

  22. Professional biography of Dorothy Hodgkin – Contributions to Chemistry, Biology, and Biochemistry

Conclusion

Larissa Magalhães de Almeida Melo exemplifies the next generation of analytical chemists committed to real-world impact in forensic science. Her research bridges engineering and chemistry to develop innovative, portable, and sustainable methods for drug detection. With international experience, strong academic output, and cross-disciplinary skills, she is well-positioned for leadership in global forensic chemistry research.

 

Bibhas Kumar Dutta | Spectroscopy | Best Researcher Award

Assist. Prof. Dr. Bibhas Kumar Dutta | Spectroscopy | Best Researcher Award

Assistant Professor at Sree Chaitanya College, India

Dr. Bibhas Kumar Dutta is an Assistant Professor in the Department of Physics at Sree Chaitanya College, Habra, affiliated with West Bengal State University. With over two decades of experience in theoretical and experimental physics, Dr. Dutta has made significant contributions to quantum optics, nonlinear optics, atomic physics, and coherent control in atomic systems. He earned his Ph.D. in Physics from Vidyasagar University in 2010, after completing B.Sc. and M.Sc. degrees from the University of Calcutta. Dr. Dutta has authored more than 40 research papers published in reputed international journals, with an h-index of 9 and over 330 citations. He is an active collaborator in interdisciplinary research and regularly mentors undergraduate and postgraduate students. Known for his depth in multi-wave-mixing processes and quantum coherence, Dr. Dutta continues to influence the field with pioneering work in optical phase control and atom localization.

Professional Profile

Scopus

Education 

Dr. Bibhas Kumar Dutta has a strong academic background in physics. He completed his B.Sc. in Physics from the University of Calcutta in 1995, followed by an M.Sc. in Physics from the same university in 1997. His postgraduate education was marked by a solid foundation in theoretical and experimental physics. In recognition of his academic excellence, he was awarded the National Scholarship at both the 10+2 and graduation levels. In 2000, he qualified for the CSIR-NET with Junior Research Fellowship (JRF), a highly competitive national-level examination in India. He subsequently earned his Ph.D. in Physics from Vidyasagar University in 2010, where his research focused on quantum optics and coherent atomic systems. His educational journey reflects a consistent trajectory of academic excellence and deep engagement in frontier areas of physics.

Professional Experience

Dr. Bibhas Kumar Dutta has served as an Assistant Professor in the Department of Physics at Sree Chaitanya College, Habra, for over a decade. Affiliated with West Bengal State University, his academic role includes teaching undergraduate physics, mentoring research projects, and guiding students in their academic development. Prior to his Ph.D., he was actively involved in collaborative research projects in spectroscopic analysis and optical physics. His academic career is distinguished by his research on light-matter interaction, multi-wave mixing, and coherent control in atomic and optical systems. Over the years, Dr. Dutta has collaborated with numerous eminent scientists and published extensively in international peer-reviewed journals. He also contributes as a reviewer for journals and frequently participates in national and international physics conferences. His balanced commitment to both teaching and research makes him a respected figure in the academic community.

Awards and Honors 

Dr. Bibhas Kumar Dutta has received several academic honors throughout his career. Notably, he was awarded the National Scholarship at both the higher secondary and undergraduate levels, recognizing his exceptional academic performance in early education. He qualified for the prestigious CSIR-NET with Junior Research Fellowship (JRF) in 2000, which enabled him to pursue advanced research in theoretical physics. Over the years, his scholarly work has gained attention in the scientific community, with more than 330 citations and an h-index of 9. His contributions to quantum optics and nonlinear phenomena have been acknowledged through his involvement in high-impact journals like Scientific Reports, Physical Review, Journal of Physics B, and Optics Communications. He has also served as a co-author and collaborator with various prominent physicists in India. While not yet a recipient of large-scale research grants, his consistent publication record and collaborative work mark him as a recognized expert in his field.

Research Interests 

Dr. Bibhas Kumar Dutta’s research interests lie in the domains of quantum optics, atomic and molecular physics, nonlinear optics, and coherent control techniques in atomic systems. He is particularly focused on studying multi-wave mixing phenomena, atom localization, quantum interference effects, and optical phase modulation. His work also includes the development of novel methods for spatial light modulation using structured light fields, vortex beams, and four-wave mixing processes. Dr. Dutta has investigated phase-coherent processes for controlling absorption, dispersion, and spontaneous emission in various atomic configurations. His interests extend to applications in quantum information science, high-precision spectroscopy, and optical communication technologies. With a deep understanding of atomic coherence, he aims to develop new techniques for manipulating quantum states in both cold and hot atomic ensembles. His research is both theoretical and semi-experimental, involving simulations and modeling based on realistic quantum systems and nonlinear media.

Research Skills 

Dr. Dutta possesses a diverse set of research skills centered around theoretical modeling and computational simulations in quantum optics and atomic physics. He has expertise in density matrix formalism, perturbative and non-perturbative methods, and solving complex differential equations related to atom-light interactions. He is proficient in using scientific programming tools such as MATLAB and Mathematica for simulating absorption spectra, coherence effects, and spatial localization patterns. Dr. Dutta is skilled in analyzing spontaneous emission, multi-photon interactions, and nonlinear optical effects in multi-level atomic systems. He also demonstrates strong analytical skills in phase engineering, optical trapping, and waveguide dynamics. His collaborative research has involved simulating phenomena like Autler-Townes splitting, Fano resonance, and PT symmetry breaking. With a background that includes experimental spectroscopy, he can bridge theoretical predictions with potential experimental verification, making his research highly impactful and practically oriented.

Publication Top Notes

  1. Dutta B.K. & Panchadhyayee P. (2025) – A new mechanism of off-axis helical phase engineering in spatial four-wave-mixing light at frequency up-conversion regime

  2. Panchadhyayee P., Banerjee A., & Dutta B.K. (2024) – Vortex beam induced spatial modulation of quantum-optical effects in a coherent atomic medium

  3. Banerjee A., Panchadhyayee P., & Dutta B.K. (2024) – Efficient control of three-dimensional atom localization via probe absorption in a phase-coherent atomic medium

  4. Banerjee A., Panchadhyayee P., & Dutta B.K. (2024) – Efficient control of high-precision three-dimensional atom localization via probe absorption in a five-level phase-coherent atomic system

  5. Dutta B.K. & Panchadhyayee P. (2023) – Generation of optical PT-antisymmetry in a coherent N-type atomic medium

  6. Panchadhyayee P. & Dutta B.K. (2022) – Spatially structured multi-wave-mixing induced nonlinear absorption and gain in a semiconductor quantum well

  7. Dutta B.K. et al. (2020) – Optical absorption microscopy of localized atoms at microwave domain

  8. Dutta B.K. et al. (2020) – Multi-wave-mixing-induced nonlinear modulation of diffraction peaks in an opto-atomic grating

  9. Dutta B.K. & Panchadhyayee P. (2020) – Fano-like interference induced modification of Autler-Townes doublet spectrum

  10. Panchadhyayee P. et al. (2019) – Field-induced superposition effects on atom localization via resonance fluorescence spectrum

  11. Dutta B.K. & Panchadhyayee P. (2018) – Modification of optical properties by adiabatic shifting of resonances in a four-level atom

  12. Dutta B.K. et al. (2018) – Role of tunneling induced coherence in modulation of absorption and dispersion in a quantum dot molecule

  13. Panchadhyayee P. et al. (2018) – Resonance fluorescence microscopy via three-dimensional atom localization

  14. Dutta B.K. & Panchadhyayee P. (2016) – Modification and control of coherence effects in spontaneous emission spectrum

  15. Bayal I. et al. (2015) – Multiphoton-process-induced coherence effects in a dissipative quantum system

  16. Bayal I. et al. (2015) – Simulation of coherently controlled population dynamics in a three-level atomic system

  17. Dutta B.K. (2014) – Fano-like line shape of spontaneous emission spectrum in a weakly driven two-level atom

  18. Dutta B.K. (2013) – Coherent control of narrow structures in absorption, transparency and dispersion

  19. Bayal I. et al. (2013) – Modulation of spatial propagation dynamics in a three-core linear directional coupler

  20. Dutta B.K. et al. (2013) – Coherent control of localization of a three-level atom

Dr. PRANABA Nayak | Analytical Chemistry | Best Researcher Award

Dr. PRANABA Nayak | Analytical Chemistry | Best Researcher Award

Dr. PRANABA Nayak , Analytical Chemistry ,  Scientific Officer at Tata Institute of Fundamental Research, India

Dr. Pranaba K. Nayak is a Scientific Officer at the Tata Institute of Fundamental Research (TIFR), Mumbai, with over two decades of experience in nuclear and analytical chemistry, and astroparticle physics. He earned his Ph.D. from Utkal University in 2003, later serving at Kalasalingam University before joining TIFR in 2005 as a Senior Postdoctoral Fellow in the GRAPES-3 cosmic-ray experiment. His interdisciplinary research has led to over 75 peer-reviewed publications and significant discoveries, including gamma-ray flux shifts during solar eclipses and thunderstorm-related phenomena. He collaborates with 30+ national and international institutes and serves on editorial and scientific committees globally. An active mentor and scholar, Dr. Nayak has contributed to more than 50 book chapters and reviewed over 75 manuscripts. His work has been recognized for its impact on solar physics, atmospheric science, and nuclear astrophysics.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Pranaba K. Nayak is a highly accomplished researcher whose career spans over two decades of impactful work in astro particle physics, nuclear chemistry, and analytical techniques. His contributions to the internationally recognized GRAPES-3 cosmic-ray experiment at TIFR have led to several groundbreaking discoveries, such as the variation in cosmic gamma-ray flux during solar eclipses and record-setting atmospheric potential measurements. With 75+ peer-reviewed publications, 50+ book chapters, and extensive international collaborations with over 30 institutes worldwide, he has consistently demonstrated research excellence, innovation, and leadership. His h-index of 20 and i10-index of 28 reflect the scientific community’s recognition of his work. In addition, Dr. Nayak has actively mentored young scientists and contributed as a reviewer and editorial board member, strengthening scientific discourse in his field. Dr. Pranaba K. Nayak is eminently suitable for the “Best Researcher Award”. His sustained research output, pioneering discoveries, interdisciplinary reach, and international collaborations make him a deserving candidate whose contributions have significantly advanced both theoretical and applied aspects of high-energy physics and analytical sciences.

🎓Education:

Dr. Nayak holds a Ph.D. in Experimental Nuclear and Analytical Chemistry from Utkal University (2003). His doctoral research, guided by mentors from Anna University, Chennai, spanned nuclear, analytical, and solid-state chemistry. This strong academic foundation laid the groundwork for his transition into astroparticle physics and cosmic-ray studies. Prior to his Ph.D., he pursued postgraduate and undergraduate studies in chemistry, with a focus on nuclear instrumentation and environmental radiochemistry. His educational path blended theoretical insight with hands-on experimentation, equipping him with the tools necessary for high-impact interdisciplinary research. His continuing engagement with educational institutions, including mentoring young researchers and Ph.D. scholars, exemplifies his commitment to fostering scientific excellence. He frequently delivers lectures and training modules in cosmic ray physics and analytical techniques, contributing to capacity-building in India and abroad.

🏢Work Experience:

Dr. Pranaba K. Nayak began his professional journey as a faculty member at Kalasalingam University, focusing on nuclear and analytical chemistry. In 2005, he joined TIFR’s High Energy Physics Department as a Senior Postdoctoral Fellow and has since become a Scientific Officer, contributing extensively to the GRAPES-3 cosmic-ray experiment at Ooty. His work spans gamma-ray burst detection, cosmic-ray modulation, environmental radioactivity, and atmospheric physics. He has developed novel spectral analysis techniques and coordinated large-scale collaborations with over 30 institutions globally, including IITs, SINP, and partners in Japan, Europe, and Saudi Arabia. His interdisciplinary projects have addressed thunderstorm-related high-energy events and geomagnetic field studies. He also mentors students, reviews scientific manuscripts, and contributes to international committees. His role in advancing experimental techniques and fostering global scientific partnerships has made him a respected figure in high-energy astrophysics and nuclear research communities.

🏅Awards: 

Dr. Nayak has received widespread recognition for his pioneering work in cosmic-ray physics and analytical chemistry. His discovery of gamma-ray flux shifts during the 2009 total solar eclipse gained international acclaim and highlighted his ability to integrate astrophysics with atmospheric science. He has been an invited reviewer for over 75 manuscripts, primarily for the journal Talanta, showcasing his expertise in analytical chemistry. His scientific excellence earned him a position on the Scientific Committee of the Annual International Congress on Nanoscience & Nanotechnology (2025, Oxford, UK). He is also a life member of prestigious scientific organizations, including the Indian Society for Atomic & Molecular Physics, Indian Physics Association, Indian Association for Nuclear Chemist & Allied Sciences, and Indian Society for Technical Education. These accolades affirm his leadership and innovation in research, education, and scientific outreach.

🔬Research Focus:

Dr. Pranaba K. Nayak’s research centers on the intersection of experimental nuclear chemistry, analytical techniques, and astroparticle physics. At the heart of his work lies the GRAPES-3 cosmic-ray experiment, where he investigates high-energy phenomena such as cosmic-ray modulation, gamma-ray flux variations, and muon bursts during thunderstorms and solar eclipses. His contributions have led to significant insights into solar-terrestrial interactions, atmospheric electricity, and transient geomagnetic events. He has also developed novel analytical methods for monitoring environmental radioactivity, integrating advanced spectrometry with field-based cosmic-ray detection systems. His research uniquely bridges space physics with earth-based observations, advancing our understanding of cosmic particle behavior under extreme atmospheric conditions. Through collaborations with over 30 national and international institutions, Dr. Nayak continues to lead interdisciplinary studies that link nuclear processes with astrophysical and atmospheric phenomena, thereby contributing to global efforts in understanding high-energy cosmic environments and their terrestrial effects.

Publication Top Notes:

Title: Synthesis and characterization of cadmium ferrite
Citations: 76

Title: Forbush decreases and turbulence levels at coronal mass ejection fronts
Citations: 65

Title: Measurement of the Electrical Properties of a Thundercloud Through Muon Imaging by the GRAPES-3 Experiment
Citations: 51

Title: Energy dispersive X-ray fluorescence analysis of gallstones
Citations: 46

Title: Measurement of some EAS properties using new scintillator detectors developed for the GRAPES-3 experiment
Citations: 42

Title: PIXE & XRD analysis of nanocrystals of Fe, Ni and Fe₂O₃
Citations: 35

Title: External particle-induced X-ray emission
Citations: 35

Title: Elemental analysis of anti-diabetic medicinal plants using energy dispersive X-ray fluorescence technique
Citations: 34

Title: 57Fe Mössbauer and EDXRF studies on three representative banded iron formations (BIFs) of Orissa, India
Citations: 32

Title: A study of the γ-ray flux during the total solar eclipse of 1 August 2008 at Novosibirsk, Russia
Citations: 28

Title: Fast Fourier transform to measure pressure coefficient of muons in the GRAPES-3 experiment
Citations: 27

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki , Environmental Chemistry , Jan Evangelista Purkyne University , Czech Republic

Dr. Karim Al Souki is a postdoctoral researcher and assistant professor at the Faculty of Environment, Jan Evangelista Purkyne University (UJEP), Czechia. With a Ph.D. in Earth and Universe Sciences from Lille 1 University, France, his academic journey reflects a strong foundation in plant biology and environmental sciences. Dr. Al Souki’s research spans phytoremediation, bioremediation, biochar utilization, and climate change mitigation through sustainable phytotechnology. He is a key contributor to international projects funded by NATO, Erasmus+, and Interreg, focusing on ecosystem restoration, water management, and environmental biotechnology. As an educator, he has taught courses across Europe on subjects such as environmental biotechnology, phytotechnology, and bio-economy. Dr. Al Souki’s interdisciplinary approach blends ecological theory with applied environmental solutions, making significant contributions to marginal land restoration and water pollution mitigation. His work promotes sustainability, ecological awareness, and environmental resilience through innovation and education.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

With a Ph.D. in Earth and Universe Sciences from Lille 1 University (France), and two Master’s degrees in Phyto-ecology and Plant Biology from Lebanese University, Dr. Karim Al Souki demonstrates a solid and multidisciplinary academic foundation. Dr. Karim Al Souki  leads and contributes to cutting-edge projects on phytoremediation, biochar technology, and environmental biotechnology—directly addressing climate change, pollution mitigation, and sustainable soil management. His research covers analytical techniques (FTIR, TGA, stable isotopes, DNA extraction), linking practical fieldwork with lab-based precision, ensuring both academic rigor and societal relevance. His role as project supervisor in initiatives like IDEAL and NATO-SPS illustrates leadership in shaping future environmental policies and technologies. Dr. Karim Al Souki is an ideal candidate for the “Best Researcher Award”, given his consistent, interdisciplinary contributions to environmental sciences. His research directly supports global sustainability goals through practical, innovative, and scalable solutions. Furthermore, his educational outreach, cross-border collaborations, and commitment to solving real-world ecological problems distinguish him as a researcher of international repute. This award would recognize and further empower his impactful scientific journey.

🎓Education:

Dr. Al Souki pursued his academic studies in biology and environmental sciences. He earned his Bachelor’s degree in General Biology (2008–2010), followed by a Master 1 in Plant Biology and Environment (2010–2011), and a Master 2 in Phyto-ecology, Resources, and Security Applications (2011–2012), all from Lebanese University, Lebanon. He then completed his Ph.D. in Earth and Universe Sciences at LGCgE, ISA-Lille, Lille 1 University of Sciences and Technologies, France (2014–2017). His academic foundation combines ecological sciences, environmental applications, and molecular understanding of plant-soil interactions. This educational pathway equipped him with the necessary tools to integrate ecological theory with practical environmental solutions. His training in Europe and the Middle East enabled him to adopt a multidisciplinary perspective and work in cross-cultural academic and research environments. His education has laid the groundwork for his specialization in environmental biotechnology, phytoremediation, and biochar applications.

🏢Work Experience:

Since October 2018, Dr. Karim Al Souki has been serving as a Post-doctoral researcher and Assistant Professor at UJEP, Czechia, where he teaches and conducts advanced research in environmental sciences. His prior experience includes teaching roles at ESME Sudria (France) and private institutions in Lille, where he lectured in phytoecology, molecular biology, and environmental science. He has supervised and contributed to numerous EU- and NATO-funded projects related to phytotechnology, biochar, soil-plant interactions, and wastewater treatment. His pedagogical contributions span multiple European universities and platforms, such as Erasmus, COIL, and ISA-Lille. He has taught subjects including Bioremediation, Bio-economy, Environmental Biotechnology, and Climate Change. Dr. Al Souki’s interdisciplinary teaching and research experience enable him to link theoretical knowledge with field-based applications, fostering student engagement and scientific problem-solving skills relevant to contemporary ecological challenges.

🏅Awards: 

Dr. Karim Al Souki has been recognized for his impactful research and cross-border educational initiatives. He is the Principal Investigator or Supervisor on several prestigious projects funded by international agencies such as NATO Science for Peace and Security Programme, Interreg (IDEAL project), and Erasmus+, highlighting his leadership in environmental science and sustainability education. He received the UJEP Internal Grant Agency funding multiple times (2021–2023), supporting his innovative work on biochar and Miscanthus x giganteus in soil restoration. He was awarded the Usti nad Labem region grant for young researchers for his study on quinoa in polluted soils. His consistent success in securing competitive research grants attests to the scientific merit and societal relevance of his projects. These accolades recognize his commitment to ecosystem services, educational outreach, and environmental restoration, and affirm his role as a rising figure in applied environmental sciences and international academic collaboration.

🔬Research Focus:

Dr. Al Souki’s research centers on phytotechnology, bioremediation, biochar characterization, and ecosystem service enhancement in marginal and contaminated soils. He specializes in using Miscanthus x giganteus and quinoa to rehabilitate former military lands and toxic-element-polluted environments. His research integrates stable isotope analysis, DNA-based microbial community profiling, and plant physiological assessments to explore rhizospheric interactions, nutrient cycling, and carbon sequestration. His work on biochar, especially its physico-chemical and ecotoxicological properties, supports sustainable agricultural and water reuse practices. His active projects include NATO-funded studies on climate change mitigation and EU-supported educational modules for water sustainability in the Elbe/Labe basin. His interdisciplinary approach links environmental microbiology, plant ecophysiology, and green chemistry, targeting real-world environmental problems with practical, nature-based solutions. His goal is to bridge science and education to improve soil health, water quality, and resilience against climate change.

Publication Top Notes:

1. An overview of potentially toxic element pollution in soil around lead–zinc mining areas

2. A comprehensive evaluation of the environmental and health risks associated with the potential utilization of chars produced from tires, electro-waste plastics and biomass

3. Characterizations of ash derived from the crops’ waste biomass for soil improvement and assisted phytoremediation

4. A 6-year review status on soil pollution in coal mining areas from Europe

5. Extracted rapeseed meal biochar combined with digestate as a soil amendment: Effect on lettuce (Lactuca sativa L.) biomass yield and concentration of bioavailable element fraction in the soil

6. Miscanthus x giganteus stress tolerance and phytoremediation capacities in highly diesel contaminated soils

7. The influence of diesel contaminated soil on Miscanthus x giganteus biomass thermal utilization and pyrolysis products composition

8. Evaluation of Miscanthus × giganteus Tolerance to Trace Element Stress: Field Experiment with Soils Possessing Gradient Cd, Pb, and Zn Concentrations

9. Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate

10. Utilization of Biochar for Eliminating Residual Pharmaceuticals from Wastewater Used in Agricultural Irrigation: Application to Ryegrass

 

 

 

 

Prof. Reine NEHME | Analytical Chemistry | Best Researcher Award

Prof. Reine NEHME | Analytical Chemistry | Best Researcher Award

Prof. Reine NEHME, Analytical Chemistry , Head of analytical team at University of Orléans, ICOA UMR7311, France

Prof. Reine Nehmé is a renowned French scientist and Professor of Analytical Sciences at the University of Orléans, where she leads the “Analytical Strategies, Affinities and Bioactives” team at ICOA. With over 15 years of academic and research experience, she specializes in advanced separation techniques, bioanalysis, and microfluidics. She is deeply involved in both teaching and scientific governance—serving on multiple university and national scientific committees. Prof. Nehmé also contributes to scientific advancement as a supervisor of numerous Ph.D. and post-doctoral researchers and by coordinating key national research projects funded by ANR and regional bodies. Her prolific contributions to analytical chemistry are reflected in her numerous publications, particularly in the areas of enzymatic assays, capillary electrophoresis, and bioactive compound analysis. With a strong leadership role in Afsep and her involvement in high-level academic administration, she is recognized as a leading figure in analytical chemistry in France and Europe.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Nehmé holds a Ph.D. in Analytical Chemistry from the University of Montpellier (2008) and an HDR (Accreditation toSupervise Research) from the University of Orléans (2016). Her academic background demonstrates deep expertise and a commitment to high-level scientific scholarship. As a professor and group leader at ICOA, University of Orléans, she leads the “Analytical Strategies, Affinities and Bioactives” team, driving impactful research in analytical sciences, especially in bioanalysis, separative techniques, capillary electrophoresis, microfluidics, and mass spectrometry. Prof. Nehmé is deputy treasurer and a management committee member of the Capillary Electrophoresis Group of Afsep. She holds leadership roles at her university and is actively engaged in curriculum design, evaluation panels, and scientific committees. Prof. Reine Nehmé exemplifies the ideal profile for a “Best Researcher Award”: a high-impact scientist, strategic research leader, dedicated educator, and committed scientific community member. Her strong publication record, funded projects, mentoring, and institutional service collectively highlight her as a trailblazer in analytical chemistry. She fully deserves recognition through such a prestigious award.

🎓Education:

Prof. Reine Nehmé earned her Ph.D. in Analytical Chemistry from the University of Montpellier in 2008, following her Master’s degree (Master 2) in the same field from the same institution in 2005. Demonstrating her continued academic excellence and expertise, she received her Habilitation to Supervise Research (HDR) from the University of Orléans in 2016. This qualification represents the highest academic degree in France and reflects her capacity to independently lead doctoral research and large-scale scientific projects. Her academic training laid a robust foundation in analytical methodologies, chromatographic techniques, and advanced spectroscopy. These qualifications have enabled her to contribute extensively to the development of innovative analytical tools and methods in environmental, biological, and pharmaceutical research. Her educational background not only established her scientific depth but also positioned her to take on leadership and mentoring roles across both academic and research platforms.

🏢Work Experience:

Prof. Nehmé began her academic journey at the University of Orléans in 2008 as a Temporary Teaching and Research Assistant (ATER). She advanced to Associate Professor in 2009 and was promoted to Professor in 2019. Over the years, she has held multiple leadership roles, including Head of the Analytical Chemistry Department and Coordinator of the Professional License program in Chemistry at IUT Chimie d’Orléans. She has been a member of the laboratory’s scientific council since 2017, and also serves on the Commission of Disciplinary Experts. As an active educator, she teaches a range of courses in analytical sciences including electrochemistry, chromatography, mass spectrometry, and microfluidics. In research, she has successfully supervised 6 Ph.D. students (2 ongoing) and multiple post-doctoral and master’s interns. Her contributions extend to national committees such as Afsep’s CE group, where she has served as Deputy Treasurer since 2021.

🏅Awards: 

While specific awards are not explicitly listed, Prof. Reine Nehmé’s honors are evidenced by her numerous leadership and elected roles. She received the Habilitation to Supervise Research (HDR), a distinguished recognition in France for scholarly excellence. Her long-standing position on the scientific council of the ICOA laboratory and as a Commission Expert in disciplinary affairs at the University of Orléans speaks to her academic credibility. She was elected to the Management Committee of the CE group of Afsep in 2017 and appointed as Deputy Treasurer in 2021, underlining national recognition by her peers. She has consistently been entrusted with leadership in nationally funded research programs by ANR and regional agencies, confirming her scientific standing and project leadership ability. Her active role in supervising doctoral candidates and international collaborations further affirms her status as a respected figure in analytical sciences.

🔬Research Focus:

Prof. Nehmé’s research centers on analytical sciences, particularly in capillary electrophoresis, mass spectrometry, and microscale thermophoresis for studying molecular interactions. Her projects frequently explore bioanalysis, enzyme kinetics, and natural product evaluation. She leads or participates in numerous ANR-funded projects, including stapled peptide design, bioremediation via micromycetes, and enzyme behavior in crowded synthetic environments. A significant part of her work involves developing lab-on-a-chip (LoC) platforms for investigating target-ligand interactions at the single-cell level. She has also contributed to the miniaturization of enzymatic assays, passive sampling techniques for water analysis, and electrochemical sensors for environmental monitoring. Prof. Nehmé integrates separation sciences with biology and materials chemistry, bridging analytical method development with real-world biological and environmental challenges. Her interdisciplinary research fosters innovations in diagnostics, therapeutic monitoring, and ecological risk assessment, marking her as a pioneer in translating analytical chemistry into functional tools for bioactive discovery and environmental stewardship.

Publication Top Notes:

1. Using CE to Confirm the Activity of Fluorescent miRFP670-LIMK1 Protein Produced for MST Assays Directly in Cell Lysate

2. The Antimicrobial Activity of ETD151 Defensin is Dictated by the Presence of Glycosphingolipids in the Targeted Organisms

3. Glycolipid and Lipopeptide Biosurfactants: Structural Classes and Characterization—Rhamnolipids as a Model

4. Nutraceutical and Cosmetic Applications of Bioactive Compounds of Saffron (Crocus Sativus L.) Stigmas and Its By-products

5. Antioxidant and Anti-lipase Capacities from the Extracts Obtained from Two Invasive Plants: Ambrosia artemisiifolia and Solidago canadensis

6. Nutraceutical Capacities of Extracts from the Invasive Plants Ambrosia artemisiifolia and Solidago canadensis

7. Screening and Evaluation of Dermo-Cosmetic Activities of the Invasive Plant Species Polygonum cuspidatum

8. Biosurfactant-Producing Mucor Strains: Selection, Screening, and Chemical Characterization

9. Capillary Electrophoresis for Enzyme-Based Studies: Applications to Lipases and Kinases

10. Correction to: Reproducibility and Accuracy of Microscale Thermophoresis in the NanoTemper Monolith: A Multi Laboratory Benchmark Study

11. Design, Synthesis and SAR in 2,4,7-Trisubstituted Pyrido[3,2-d]Pyrimidine Series as Novel PI3K/mTOR Inhibitors

 

 

Prof. Dr. Zhou Xu | Analytical Chemistry | Best Researcher Award

Prof. Dr. Zhou Xu | Analytical Chemistry | Best Researcher Award

Prof. Dr. Zhou Xu , Analytical Chemistry , Assistant Dean at Changsha University of Science & Technology, China

Dr. Zhou Xu is a distinguished Professor and Assistant Dean at the School of Food Science and Bioengineering, Changsha University of Science and Technology. He earned his Ph.D. in Physical Chemistry from Jiangnan University Specializing in food safety, bio sensing, and nanomaterials, Dr. Xu has led numerous national research projects focused on food quality monitoring and rapid detection technologies. With a proven record of innovative research, he has published extensively in top-tier journals like ACS Sensors, Analytical Chemistry, and Chemical Engineering Journal. His pioneering work in biosensors, nanozymes, and magnetic relaxation sensors has earned him multiple research grants and provincial awards. Dr. Xu is recognized for integrating interdisciplinary approaches involving chemistry, biology, and materials science to address critical food safety challenges. His leadership in scientific research and education continues to influence advancements in food science, public health, and nanotechnology applications.

Professional Profile : 

Orcid

Scopus  

Summary of Suitability for Award:

Prof. Zhou Xu is highly suitable for nomination for the “Best Researcher Award.” He holds a Ph.D. in Physical Chemistry (2013) from Jiangnan University and currently serves as a Professor and Assistant Dean at the School of Food Science and Bioengineering, Changsha University of Science and Technology. His academic trajectory—from Lecturer to Professor—demonstrates steady and significant advancement based on merit. His research focus on biosensors, food safety detection, magnetic relaxation sensors, and nanozyme-based immunoassays has led to high-impact publications in prestigious journals like ACS Sensors, Analyst, Analytical Chemistry, and Journal of Agricultural and Food Chemistry. Notably, many of his papers are published as first or corresponding author, reflecting his leadership in research projects. He has secured multiple national and provincial research grants totaling millions of RMB, notably presiding over projects under China’s National Key Research and Development Program. His ability to independently lead large-scale, cutting-edge research initiatives and translate them into real-world food safety applications highlights his excellence in innovation, scientific contribution, and societal impact.

🎓Education:

Dr. Zhou Xu began his academic journey with a Bachelor of Science (B.S.) degree in Biotechnology from Central South University of Forestry and Technology (2001–2005). He then pursued a Master of Science (M.S.) in Processing and Storage of Agricultural Products from the same university, graduating in 2009. Building on this strong foundation, Dr. Xu earned his Ph.D. in Food Nutrition and Safety (Physical Chemistry) from Jiangnan University in March 2013. His doctoral research focused on advanced methodologies for food quality assurance and safety analysis. Throughout his education, Dr. Xu consistently demonstrated excellence, laying the groundwork for a successful academic and research career. His interdisciplinary background spanning biotechnology, food science, and physical chemistry uniquely positions him to address complex issues at the intersection of food safety, nanotechnology, and biosensor development. His education equipped him with diverse skills crucial for his innovative contributions to food science research and technology.

🏢Work Experience:

Dr. Zhou Xu’s academic career began in January 2014 as a Lecturer at Changsha University of Science and Technology. His dedication and research achievements led to his promotion to Associate Professor in August 2018, and then to full Professor in January 2022. Currently, he also serves as the Assistant Dean of the School of Food Science and Bioengineering. Over the years, he has successfully led multiple major research projects funded by national and provincial agencies, focusing on intelligent food safety monitoring, rapid detection technologies, and biosensors. Dr. Xu’s professional journey reflects his strong leadership, mentorship of young researchers, and innovative project management. His deep expertise in bio sensing and nanomaterials has significantly advanced the field of food safety detection. Under his leadership, the university’s research capacity in biosensor technology has expanded greatly. He actively collaborates across disciplines to drive technological innovations addressing real-world food safety challenges.

🏅Awards: 

Dr. Zhou Xu has garnered numerous accolades throughout his illustrious career. He has been the recipient of the prestigious Fund for Excellent Youth of Hunan Province, recognizing his outstanding contributions to biosensor development for food safety (2022–2025). His projects have also secured significant funding from major national agencies, including the National Natural Science Foundation of China and the Natural Science Foundation of Hunan Province. Dr. Xu’s innovative work in food quality detection technologies has been praised for its practical impact and scientific excellence. His consistent success in obtaining competitive research grants highlights his reputation as a leading researcher in his field. Moreover, his work has earned him recognition in academic and government circles as a key contributor to the advancement of intelligent food safety monitoring systems. These awards and honors underline Dr. Xu’s exceptional dedication to scientific innovation, research excellence, and societal impact in the field of food science.

🔬Research Focus:

Dr. Zhou Xu’s research centers on the development of innovative biosensors and nanotechnology-based solutions for food safety detection. His work integrates magnetic relaxation switch sensors, nanozyme-based immunoassays, and metal-organic frameworks (MOFs) to enhance sensitivity and speed in detecting contaminants like aflatoxin B1, cadmium ions, and bisphenol A. By designing intelligent detection platforms based on the Internet of Things (IoT) and advanced materials, Dr. Xu aims to revolutionize food quality supervision and rapid analysis. His studies focus heavily on improving catalytic mechanisms, developing dual-mode immunosensors (fluorescence and magnetic sensing), and constructing biomimetic materials for enhanced assay performance. Through interdisciplinary collaborations, Dr. Xu bridges chemistry, biology, and material science to address major food safety challenges. His research not only advances academic knowledge but also directly impacts industrial practices and public health regulations. Dr. Xu is committed to pioneering practical, scalable technologies for real-time food safety monitoring.

Publication Top Notes:

1.Title: Alanine Substitution to Determine the Effect of LR5 and YR6 Rice Peptide Structure on Antioxidant and Anti-Inflammatory Activity

2.Title: Formation and Characterization of Self-Assembled Rice Protein Hydrolysate Nanoparticles as Soy Isoflavone Delivery Systems

3.Title: Target-modulated UCNPs-AChE assembly equipped with microenvironment-responsive immunosensor
Authors: Zhou Xu et al.

4.Title: Peroxidase-mimetic activity of a nanozyme with uniformly dispersed Fe₃O₄ NPs supported by mesoporous graphitized carbon for determination of glucose

5.Title: Three-dimensional assembly and disassembly of Fe₃O₄-decorated porous carbon nanocomposite with enhanced transversal relaxation for magnetic resonance sensing of bisphenol A

6.Title: Assembly of USPIO/MOF nanoparticles with high proton relaxation rates for ultrasensitive magnetic resonance sensing

7.Title: Metal Organic Frame-Upconverting Nanoparticle Assemblies for the FRET Based Sensor Detection of Bisphenol A in High-Salt Foods

8.Title: Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method

9.Title: A nanozyme-linked immunosorbent assay based on metal-organic frameworks (MOFs) for sensitive detection of aflatoxin B₁

10.Title: Aptamer-enhanced fluorescence determination of bisphenol A after magnetic solid-phase extraction using Fe₃O₄@SiO₂@aptamer

11.Title: Recent Advances in Porphyrin-Based Materials for Metal Ions Detection

12.Title: Metal-Organic Frameworks of MIL-100(Fe, Cr) and MIL-101(Cr) for Aromatic Amines Adsorption from Aqueous Solutions

Prof. Behrooz Zargar | Analytical Chemistry | Best Researcher Award

Prof. Behrooz Zargar | Analytical Chemistry | Best Researcher Award

Prof. Behrooz Zargar | Analytical Chemistry | Full Professor in Analytical Chemistry/Researcher/Lecturer at Shahid Chamran University of Ahvaz, Iran 

Prof. Behrooz Zargar is a distinguished Full Professor of Analytical Chemistry at Shahid Chamran University of Ahvaz, Iran, with over two decades of academic and research excellence. His expertise spans electrochemistry, nano-chemistry, solar cells, and environmental remediation. He has published over 60 high-impact research papers and actively collaborates with organizations such as ISO and the Iranian Safety and Environment Committee. As the Founder and Head of the Central Laboratory at Shahid Chamran University, he has played a pivotal role in advancing analytical techniques. His research has contributed significantly to pesticide analysis, mycotoxin detection, and nanomaterial-based pollutant degradation. His commitment to academia is reflected in his editorial appointments, research collaborations, and mentorship of numerous students. With an impressive citation index of 2143, Prof. Zargar’s groundbreaking work has influenced various industrial and environmental sectors, making him a leading figure in analytical and environmental chemistry.

Professional Profile :         

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Behrooz Zargar, a distinguished Professor of Analytical Chemistry at Shahid Chamran University of Ahvaz, has made remarkable contributions to analytical chemistry, particularly in nanotechnology, electrochemistry, and environmental chemistry. With over 60 publications in high-impact journals (SCI, Scopus indexed), a citation index of 2143, and extensive research in solar cells, solid-phase extraction, and photo-degradation, his scientific impact is substantial. His research collaborations, including work with ISO Organization and national standardization committees, demonstrate his leadership in applied scientific advancements. Additionally, his industry projects on food safety and environmental toxin analysis highlight his contributions to public health and sustainability. With a proven track record of pioneering research, industry collaborations, and leadership in analytical chemistry, Prof. Zargar stands as a highly deserving candidate for the “Best Researcher Award.” His groundbreaking research in nano-chemistry and solar cell technology continues to drive innovation, making him an excellent choice for this prestigious recognition.

🎓Education:

Prof. Behrooz Zargar holds a Ph.D. in Analytical Chemistry (2001) from Shahid Chamran University of Ahvaz. He earned his Master’s degree in Analytical Chemistry (1996) from the same institution, building a strong foundation in instrumental analysis and environmental monitoring. His Bachelor’s degree in Applied Chemistry (1992) from Isfahan University of Technology laid the groundwork for his interest in chemical applications for industrial and environmental solutions. Prior to university education, he completed a Diploma in Experimental Sciences, fostering his analytical skills early on. His academic journey reflects a commitment to precision, innovation, and interdisciplinary research. Over the years, he has integrated electrochemical, spectroscopic, and chromatographic techniques into his research, making significant contributions to chemical science. His education has been instrumental in shaping his expertise in nano-chemistry, separation sciences, and environmental remediation, areas where he continues to make impactful discoveries.

🏢Work Experience:

Prof. Zargar’s academic career spans over two decades at Shahid Chamran University of Ahvaz, where he has held various positions. He served as an Assistant Professor (2002-2009), progressing to Associate Professor (2009-2017), and was promoted to Full Professor in 2017. With a Grade 32 ranking, he has contributed extensively to teaching, research, and institutional leadership. He has collaborated with ISO, developed national safety and environmental standards, and played a key role in nanotechnology advancements. His consultancy work has influenced industries by assessing toxic residues in food, environmental contaminants, and industrial pollutants. As the Founder and Head of the Central Laboratory at Shahid Chamran University, he has enhanced research infrastructure, fostering innovation. His experience extends to mentoring Ph.D. and Master’s students, shaping the next generation of chemists. His expertise in solar cells, electroless plating, corrosion, and electrochemical preconcentration has made him a respected figure in analytical and industrial chemistry.

🏅Awards: 

Prof. Behrooz Zargar’s contributions to analytical chemistry and environmental sciences have earned him numerous accolades. He was recognized for 10 years of excellent service to ISO/TC 17/SC 1/ WG 74 in 2025 for his contributions to steel chemical composition analysis. His work in nanotechnology and environmental monitoring has been acknowledged by national and international scientific committees. As a key member of the Iranian Safety and Environment Committee, he has shaped national policies on chemical safety and environmental sustainability. His editorial appointments in high-impact journals further highlight his scholarly influence. His innovative work in photo-degradation, nano-based solid-phase extraction, and pesticide residue analysis has led to several research grants and industrial collaborations. His role in the development of national analytical standards in Khuzestan, Iran, reflects his commitment to advancing chemical safety regulations. Prof. Zargar’s outstanding research contributions and institutional leadership make him a highly esteemed scientist.

🔬Research Focus:

Prof. Zargar’s research spans analytical, environmental, and industrial chemistry, with a strong emphasis on nanotechnology applications. His work in electrochemical preconcentration and separation techniques has improved trace-level detection of contaminants in food and water. His nano-chemistry expertise has advanced solar cell technology, particularly FeS₂/TiO₂-based solar cells. He has pioneered printed-based voltammetric selective electrodes for precise electrochemical analysis. His work in photo-degradation of cyanide ions using nanomaterials has significant environmental implications. He has developed aerogel-based solid-phase extraction methods for efficient pollutant removal. His industrial research includes toxic residue detection in grains, milk, and bread. His collaboration with ISO and the Iranian Nanotechnology Committee has led to the establishment of new safety and environmental guidelines. His research continues to bridge analytical chemistry with environmental sustainability, contributing to the development of safer chemical practices and advanced material applications.

Publication Top Notes:

A nano curcumin–multi-walled carbon nanotube composite as a fluorescence chemosensor for trace determination of celecoxib in serum samples

An effervescence-assisted dispersive liquid–liquid micro-extraction of captopril based on hydrophobic deep eutectic solvent

Citations: 8

Determination of Tetracycline Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Followed by HPLC–UV System​​

Over-oxidized carbon paste electrode modified with pretreated carbon nanofiber for the simultaneous detection of epinephrine and uric acid in the presence of ascorbic acid​​

Dendrimer-modified magnetic nanoparticles as a sorbent in dispersive micro-solid phase extraction for preconcentration of metribuzin in a water sample​​

Synthesis and dye adsorption studies of the {dibromo(1,1′-(1,2-ethanediyl)bis(3-methyl-imidazole-2-thione)dicopper(i)}n polymer and its conversion to CuO nanospheres for photocatalytic and antibacterial applications​​

Adsorption and removal of ametryn using graphene oxide nano-sheets from farm waste water and optimization using response surface methodology​​

Application of vortex-assisted solid-phase extraction for the simultaneous preconcentration of Cd(ii) and Pb(ii) by nano clinoptilolite modified with 5(p-dimethylaminobenzylidene) rhodanine​​

Metal oxide/TiO₂ nanocomposites as efficient adsorbents for relatively high temperature H₂S removal​​

Novel magnetic hollow zein nanoparticles for preconcentration of chlorpyrifos from water and soil samples prior to analysis via high-performance liquid chromatography (HPLC)

**Synthesis of an ion-imprinted sorbent by surface imprinting of magnetized carbon nanotubes for determination

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | SCIENTIFIC OFFICER/H at NATIONAL CENTER FOR COMPOSITIONAL CHARACTERISATION OF MATERIALS,  India

Shekhar Raparthi is a Scientific Officer / H at the National Centre for Compositional Characterisation of Materials (NCCCM), BARC, Hyderabad. With over three decades of expertise in analytical chemistry, he specializes in trace and ultra-trace characterization of metals, alloys, and high-purity materials. His pioneering work in glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry has significantly advanced compositional analysis. Holding a Ph.D. in Chemistry from JNTU, Hyderabad (2008), he has published extensively in reputed international journals and served as a peer reviewer. Currently leading the ultra-trace analysis section at NCCCM since 2023, he is an esteemed member of India Society for Mass Spectrometry (ISMAS) and Indian Society of Analytical Science (ISAS). His contributions to spectrometric techniques have practical applications in industrial and nuclear material characterization, making him a respected figure in analytical and green chemistry research.

Professional Profile :         

Scopus  

Summary of Suitability for Award:

Dr. Shekhar Raparthi is a highly accomplished researcher specializing in trace and ultra-trace characterization of materials using mass and spectrometric techniques. With over 32 publications in high-impact journals, an h-index of 14, and 631 citations, he has made significant contributions to analytical chemistry. His pioneering research includes the development of infrared spectroscopic methods, glow discharge quadrupole mass spectrometry (GD-QMS), and novel electrolyte cathode discharge atomic emission spectrometric sources. These innovations have advanced material characterization techniques, benefiting the scientific community and industries dealing with high-purity materials, metals, and alloys. Dr. Raparthi’s extensive research contributions, innovative methodologies, and commitment to advancing analytical chemistry make him an ideal candidate for the “Best Researcher Award.” His work has been recognized through numerous international publications, and his role as the head of the ultra-trace analysis section at NCCCM, BARC, further solidifies his impact in the field.

🎓Education:

Shekhar Raparthi pursued his M.Sc. in Chemistry from the University of Hyderabad in 1993, where he developed a strong foundation in analytical chemistry. Following this, he underwent a one-year orientation program at BARC in 1994, gaining specialized training in advanced compositional characterization techniques. His academic journey culminated in a Ph.D. in Chemistry from Jawaharlal Nehru Technological University (JNTU), Hyderabad, in 2008. His doctoral research focused on the development of advanced mass spectrometric methodologies for the ultra-trace analysis of metals and high-purity materials. Over the years, he has continuously expanded his expertise through research, peer-reviewed publications, and participation in international analytical chemistry conferences. His educational background has been instrumental in his ability to innovate in trace and ultra-trace analysis techniques, making significant contributions to the field of analytical chemistry.

🏢Work Experience:

Shekhar Raparthi began his professional career in 1994 as a Scientific Officer/C at NCCCM, BARC, Hyderabad, specializing in the compositional characterization of various materials. Over the past 30 years, he has developed novel analytical methodologies for metals, alloys, and high-purity materials using mass spectrometric and spectroscopic techniques. His expertise includes glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry, contributing to advancements in trace and ultra-trace analysis. His work has been widely recognized, leading to 32 publications in reputed international journals. Since 2023, he has been heading the ultra-trace analysis section at NCCCM, overseeing critical research in compositional characterization. He is also an active peer reviewer for international journals. With extensive experience in spectrometric techniques, Shekhar Raparthi plays a key role in material characterization for nuclear, industrial, and high-tech applications.

🏅Awards: 

Shekhar Raparthi has received several accolades for his significant contributions to analytical chemistry and mass spectrometry. His infrared spectroscopic method for oxygen quantification in TiCl₄ was widely appreciated in the titanium industry, earning him recognition in the field. His research on glow discharge quadrupole mass spectrometry and matrix volatilization methodologies for ultra-trace characterization of high-purity germanium has been published in top international journals, including Analytical Chemistry. His expertise in trace element analysis has made him a valuable asset to BARC and the Indian scientific community. As a distinguished member of ISMAS and ISAS, he actively contributes to the advancement of analytical sciences in India. While he has not listed specific awards, his impactful research, numerous peer-reviewed publications, and leadership in ultra-trace analysis solidify his reputation as a leading scientist in compositional characterization.

🔬Research Focus:

Shekhar Raparthi’s research revolves around trace and ultra-trace characterization of materials using advanced mass spectrometric and spectroscopic techniques. His work plays a crucial role in ensuring the purity and compositional accuracy of metals, alloys, and high-purity materials. He has pioneered glow discharge quadrupole mass spectrometry (GD-QMS) for detecting impurities at ultra-trace levels. Additionally, his development of matrix volatilization methodologies has enhanced the characterization of high-purity germanium, a material critical in semiconductor and radiation detection applications. His innovations in electrolyte cathode discharge atomic emission spectrometry (ECD-AES) have improved the sensitivity and precision of trace element analysis. His research significantly contributes to nuclear, industrial, and advanced material applications, ensuring high accuracy in material compositional studies. As the head of the ultra-trace analysis section at NCCCM, his expertise in **

Publication Top Notes:

In-situ Ti–Ir and ammonium thiocyanate modifiers for improvement of sensitivity of Sc to sub parts per billion levels and its accurate quantification in coal fly ash and red mud by GFAAS

Hydrophobicity induced graphene oxide based dispersive micro solid phase extraction of strontium from seawater and groundwater prior to GFAAS determination

Direct determination of ultra-trace sodium in reactor secondary coolant waters and other waters by electrolyte cathode discharge atomic emission spectrometry

Citation Count: 1

 

Assist. Prof. Dr. HamidReza Mirzaei | Mass Spectrometry | Best Researcher Award

Assist. Prof. Dr. HamidReza Mirzaei | Mass Spectrometry | Best Researcher Award

Assist. Prof. Dr. HamidReza Mirzaei , Nuclear Science and Technology Research Institute (NSTRI) , Iran

Dr. H. R. Mirzaei is an Associate Professor specializing in ion sources and accelerators, currently affiliated with the Nuclear Science and Technology Research Institute (NSTRI) in Tehran, Iran. With a strong academic and research foundation in plasma physics and nuclear engineering, he has been instrumental in advancing the field of electrostatic accelerators and ion source technologies. His expertise extends to plasma simulations and the design of RF and microwave ion sources. Dr. Mirzaei’s contributions include collaboration on the construction of a 150 keV electrostatic accelerator and the development of cutting-edge plasma and ion source systems. He has authored numerous research publications in high-impact journals, focusing on plasma science, simulation, and experimental physics. As a member of the Van de Graaff Laboratory, he remains deeply involved in advancing accelerator technology for various scientific and industrial applications.

Professional Profile

Orcid

Scopus 

Summary of Suitability for Award:

Dr. H. R. Mirzaei’s exceptional achievements, innovative research, and dedication to advancing plasma physics and accelerator technology make him a highly suitable candidate for the “Best Researcher Awards.” His work not only demonstrates scientific rigor but also practical applications, reflecting the award’s emphasis on research excellence and societal impact. Recognizing Dr. Mirzaei would honor his substantial contributions to science and inspire continued innovation in the field.His contributions include the successful construction of a 150 keV electrostatic accelerator, the design of innovative plasma simulation systems, and groundbreaking studies on overdense plasma in ECR ion sources. With a robust academic background in nuclear engineering and electrical engineering, he has published extensively in high-impact journals, advancing the understanding of plasma science and its applications.

🎓Education:

Dr. H. R. Mirzaei pursued his academic journey with a Bachelor of Science in Electrical Engineering from Zanjan University, Iran. Building on his foundational knowledge in engineering, he earned a Master of Science in Nuclear Engineering from Amirkabir University, Tehran. His passion for plasma and accelerator technologies led him to complete a Ph.D. in Nuclear Engineering at the same institution in 2013. Throughout his education, Dr. Mirzaei focused on the intersection of plasma physics and nuclear engineering, honing his expertise in ion sources, electrostatic accelerators, and advanced simulation techniques. His academic achievements laid the groundwork for a successful career in research and development in the field of plasma and accelerator physics.

🏢Work Experience:

Dr. Mirzaei has amassed extensive experience in plasma physics and accelerator technologies. He has been pivotal in the development and construction of a 150 keV electrostatic accelerator and played a significant role in designing and constructing RF and microwave-based ion sources. His expertise has been instrumental in advancing the Van de Graaff Laboratory’s capabilities, where he is an active member. Dr. Mirzaei’s professional endeavors also include leading simulation studies of overdense plasma, optimizing plasma startup methods in tokamaks, and developing resonant plasma sources for space plasma simulation chambers. His collaborative efforts span diverse projects, integrating theoretical, simulation, and practical expertise to innovate in ion source and electrostatic accelerator technologies.

🏅Awards: 

Dr. Mirzaei has received recognition for his outstanding contributions to plasma physics and accelerator research. His efforts in developing the Taban Tokamak and pioneering ion source technologies have earned accolades within the scientific community. He has been invited to present his work at numerous international conferences and has received awards for his contributions to accelerator physics and plasma simulation techniques. Additionally, Dr. Mirzaei’s innovative approaches to plasma source optimization and RF power design have led to notable achievements in the field, further solidifying his reputation as a leading expert in ion source and electrostatic accelerator development.

🔬Research Focus:

Dr. Mirzaei’s research focuses on plasma physics, ion source development, and electrostatic accelerators. His work includes designing advanced RF and microwave plasma sources, optimizing plasma startup techniques for tokamaks, and performing simulation studies of overdense plasma in electron cyclotron resonance (ECR) ion sources. He is particularly interested in the practical applications of ion sources in accelerators, including their use in space plasma simulation chambers and industrial processes. His ongoing projects aim to bridge the gap between theoretical models and experimental implementations, contributing to advancements in accelerator and plasma science.

Publication Top Notes:

Analytical solution versus the Monte Carlo simulation for studying the H+ beam neutralization in H2 gas target neutralizer

Authors: Masoumzadeh, A., Habibi, M., Mirzaei, H.R.

Citations: 0

Year: 2024

Design and simulation of an S-Band tunable solid-state power amplifier as an RF injector into a miniature ECR ion source

Authors: Rahimpour, H., Mirzaei, H., Satri, M.Y., Mobaraki, Z.R.

Citations: 0

Year: 2022

Simulation of ionospheric heating in Iran coordinates with SAMI2 model

Authors: Mirzaei, H., Asadnejad, R., Mahdavi, H., Mohammadiha, A., Kazemi, M.

Citations: 0

Year: 2022

Analysis and design of microwave resonant plasma source for Iranian Space Plasma Simulation Chamber

Authors: Mirzaei, H.R., Kazemi, M., Etaati, G., Kafshgari, M.K., Jelodar, H.R.

Citations: 1

Year: 2022

Analysis and design of a 2.45 GHz RF power source for a miniature electron cyclotron resonance ion source

Authors: Rahimpour, H., Mirzaei, H., Satri, M.Y.

Citations: 1

Year: 2022

The Effect of Removing the High Power Pulse Transformer on the Microwave Pulse Duration in the Preionization Phase in Taban Tokamak

Authors: Rostamifard, D., Amrollahi, R., Iraji, D., Mirzaei, H.

Citations: 0

Year: 2020

Optimizing the Plasma startup through ECR plasma pre-ionization in Taban Tokamak via Triple Langmuir probe

Authors: Mirzaei, H.R., Amrollahi, R., Ghasemi, M.

Citations: 6

Year: 2020

First Results and Plasma Current Start-Up in Taban Tokamak

Authors: Mirzaei, H.R., Amrollahi, R.

Citations: 2

Year: 2019

Observation and investigation of runaway electrons in the start-up phase of Taban Tokamak

Authors: Mirzaei, H., Amrollahi, R., Iraji, D., Rostamifard, D.

Citations: 1

Year: 2019

Alborz tokamak system engineering and design

Authors: Amrollahi, R., Iraji, D., Ghasemi, M., Omrani, M., Souri, S.

Citations: 5

Year: 2019

 

 

 

 

Assoc. Prof. Dr. Saeed Mohammad Sorouraddin | Analytical Chemistry | Best Researcher Award

Assoc. Prof. Dr. Saeed Mohammad Sorouraddin | Analytical Chemistry | Best Researcher Award 

Assoc. Prof. Dr. Saeed Mohammad Sorouraddin , University of Tabriz , Iran 

Saeed Mohammad Sorouraddin Abadi is an Associate Professor in the Department of Analytical Chemistry at Tabriz University, specializing in analytical chemistry and microextraction techniques. With extensive experience in the field, he has contributed significantly to the development of extraction methods for trace elements and pollutants. His work includes innovative techniques in dispersive liquid-liquid microextraction, contributing to environmental monitoring, food safety, and industrial applications. He is widely recognized for his research in pesticide analysis, heavy metals detection, and the use of green chemistry in sample preparation. Saeed Mohammad Sorouraddin Abadi is a respected figure in his field, holding numerous publications in international journals and actively participating in academic research projects. His contributions to the scientific community have had a profound impact on environmental and food analysis.

Professional Profile:

Google Scholar   

Summary of Suitability for Award:

Saeed Mohammad Sorouraddin Abadi stands out as a deserving candidate for the “Best Researcher Award” , given his significant contributions to analytical chemistry, his innovative research, and his continued efforts to advance the field of microextraction techniques. His work not only furthers scientific knowledge but also has practical applications in environmental and food safety monitoring, demonstrating his impact on both academia and society. His work has focused on enhancing the sensitivity and efficiency of extraction processes, particularly in trace metal and pesticide analysis.

🎓Education:

Saeed Mohammad Sorouraddin Abadi holds a Ph.D. in Analytical Chemistry, where his research focused on novel extraction techniques and their application in environmental and food analysis. He completed his M.Sc. and B.Sc. in Chemistry, further refining his analytical skills and methods. His academic journey has been marked by a strong commitment to advancing scientific knowledge in the area of sample preparation techniques. Throughout his education, he specialized in developing environmentally friendly methods for extracting contaminants from complex matrices. Abadi’s work has become a cornerstone in the development of microextraction processes and their optimization for trace analysis of various elements.

🏢Work Experience:

With years of experience in the field of analytical chemistry, Saeed Mohammad Sorouraddin Abadi has made substantial contributions to both research and teaching. He has guided numerous students in their B.Sc., M.Sc., and Ph.D. studies, imparting his expertise in analytical techniques. Abadi’s research has focused on developing advanced microextraction methods such as dispersive liquid-liquid microextraction (DLLME), which have applications in various fields, including food safety, environmental monitoring, and industrial analysis. He has also worked extensively on improving analytical processes for detecting pesticides and heavy metals in complex samples. His teaching methodology integrates research with practical applications, equipping students with skills to innovate in the field of analytical chemistry.

🏅Awards:

Saeed Mohammad Sorouraddin Abadi has received multiple recognitions for his pioneering work in analytical chemistry. He has been awarded various academic honors for his contributions to the development of microextraction techniques, especially in the analysis of trace metals and pollutants. His publications are highly cited, underlining his global influence in the field of environmental and food analysis. Abadi’s innovative approach to using green chemistry in extraction processes has earned him accolades from professional chemistry organizations. His research has also received funding and support from several national and international research grants, recognizing his significant contributions to the advancement of analytical chemistry.

🔬Research Focus:

Saeed Mohammad Sorouraddin Abadi’s primary research focus lies in the development of novel microextraction techniques, specifically dispersive liquid-liquid microextraction (DLLME), for trace analysis of heavy metals, pesticides, and other contaminants. His work emphasizes environmentally friendly methods and the application of green chemistry in analytical processes. Abadi is particularly interested in the development of advanced sample preparation techniques for complex samples, such as food, water, and environmental matrices. His research aims to enhance the sensitivity and selectivity of detection methods while minimizing the use of harmful solvents. Additionally, his work in the analysis of pollutants and trace elements has significant implications for public health and environmental monitoring.

Publication Top Notes:

Development of a dispersive liquid-liquid microextraction method based on a ternary deep eutectic solvent as chelating agent and extraction solvent for preconcentration of …
Citations: 133
Molecularly imprinted-solid phase extraction combined with simultaneous derivatization and dispersive liquid–liquid microextraction for selective extraction and 
Citations: 124
Liquid phase microextraction of pesticides: a review on current methods
Citations: 113
Cyclohexylamine as extraction solvent and chelating agent in extraction and preconcentration of some heavy metals in aqueous samples based on heat-induced homogeneous liquid …
Citations: 62
Determination of methamphetamine, amphetamine and ecstasy by inside-needle adsorption trap based on molecularly imprinted polymer followed by GC-FID determination
Citations: 61