Prof. Safia TALEB | Organic Chemistry | Best Paper Award

Prof. Safia TALEB | Organic Chemistry | Best Paper Award

Prof. Safia TALEB , Organic Chemistry , Professor Dr. Senior Researcher at Djillali Liabès University, Algeria

Prof. Safia Taleb is a distinguished Algerian chemist, currently serving as Professor and Deputy Director at the Faculty of Exact Sciences, Department of Chemistry, D. Liabès University, Algeria. From 2010 to 2022, she was the Head of the Laboratory of Materials & Catalysis (LMC). She earned her Doctorate in Organic Chemistry from the Catholic University of Louvain (UCL), Belgium, in 1981, later obtaining Algerian equivalence. Prof. Taleb’s career has spanned decades, marked by leadership in research, education, and collaborative international publications. Her expertise includes organic and analytical chemistry, environmental remediation, wastewater treatment, and clay-based catalysis. She is actively engaged in sustainable science, focusing on recycling and water purification. With a prolific publication record and deep commitment to applied research, Prof. Taleb has made significant contributions to science and society, mentoring numerous students and fostering global partnerships in green chemistry and environmental innovation.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Safia Taleb, a distinguished researcher and Professor of Chemistry at D. Liabes University, has made significant contributions in the fields of organic chemistry, water treatment, catalysis, and environmental sustainability. Her recent international publications display innovative and practical solutions to pressing environmental issues such as wastewater treatment, dye degradation, oil recycling, and humic acid removal. Her 2025 publication titled “Decoloration of Waste Cooking Oil by Maghnia Algerian Clays via Ion Exchange and Surface Adsorption” (published in Chem Engineering) is a strong candidate for the “Best Paper Award”, as Addresses a critical environmental concern—recycling waste cooking oil. Uses local and low-cost materials (Algerian clays) for sustainable solutions. Combines surface chemistry, materials science, and environmental engineering. Has global relevance and direct practical application, especially in developing regions. Prof. Taleb’s collaborative research approach with international and national scientists and her track record of impactful publications further bolster her candidacy. Prof. Safia Taleb’s research, particularly her 2025 paper in Chem Engineering, exemplifies the criteria of originality, scientific rigor, and environmental relevance sought in a “Best Paper Award”. Her extensive experience, commitment to solving real-world problems, and recent publication’s innovation make her a highly suitable candidate for this recognition.

🎓Education:

Prof. Safia Taleb’s academic journey began with a Baccalaureate in Applied Sciences (1970) in Mostaganem, Algeria. She pursued a Licence in Physical Sciences (Option: Chemistry) at the University of Es-Sénia, Oran, Algeria, graduating in 1974. A year later, in 1975, she earned a D.E.A. (Diplôme d’Études Approfondies) in Organic Chemistry from the same institution. Her pursuit of excellence led her abroad to the Catholic University of Louvain (UCL), Belgium, where she obtained her Doctorate Es Sciences in Organic Chemistry in 1981. In 1988, her Belgian Doctorate was officially recognized in Algeria through equivalence certification. Her solid educational foundation has empowered her pioneering contributions in organic synthesis, catalysis, and environmental science. Prof. Taleb’s international education and interdisciplinary focus continue to influence generations of Algerian scientists and innovators.

🏢Work Experience:

Prof. Safia Taleb has had a remarkable academic and research career spanning over four decades. Since 1989, she has served as Professor and Deputy Director at D. Liabès University, where she has been instrumental in curriculum development, research mentoring, and institutional management. From June 2010 to June 2022, she directed the Laboratory of Materials & Catalysis (LMC), driving innovation in sustainable materials and environmental technologies. Throughout her career, Prof. Taleb has led numerous national and international collaborations, particularly in wastewater treatment, clay-based adsorbents, and organic chemical analysis. She has authored and co-authored several peer-reviewed publications and supervised postgraduate research. Her leadership at LMC established it as a hub of applied chemistry in Algeria. An active contributor to environmental and analytical chemistry research, Prof. Taleb’s experience reflects an enduring dedication to scientific advancement and community well-being.

🏅Awards: 

While specific named awards are not listed in the provided data, Prof. Safia Taleb’s distinguished academic career reflects numerous professional recognitions. Her long-standing leadership at the Laboratory of Materials & Catalysis (LMC) and appointment as Deputy Director at D. Liabès University testify to institutional and peer recognition of her contributions. She has been regularly featured as lead or co-author in international journals, signaling esteem from the global scientific community. Her cross-border collaborations with researchers from Europe and North Africa have earned her recognition in Algeria and abroad. Additionally, her role in mentoring Ph.D. candidates, organizing research activities, and fostering innovations in environmental chemistry are indicative of her impact. Invitations to publish, collaborate, and lead reflect ongoing acknowledgment of her excellence and dedication in science and education.

🔬Research Focus:

Prof. Safia Taleb’s research bridges organic chemistry and analytical chemistry with environmental sustainability. Her core focus areas include wastewater treatment, natural clay materials, catalysis, bio-waste recycling, and water quality improvement. She is particularly renowned for developing adsorbent and catalytic materials from Algerian clays, applying them in the purification of industrial and domestic effluents. Her research is highly interdisciplinary, often merging chemistry, materials science, and environmental engineering to create eco-friendly solutions. Prof. Taleb is also engaged in valorization of agri-food waste, transforming it into functional materials for environmental applications. She employs spectroscopic, microbiological, and physicochemical techniques to characterize pollutants and evaluate remediation efficiency. Her recent work includes collaborative studies on the removal of synthetic dyes, treatment of olive mill wastewater, and recycling of used vegetable oils. Her research contributes significantly to Algeria’s environmental policy and global green chemistry initiatives.

Publication Top Notes:

1. Decoloration of Waste Cooking Oil by Maghnia Algerian Clays via Ion Exchange and Surface Adsorption

2. Temperature and pH Influence on Diuron Adsorption by Algerian Mont-Na Clay

3. Combined Ozonation Process and Adsorption onto Bentonite Natural Adsorbent for the o-Cresol Elimination

4. High Adsorption Capacity of Thermally Treated Solid Olive Wastes to Treat Olive Mill Wastewater

5. Heterogeneous Catalytic Degradation of Diuron Using Algerian Sodium Montmorillonite

6. Variation of Used Vegetable Oils’ Composition upon Treatment with Algerian Clays

7. Performance of NF90 and NF270 Commercial Nanofiltration Membranes in the Defluoridation of Algerian Brackish Water

Citations: 17

8. Preparation, Characterization and Application of Fe-Pillared Bentonite to the Removal of Coomassie Blue Dye from Aqueous Solutions

9. Lead and cadmium removal by adsorption process using hydroxyapatite porous materials

10. Mechanism study of metal ion adsorption on porous hydroxyapatite: experiments and modeling

 

 

Assoc. Prof. Dr. Zoubida TALEB | Green Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Zoubida TALEB | Green Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Zoubida TALEB , Green Chemistry , Djillali Liabes University, Algeria

Dr. Zoubida Taleb is a dedicated researcher and academic in the Department of Chemistry at Djillali Liabes University, Sidi Bel Abbes, Algeria. Affiliated with the Laboratory of Materials & Catalysis (LMC), she has significantly contributed to the fields of analytical chemistry, water quality, catalysis, and polymer chemistry. With a passion for environmental sustainability, her research primarily focuses on wastewater treatment using natural and cost-effective materials. Dr. Taleb earned her doctorate in Applied Physics/Chemistry in 2015 and her habilitation in 2021. She has collaborated on numerous international projects and authored several peer-reviewed publications that address pressing global environmental challenges. She actively shares her work via platforms like ORCID, Google Scholar, and ResearchGate. Known for her dedication to scientific advancement and community impact, Dr. Taleb continues to lead projects that bridge fundamental chemistry with environmental applications.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Taleb’s scientific contributions center around analytical chemistry, wastewater treatment, natural adsorbents, polymer chemistry, and catalysis—all of which are crucial subfields of environmental chemistry. A significant part of her recent research targets removal of pollutants (e.g., phenolic compounds, Diuron, heavy metals) from olive oil mill wastewater, used vegetable oils, and industrial effluents. This aligns directly with global efforts toward sustainable water treatment.  Dr. Taleb has contributed meaningfully to the advancement of environmentally friendly chemical technologies and has collaborated internationally. She bridges chemistry, environmental engineering, and materials science, showcasing interdisciplinary impact—a hallmark of outstanding environmental chemists. Dr. Zoubida Taleb demonstrates exceptional alignment with the objectives of the “Environmental Chemistry Award”. Her research directly addresses global environmental challenges such as water pollution, green remediation techniques, and resource recovery using sustainable, low-cost methods. Her scholarly output, practical impact, and dedication to environmental solutions make her a strong and deserving candidate for this prestigious recognition.

🎓Education:

Dr. Zoubida Taleb’s academic journey began with a Baccalaureate in Natural and Life Sciences (1998) in Sidi Bel Abbes, Algeria. She then pursued her passion for chemistry by obtaining a Higher Education Diploma in Chemistry (2003) from Djillali Liabes University. Building upon this foundation, she earned a Master’s degree in Polymer Chemistry (2009) from Ahmed Ben Bella, Es-Senia University in Oran. Her pursuit of higher research led her back to Djillali Liabes University, where she was awarded a Doctorate in Applied Physics/Chemistry (2015). Demonstrating academic excellence and research leadership, she achieved the Habilitation (2021), the highest university qualification in Algeria. This extensive and focused educational background has equipped Dr. Taleb with robust expertise in chemical sciences, particularly in polymers, catalysis, and environmental applications.

🏢Work Experience:

Dr. Zoubida Taleb has over 15 years of academic and research experience in the field of chemistry. She currently serves as a faculty member in the Department of Chemistry at Djillali Liabes University, where she is also a core member of the Laboratory of Materials & Catalysis (LMC). Her responsibilities include supervising graduate research, conducting innovative projects, and teaching chemistry-related subjects. Dr. Taleb has actively collaborated with national and international researchers, contributing to projects in environmental remediation, adsorption processes, and sustainable materials. She has co-authored numerous high-impact articles and presented her research at various international forums. Her experience spans practical lab work, analytical instrumentation, and interdisciplinary collaboration in areas such as wastewater treatment, polymer chemistry, and surface catalysis. She also mentors students and promotes scientific awareness and innovation within the academic community.

🏅Awards: 

While specific awards are not listed in the provided data, Dr. Zoubida Taleb’s career is marked by significant academic accomplishments and recognition through her research contributions. Earning the Habilitation degree in 2021 reflects her expertise and capacity to supervise doctoral research—an honor reserved for highly accomplished scholars in Algeria. Her active participation in high-impact publications, including international collaborations with European scientists, underlines her global academic reputation. Her work has been published in leading journals such as Chem Engineering, Environmental Analytical Chemistry, and Waste Management & Research, often addressing critical environmental issues through green chemistry. Furthermore, her role in multiple projects on wastewater treatment and the valorization of natural materials highlights her commitment to sustainability and innovation. Continued invitations to co-author with globally renowned researchers are testament to her respected position in the field.

🔬Research Focus:

Dr. Zoubida Taleb’s research integrates chemistry with environmental sustainability, focusing on analytical chemistry, wastewater treatment, natural adsorbents, polymer chemistry, and catalysis. She explores low-cost, efficient techniques such as adsorption and catalytic degradation using Algerian clays, montmorillonite, and activated carbon to remove pollutants from industrial effluents. Her studies address real-world problems like the purification of used vegetable oils, olive mill wastewater treatment, and removal of phenolic compounds and pesticides from water. By emphasizing kinetic modeling and physicochemical characterization, she evaluates the efficiency and mechanisms of adsorption and catalysis. Her interdisciplinary work often combines chemical engineering, material science, and environmental science, promoting sustainable solutions. Collaborations with researchers from Spain, Italy, and France have broadened her impact, making her a key contributor in advancing eco-friendly remediation technologies.

Publication Top Notes:

1. Lead and cadmium removal by adsorption process using hydroxyapatite porous materials

Authors: A. Ramdani, A. Kadeche, M. Adjdir, Z. Taleb, D. Ikhou, S. Taleb, A. Deratani

Citations: 48

2. Mechanism study of metal ion adsorption on porous hydroxyapatite: experiments and modeling

Authors: A. Ramdani, Z. Taleb, A. Guendouzi, A. Kadeche, H. Herbache, A. Mostefai, …

Citations: 13

3. Removal of o-Cresol from aqueous solution using Algerian Na-Clay as adsorbent

Authors: H. Herbache, A. Ramdani, A. Maghni, Z. Taleb, S. Taleb, E. Morallon, …

Citations: 10

4. Electrochemical and In Situ FTIR Study of o-Cresol on Platinum Electrode in Acid Medium

Authors: Z. Taleb, F. Montilla, C. Quijada, E. Morallon, S. Taleb

Citations: 10

5. Physicochemical and microbiological characterisation of olive oil mill wastewater (OMW) from the region of Sidi Bel Abbes (Western Algeria)

Authors: S. Djeziri, Z. Taleb, M. Djellouli, S. Taleb

Citations: 7

6. Catalytic degradation of O‐cresol using H₂O₂ onto Algerian Clay‐Na

Authors: H. Herbache, A. Ramdani, Z. Taleb, R. Ruiz‐Rosas, S. Taleb, E. Morallón, …

Citations: 7

7. Discoloration of contaminated water by an industrial dye: Methylene Blue, by two Algerian bentonites, thermally activated

Authors: I. Feddal, Z. Taleb, A. Ramdani, H. Herbache, S. Taleb

Citations: 7

8. Variation of used vegetable oils’ composition upon treatment with Algerian clays

Authors: A. Serouri, Z. Taleb, A. Mannu, S. Garroni, N. Senes, S. Taleb, S. Brini, …

Citations: 6

9.Temperature and pH influence on Diuron adsorption by Algerian Mont-Na Clay

Authors: S. Tlemsani, Z. Taleb, L. Piraúlt-Roy, S. Taleb

Citations: 5

10. Recycling of used vegetable oils by powder adsorption

Authors: A. Mannu, M.E. Di Pietro, G.L. Petretto, Z. Taleb, A. Serouri, S. Taleb, …

Citations: 5

Assoc. Prof. Dr. Jing Qi | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Jing Qi | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Jing Qi , Environmental Chemistry , Associate Professor at Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Dr. Jing Qi is an Associate Professor at the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, China. Her research specializes in algae removal and secondary pollution control, with a keen interest in the oxidative stress mechanisms in algae, algal-bacterial interactions, and advanced flocculation technologies. She has significantly contributed to national and international water treatment research and has been principal investigator on several projects funded by the National Natural Science Foundation of China. Dr. Qi has authored more than 30 peer-reviewed journal articles and holds eight national invention patents. Her scientific work bridges fundamental algal physiology with applied environmental solutions, aiming to safeguard water quality and reduce health hazards. In her current role, she also contributes to mentoring young researchers and promoting innovations in water purification processes. She is recognized as a rising leader in eco-environmental sciences, with impactful contributions in aquatic environmental chemistry.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Jing Qi, an Associate Professor at the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, demonstrates exceptional research caliber in the field of aquatic environmental science. Her work addresses globally relevant challenges such as algae removal, secondary pollution control, and oxidative stress mechanisms in algae, which have direct applications in water quality improvement and public health protection. Her impressive academic trajectory, including a Ph.D. from RCEES (2017) and rapid advancement to Associate Professor (2021), reflects her strong research capability. Dr. Qi has led multiple national research projects funded by prestigious Chinese agencies, and has made significant scientific contributions through 30+ peer-reviewed publications in high-impact journals like Water Research, Environmental Science & Technology, and Journal of Hazardous Materials. Additionally, she holds eight national invention patents, underscoring her commitment to applied innovation and environmental problem-solving. Dr. Jing Qi is a highly suitable candidate for the “Best Researcher Award” . Her scholarly achievements, patent contributions, and leadership in national environmental projects affirm her as a pioneering scientist whose work significantly contributes to the advancement of sustainable water treatment technologies. She combines scientific excellence, innovation, and real-world impact, making her a compelling choice for this prestigious recognition.

🎓Education:

Dr. Jing Qi earned her Ph.D. in Environmental Science from the prestigious Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, in 2017. Her doctoral research focused on the mechanisms of algae behavior in water treatment processes, particularly the oxidative stress responses and interaction with chemical agents. This work laid the foundation for her ongoing studies on algal metabolism and secondary pollution control in drinking water systems. Prior to her Ph.D., Dr. Qi underwent intensive training in aquatic chemistry, environmental chemistry, and microbiological techniques, which provided her with a robust interdisciplinary foundation. Her academic excellence was consistently evident through her publications even during her early career. The comprehensive education she received at RCEES empowered her with advanced laboratory skills, critical thinking, and an applied approach to addressing China’s pressing water quality challenges, helping her transition smoothly into a research-intensive professional career.

🏢Work Experience:

Dr. Jing Qi began her professional journey as an Assistant Professor at the State Key Laboratory of Environmental Aquatic Chemistry, RCEES, after completing her Ph.D. in 2017. Her early projects focused on optimizing coagulation and oxidation techniques for algal control in raw water. In 2021, she was promoted to Associate Professor, reflecting her consistent contributions to national research projects and high-impact publications. At RCEES, she actively leads interdisciplinary research teams and collaborates with national water management agencies. Dr. Qi’s role encompasses both academic and applied dimensions—ranging from supervising postgraduate students and publishing scholarly work to developing patentable technologies for algae removal. Her involvement in applied environmental chemistry has made her a sought-after expert for improving China’s municipal water treatment processes. Her research group integrates biochemical, ecological, and technological strategies to mitigate algal blooms and associated pollutants in freshwater systems.

🏅Awards: 

Dr. Jing Qi has received multiple commendations for her innovative contributions to environmental science and water treatment. She has been a principal investigator on several prestigious grants from the National Natural Science Foundation of China, supporting her pioneering studies in algal oxidative stress and flocculation enhancement. Her research excellence has earned her awards for technological innovation and patent development within the Chinese Academy of Sciences. Dr. Qi has also been invited to present at national conferences and recognized for excellence in young scientist research forums. Her eight national invention patents on algae control and water purification reflect both scientific novelty and real-world impact. Additionally, several of her papers have been listed as highly cited in their respective journals. These honors underscore her position as a thought leader in aquatic environmental chemistry and a contributor to public health through improved drinking water technologies.

🔬Research Focus:

Dr. Jing Qi’s research primarily addresses the ecological and chemical mechanisms underlying algae removal and secondary pollution control in aquatic systems. Her focus includes the growth regulation and metabolic dynamics of algae in raw water, oxidative stress responses to disinfectants, and the microbial interactions between algae and bacteria. She investigates how algal organic matter contributes to pollution during water treatment and explores techniques such as pre-oxidation, enhanced flocculation, and photocatalysis to mitigate these effects. A distinctive feature of her work is the integration of biochemical analysis with environmental engineering solutions, ensuring both mechanistic understanding and practical application. Dr. Qi also explores microplastic-algae interactions, emerging pollutants, and their impact on trophic dynamics in aquatic food webs. Her interdisciplinary approach—combining microbiology, chemistry, and materials science—provides innovative strategies for sustainable drinking water treatment and eutrophication prevention, contributing directly to national and global environmental quality goals.

Publication Top Notes:

1. Environmental Gradient Changes Shape Multi-Scale Food Web Structures: Impact on Antibiotics Trophic Transfer in a Lake Ecosystem

2. Bipartite Trophic Levels Cannot Resist the Interference of Microplastics: A Case Study of Submerged Macrophytes and Snail

3. Prechlorination of Algae-Laden Water: The Effects of Ammonia on Chlorinated Disinfection Byproduct Formation During Long-Distance Transportation

 

Assoc. Prof. Dr. Dongmei Wang | Inorganic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Dongmei Wang | Inorganic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Dongmei Wang , Inorganic Chemistry , Associate professor at Zhejiang Normal University, China 

Dr. Dongmei Wang is an accomplished researcher and academic in the field of materials chemistry. She earned her Ph.D. from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry, Jilin University in 2016. Following her graduation, she joined the College of Chemistry and Materials Sciences at Zhejiang Normal University. In recognition of her academic contributions, she was promoted to Associate Professor and Master Supervisor in 2020. Dr. Wang has led several funded research projects, including those supported by the National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang Province. Her scholarly output includes over 30 papers published in SCI-indexed journals. Her primary research interests lie in the synthesis and assembly of porous metal-organic frameworks (MOFs), particularly for applications in gas adsorption and separation. With a growing reputation in her field, Dr. Wang continues to contribute meaningfully to both fundamental research and applied science.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Dongmei Wang is a highly qualified and emerging researcher in the field of inorganic chemistry and materials chemistry, with a focused specialization in metal-organic frameworks (MOFs) and their application in gas adsorption and separation. Her academic journey began with a Ph.D. from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry, Jilin University, a nationally recognized center of excellence. Since joining Zhejiang Normal University in 2016, she has demonstrated rapid academic growth, attaining the position of Associate Professor and Master’s Supervisor by 2020. In conclusion, Dr. Dongmei Wang possesses the essential qualifications, research accomplishments, and societal relevance to be considered a strong candidate for the “Best Researcher Award.” Her early-career recognition through competitive grants, publication record, and rapid academic promotion all point to a dynamic and impactful scientific career. She is particularly suitable for this award in the emerging researcher or mid-career scientist category, and her contributions to environmentally significant applications further enhance her case.

🎓Education:

Dr. Dongmei Wang received her doctoral degree in 2016 from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry at Jilin University, one of China’s premier research institutions in the chemical sciences. Her Ph.D. work focused on the synthesis, design, and functionality of advanced inorganic and coordination materials. During her doctoral studies, she received rigorous training in the field of inorganic chemistry, especially in the design of metal-organic frameworks (MOFs) with controlled porosity and tailored functionalities. Her academic journey laid a solid foundation for her current research on porous materials and their environmental applications. Prior to her doctoral studies, she completed her undergraduate and possibly master’s studies (not specified) in related disciplines, which cultivated her passion for materials science. The comprehensive academic training she received equipped her with the theoretical knowledge and experimental skills necessary for her current research and teaching roles.

🏢Work Experience:

Dr. Dongmei Wang began her professional academic career in 2016 when she joined the College of Chemistry and Materials Sciences at Zhejiang Normal University as a faculty member. Within just four years, in 2020, she was promoted to the position of Associate Professor and Master Supervisor, acknowledging her contributions to both research and mentorship. At Zhejiang Normal University, she is actively involved in teaching undergraduate and postgraduate courses, supervising graduate students, and conducting independent research in materials chemistry. She has taken a leading role in managing research projects funded by both national and provincial foundations. Her expertise in metal-organic frameworks (MOFs) has positioned her as a recognized scientist in the field of porous materials. Throughout her career, Dr. Wang has demonstrated a commitment to academic excellence, fostering innovation, and mentoring the next generation of scientists. Her academic journey showcases a steady and impactful progression in both research and teaching.

🏅Awards: 

Dr. Dongmei Wang has received several accolades and research grants that underscore her excellence in scientific research and academic leadership. Notably, she has been the principal investigator for a Youth Project of the National Natural Science Foundation of China (NSFC)—a prestigious funding scheme supporting promising early-career scientists. She has also successfully led a project supported by the Natural Science Foundation of Zhejiang Province, highlighting regional recognition of her work. These competitive grants are awarded based on scientific merit and innovation potential, affirming the quality and relevance of her research. While specific honorary titles or awards are not detailed, her rapid promotion to Associate Professor and her role as a Master’s Supervisor by 2020 speak volumes about her scholarly reputation. Her publications in SCI-indexed journals further support her status as an influential researcher in porous materials and MOF chemistry.

🔬Research Focus:

Dr. Dongmei Wang’s research is centered on the design, synthesis, and functionalization of porous metal-organic frameworks (MOFs). These materials, known for their high surface areas, tunable porosity, and chemical versatility, are investigated for various applications under her supervision. A key area of interest in her lab is the application of MOFs in gas adsorption and separation, addressing urgent environmental and industrial challenges such as CO₂ capture, hydrogen storage, and selective gas separation. Her approach involves rational ligand and metal-node design to tailor the structural and adsorption properties of the frameworks. Additionally, Dr. Wang is exploring hybrid materials that combine MOFs with polymers or nanoparticles to improve stability and performance under real-world conditions. Her interdisciplinary research draws upon principles of inorganic chemistry, materials science, and environmental engineering, and aims to contribute to the development of sustainable and high-efficiency gas capture technologies.

Publication Top Notes:

1. Precipitation Conversion Induced Enhancement of Enzyme-Like Activity of Diatomite Supported Ag₂S Nanoparticles for Selective Hg(II) Detection via Colorimetric Signal Amplification

2. In Situ Production of Single-Cell Protein in Microbial Electrochemical Systems via Controlling the Operation and CO₂ Addition

3. Progress of MOFs Composites in the Field of Microwave Absorption

4. Reticular Chemistry Guided Function Customization: A Case Study of Constructing Low-Polarity Channels for Efficient C₃H₆/C₂H₄ Separation

5. Metal-Organic Framework with Polar Pore Surface Designed for Purification of Both Natural Gas and Ethylene

6. Revealing the Iceberg Beneath: A Merge-Net Approach for Designing Multicomponent Reticular Solids

7. Biomimetic Mineralization Synthesis of Tricobalt Tetraoxide/Nitrogen Doped Carbon Skeleton for Enhanced Capacitive Deionization

8. Assembly of Solvent-Incorporated Rod Secondary Building Units to Ultramicroporous Metal-Organic Frameworks for Acetylene Purification

 

 

Prof. Reine NEHME | Analytical Chemistry | Best Researcher Award

Prof. Reine NEHME | Analytical Chemistry | Best Researcher Award

Prof. Reine NEHME, Analytical Chemistry , Head of analytical team at University of Orléans, ICOA UMR7311, France

Prof. Reine Nehmé is a renowned French scientist and Professor of Analytical Sciences at the University of Orléans, where she leads the “Analytical Strategies, Affinities and Bioactives” team at ICOA. With over 15 years of academic and research experience, she specializes in advanced separation techniques, bioanalysis, and microfluidics. She is deeply involved in both teaching and scientific governance—serving on multiple university and national scientific committees. Prof. Nehmé also contributes to scientific advancement as a supervisor of numerous Ph.D. and post-doctoral researchers and by coordinating key national research projects funded by ANR and regional bodies. Her prolific contributions to analytical chemistry are reflected in her numerous publications, particularly in the areas of enzymatic assays, capillary electrophoresis, and bioactive compound analysis. With a strong leadership role in Afsep and her involvement in high-level academic administration, she is recognized as a leading figure in analytical chemistry in France and Europe.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Nehmé holds a Ph.D. in Analytical Chemistry from the University of Montpellier (2008) and an HDR (Accreditation toSupervise Research) from the University of Orléans (2016). Her academic background demonstrates deep expertise and a commitment to high-level scientific scholarship. As a professor and group leader at ICOA, University of Orléans, she leads the “Analytical Strategies, Affinities and Bioactives” team, driving impactful research in analytical sciences, especially in bioanalysis, separative techniques, capillary electrophoresis, microfluidics, and mass spectrometry. Prof. Nehmé is deputy treasurer and a management committee member of the Capillary Electrophoresis Group of Afsep. She holds leadership roles at her university and is actively engaged in curriculum design, evaluation panels, and scientific committees. Prof. Reine Nehmé exemplifies the ideal profile for a “Best Researcher Award”: a high-impact scientist, strategic research leader, dedicated educator, and committed scientific community member. Her strong publication record, funded projects, mentoring, and institutional service collectively highlight her as a trailblazer in analytical chemistry. She fully deserves recognition through such a prestigious award.

🎓Education:

Prof. Reine Nehmé earned her Ph.D. in Analytical Chemistry from the University of Montpellier in 2008, following her Master’s degree (Master 2) in the same field from the same institution in 2005. Demonstrating her continued academic excellence and expertise, she received her Habilitation to Supervise Research (HDR) from the University of Orléans in 2016. This qualification represents the highest academic degree in France and reflects her capacity to independently lead doctoral research and large-scale scientific projects. Her academic training laid a robust foundation in analytical methodologies, chromatographic techniques, and advanced spectroscopy. These qualifications have enabled her to contribute extensively to the development of innovative analytical tools and methods in environmental, biological, and pharmaceutical research. Her educational background not only established her scientific depth but also positioned her to take on leadership and mentoring roles across both academic and research platforms.

🏢Work Experience:

Prof. Nehmé began her academic journey at the University of Orléans in 2008 as a Temporary Teaching and Research Assistant (ATER). She advanced to Associate Professor in 2009 and was promoted to Professor in 2019. Over the years, she has held multiple leadership roles, including Head of the Analytical Chemistry Department and Coordinator of the Professional License program in Chemistry at IUT Chimie d’Orléans. She has been a member of the laboratory’s scientific council since 2017, and also serves on the Commission of Disciplinary Experts. As an active educator, she teaches a range of courses in analytical sciences including electrochemistry, chromatography, mass spectrometry, and microfluidics. In research, she has successfully supervised 6 Ph.D. students (2 ongoing) and multiple post-doctoral and master’s interns. Her contributions extend to national committees such as Afsep’s CE group, where she has served as Deputy Treasurer since 2021.

🏅Awards: 

While specific awards are not explicitly listed, Prof. Reine Nehmé’s honors are evidenced by her numerous leadership and elected roles. She received the Habilitation to Supervise Research (HDR), a distinguished recognition in France for scholarly excellence. Her long-standing position on the scientific council of the ICOA laboratory and as a Commission Expert in disciplinary affairs at the University of Orléans speaks to her academic credibility. She was elected to the Management Committee of the CE group of Afsep in 2017 and appointed as Deputy Treasurer in 2021, underlining national recognition by her peers. She has consistently been entrusted with leadership in nationally funded research programs by ANR and regional agencies, confirming her scientific standing and project leadership ability. Her active role in supervising doctoral candidates and international collaborations further affirms her status as a respected figure in analytical sciences.

🔬Research Focus:

Prof. Nehmé’s research centers on analytical sciences, particularly in capillary electrophoresis, mass spectrometry, and microscale thermophoresis for studying molecular interactions. Her projects frequently explore bioanalysis, enzyme kinetics, and natural product evaluation. She leads or participates in numerous ANR-funded projects, including stapled peptide design, bioremediation via micromycetes, and enzyme behavior in crowded synthetic environments. A significant part of her work involves developing lab-on-a-chip (LoC) platforms for investigating target-ligand interactions at the single-cell level. She has also contributed to the miniaturization of enzymatic assays, passive sampling techniques for water analysis, and electrochemical sensors for environmental monitoring. Prof. Nehmé integrates separation sciences with biology and materials chemistry, bridging analytical method development with real-world biological and environmental challenges. Her interdisciplinary research fosters innovations in diagnostics, therapeutic monitoring, and ecological risk assessment, marking her as a pioneer in translating analytical chemistry into functional tools for bioactive discovery and environmental stewardship.

Publication Top Notes:

1. Using CE to Confirm the Activity of Fluorescent miRFP670-LIMK1 Protein Produced for MST Assays Directly in Cell Lysate

2. The Antimicrobial Activity of ETD151 Defensin is Dictated by the Presence of Glycosphingolipids in the Targeted Organisms

3. Glycolipid and Lipopeptide Biosurfactants: Structural Classes and Characterization—Rhamnolipids as a Model

4. Nutraceutical and Cosmetic Applications of Bioactive Compounds of Saffron (Crocus Sativus L.) Stigmas and Its By-products

5. Antioxidant and Anti-lipase Capacities from the Extracts Obtained from Two Invasive Plants: Ambrosia artemisiifolia and Solidago canadensis

6. Nutraceutical Capacities of Extracts from the Invasive Plants Ambrosia artemisiifolia and Solidago canadensis

7. Screening and Evaluation of Dermo-Cosmetic Activities of the Invasive Plant Species Polygonum cuspidatum

8. Biosurfactant-Producing Mucor Strains: Selection, Screening, and Chemical Characterization

9. Capillary Electrophoresis for Enzyme-Based Studies: Applications to Lipases and Kinases

10. Correction to: Reproducibility and Accuracy of Microscale Thermophoresis in the NanoTemper Monolith: A Multi Laboratory Benchmark Study

11. Design, Synthesis and SAR in 2,4,7-Trisubstituted Pyrido[3,2-d]Pyrimidine Series as Novel PI3K/mTOR Inhibitors

 

 

Prof. Dr. Zhou Xu | Analytical Chemistry | Best Researcher Award

Prof. Dr. Zhou Xu | Analytical Chemistry | Best Researcher Award

Prof. Dr. Zhou Xu , Analytical Chemistry , Assistant Dean at Changsha University of Science & Technology, China

Dr. Zhou Xu is a distinguished Professor and Assistant Dean at the School of Food Science and Bioengineering, Changsha University of Science and Technology. He earned his Ph.D. in Physical Chemistry from Jiangnan University Specializing in food safety, bio sensing, and nanomaterials, Dr. Xu has led numerous national research projects focused on food quality monitoring and rapid detection technologies. With a proven record of innovative research, he has published extensively in top-tier journals like ACS Sensors, Analytical Chemistry, and Chemical Engineering Journal. His pioneering work in biosensors, nanozymes, and magnetic relaxation sensors has earned him multiple research grants and provincial awards. Dr. Xu is recognized for integrating interdisciplinary approaches involving chemistry, biology, and materials science to address critical food safety challenges. His leadership in scientific research and education continues to influence advancements in food science, public health, and nanotechnology applications.

Professional Profile : 

Orcid

Scopus  

Summary of Suitability for Award:

Prof. Zhou Xu is highly suitable for nomination for the “Best Researcher Award.” He holds a Ph.D. in Physical Chemistry (2013) from Jiangnan University and currently serves as a Professor and Assistant Dean at the School of Food Science and Bioengineering, Changsha University of Science and Technology. His academic trajectory—from Lecturer to Professor—demonstrates steady and significant advancement based on merit. His research focus on biosensors, food safety detection, magnetic relaxation sensors, and nanozyme-based immunoassays has led to high-impact publications in prestigious journals like ACS Sensors, Analyst, Analytical Chemistry, and Journal of Agricultural and Food Chemistry. Notably, many of his papers are published as first or corresponding author, reflecting his leadership in research projects. He has secured multiple national and provincial research grants totaling millions of RMB, notably presiding over projects under China’s National Key Research and Development Program. His ability to independently lead large-scale, cutting-edge research initiatives and translate them into real-world food safety applications highlights his excellence in innovation, scientific contribution, and societal impact.

🎓Education:

Dr. Zhou Xu began his academic journey with a Bachelor of Science (B.S.) degree in Biotechnology from Central South University of Forestry and Technology (2001–2005). He then pursued a Master of Science (M.S.) in Processing and Storage of Agricultural Products from the same university, graduating in 2009. Building on this strong foundation, Dr. Xu earned his Ph.D. in Food Nutrition and Safety (Physical Chemistry) from Jiangnan University in March 2013. His doctoral research focused on advanced methodologies for food quality assurance and safety analysis. Throughout his education, Dr. Xu consistently demonstrated excellence, laying the groundwork for a successful academic and research career. His interdisciplinary background spanning biotechnology, food science, and physical chemistry uniquely positions him to address complex issues at the intersection of food safety, nanotechnology, and biosensor development. His education equipped him with diverse skills crucial for his innovative contributions to food science research and technology.

🏢Work Experience:

Dr. Zhou Xu’s academic career began in January 2014 as a Lecturer at Changsha University of Science and Technology. His dedication and research achievements led to his promotion to Associate Professor in August 2018, and then to full Professor in January 2022. Currently, he also serves as the Assistant Dean of the School of Food Science and Bioengineering. Over the years, he has successfully led multiple major research projects funded by national and provincial agencies, focusing on intelligent food safety monitoring, rapid detection technologies, and biosensors. Dr. Xu’s professional journey reflects his strong leadership, mentorship of young researchers, and innovative project management. His deep expertise in bio sensing and nanomaterials has significantly advanced the field of food safety detection. Under his leadership, the university’s research capacity in biosensor technology has expanded greatly. He actively collaborates across disciplines to drive technological innovations addressing real-world food safety challenges.

🏅Awards: 

Dr. Zhou Xu has garnered numerous accolades throughout his illustrious career. He has been the recipient of the prestigious Fund for Excellent Youth of Hunan Province, recognizing his outstanding contributions to biosensor development for food safety (2022–2025). His projects have also secured significant funding from major national agencies, including the National Natural Science Foundation of China and the Natural Science Foundation of Hunan Province. Dr. Xu’s innovative work in food quality detection technologies has been praised for its practical impact and scientific excellence. His consistent success in obtaining competitive research grants highlights his reputation as a leading researcher in his field. Moreover, his work has earned him recognition in academic and government circles as a key contributor to the advancement of intelligent food safety monitoring systems. These awards and honors underline Dr. Xu’s exceptional dedication to scientific innovation, research excellence, and societal impact in the field of food science.

🔬Research Focus:

Dr. Zhou Xu’s research centers on the development of innovative biosensors and nanotechnology-based solutions for food safety detection. His work integrates magnetic relaxation switch sensors, nanozyme-based immunoassays, and metal-organic frameworks (MOFs) to enhance sensitivity and speed in detecting contaminants like aflatoxin B1, cadmium ions, and bisphenol A. By designing intelligent detection platforms based on the Internet of Things (IoT) and advanced materials, Dr. Xu aims to revolutionize food quality supervision and rapid analysis. His studies focus heavily on improving catalytic mechanisms, developing dual-mode immunosensors (fluorescence and magnetic sensing), and constructing biomimetic materials for enhanced assay performance. Through interdisciplinary collaborations, Dr. Xu bridges chemistry, biology, and material science to address major food safety challenges. His research not only advances academic knowledge but also directly impacts industrial practices and public health regulations. Dr. Xu is committed to pioneering practical, scalable technologies for real-time food safety monitoring.

Publication Top Notes:

1.Title: Alanine Substitution to Determine the Effect of LR5 and YR6 Rice Peptide Structure on Antioxidant and Anti-Inflammatory Activity

2.Title: Formation and Characterization of Self-Assembled Rice Protein Hydrolysate Nanoparticles as Soy Isoflavone Delivery Systems

3.Title: Target-modulated UCNPs-AChE assembly equipped with microenvironment-responsive immunosensor
Authors: Zhou Xu et al.

4.Title: Peroxidase-mimetic activity of a nanozyme with uniformly dispersed Fe₃O₄ NPs supported by mesoporous graphitized carbon for determination of glucose

5.Title: Three-dimensional assembly and disassembly of Fe₃O₄-decorated porous carbon nanocomposite with enhanced transversal relaxation for magnetic resonance sensing of bisphenol A

6.Title: Assembly of USPIO/MOF nanoparticles with high proton relaxation rates for ultrasensitive magnetic resonance sensing

7.Title: Metal Organic Frame-Upconverting Nanoparticle Assemblies for the FRET Based Sensor Detection of Bisphenol A in High-Salt Foods

8.Title: Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method

9.Title: A nanozyme-linked immunosorbent assay based on metal-organic frameworks (MOFs) for sensitive detection of aflatoxin B₁

10.Title: Aptamer-enhanced fluorescence determination of bisphenol A after magnetic solid-phase extraction using Fe₃O₄@SiO₂@aptamer

11.Title: Recent Advances in Porphyrin-Based Materials for Metal Ions Detection

12.Title: Metal-Organic Frameworks of MIL-100(Fe, Cr) and MIL-101(Cr) for Aromatic Amines Adsorption from Aqueous Solutions

Dr. Siyao Chen | Materials Chemistry | Best Researcher Award

Dr. Siyao Chen | Materials Chemistry | Best Researcher Award

Dr. Siyao Chen , Materials Chemistry , Senior research assistant at City University of Hong Kong , Hong Kong

Dr. Siyao Chen is a Senior Research Assistant at the City University of Hong Kong, specializing in additive manufacturing and polymer-derived ceramics. With an impressive track record in advanced material research, Dr. Chen has published 11 SCI-indexed papers, including two ESI highly cited works, amassing over 610 citations. He serves as an invited editor for Frontiers in Electronics and actively contributes as a peer reviewer for prestigious journals such as Aerospace Science and Technology and the Journal of the European Ceramic Society. His research has made significant strides in 3D/4D ceramic printing, smart sensors, and semiconductor applications. In addition to academic achievements, Dr. Chen has worked on two major research projects, collaborated on four industry consultancies, and is listed as an inventor on three patents. A rising figure in materials science, Dr. Chen’s work integrates cutting-edge technology with real-world applications, contributing meaningfully to the development of intelligent ceramic systems.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Chen has published 11 SCI-indexed papers, including 2 ESI highly cited works, demonstrating high-impact contributions. One of these papers has gathered over 610 citations, a remarkable achievement for an early-career researcher. His work in additive manufacturing, polymer-derived ceramics, and intelligent electronics is not only innovative but also addresses complex, high-tech engineering challenges. These fields are critical in both academic and industrial applications. He serves as an invited editor for Frontiers in Electronics and is a reviewer for top-tier journals like Aerospace Science and Technology and Journal of the European Ceramic Society, indicating recognition by peers in his domain. With 3 patents, 4 consultancy projects, and 2 ongoing research projects, Dr. Chen demonstrates both academic excellence and practical application, bridging the gap between theory and industry. Dr. Siyao Chen’s research excellence, demonstrated by high-impact publications, innovation through patents, editorial and peer-review contributions, and cross-disciplinary industrial collaborations, clearly qualify him as an exceptional candidate for the “Best Researcher Award.” His academic rigor and applied innovation mark him as a rising leader in materials science and engineering research.

🎓Education:

Dr. Siyao Chen earned his doctoral degree from City University of Hong Kong, where he laid the foundation for his expertise in additive manufacturing and ceramic. His academic training emphasized interdisciplinary knowledge at the intersection of materials engineering, mechanical design, and electronic systems. During his time at CityU, Dr. Chen developed critical skills in vat photopolymerization, polymer-derived ceramic processing, and microstructural design of smart ceramics. His graduate research focused on fabricating high-performance ceramic sensors and coatings using 3D/4D printing methods. Throughout his education, he was actively involved in publishing high-impact articles and contributing to collaborative research teams. His studies not only strengthened his theoretical foundation but also fostered practical lab experience, laying the groundwork for his continued academic and industrial research. The combination of rigorous education and hands-on innovation shaped Dr. Chen’s academic identity and enabled him to push boundaries in the field of intelligent ceramic-based electronics.

🏢Work Experience:

Dr. Siyao Chen currently works as a Senior Research Assistant at the City University of Hong Kong, where he leads multiple research efforts in the field of additive manufacturing and ceramic electronics. Over the years, he has contributed to both academic and industrial projects, participating in four consultancy collaborations and leading two significant research endeavors. He has also acted as a project coordinator for the development of smart ceramic sensors, coating systems, and semiconductor devices. His work includes guiding junior researchers, managing experimental workflows, and contributing to grant applications. Dr. Chen serves as a peer reviewer for several SCI-indexed journals and as an invited editor for Frontiers in Electronics, showcasing his academic authority. His multi-disciplinary experience, spanning ceramics, polymer chemistry, and semiconductor devices, equips him to work across diverse research environments. His consistent performance and hands-on innovation have made him a valuable member of the advanced materials research community.

🏅Awards: 

Although early in his career, Dr. Siyao Chen has achieved notable recognition in his field. He is the recipient of multiple citations in high-impact journals, including two ESI Highly Cited Papers — a significant mark of influence and excellence in scholarly research. His publication in Materials Science and Engineering: R: Reports alone has gathered over 550 citations. Additionally, he was invited to join the editorial board of Frontiers in Electronics, a testament to his research integrity and subject matter expertise. His role as a reviewer for high-tier journals such as the Journal of the European Ceramic Society and Aerospace Science and Technology also highlights his academic credibility. Dr. Chen’s patent contributions and collaboration in industrial projects demonstrate the practical impact of his work. With a growing reputation in the materials science community, he is an emerging leader in ceramic additive manufacturing and intelligent electronics.

🔬Research Focus:

Dr. Chen’s primary research interests lie in additive manufacturing, polymer-derived ceramics, and semiconductor applications. He focuses on the design and processing of smart ceramic materials using 3D/4D printing technologies. His work bridges traditional ceramics with modern electronics, enabling innovations in reconfigurable structures, temperature sensors, and electromagnetic devices. A key area of interest is the development of lightweight, high-performance ceramics with tunable properties, particularly for sensing, actuation, and aerospace applications. His recent projects explore vat photopolymerization for SiCN and SiBCN-based ceramics, real-time material behavior modeling, and coating technologies for extreme environments. He is also involved in stimuli-responsive material systems, contributing to the advancement of intelligent electronics. His interdisciplinary research integrates materials engineering, electronic design, and digital fabrication, offering scalable and programmable material solutions for future smart systems. By combining structural innovation with electronic functionality, Dr. Chen aims to reshape how materials are conceived and manufactured.

Publication Top Notes:

Title: Additive manufacturing of structural materials
Citations: 572

Title: Lightweight and geometrically complex ceramics derived from 4D printed shape memory precursor with reconfigurability and programmability for sensing and actuation applications
Citations: 43

Title: Fabrication of polymer-derived SiBCN ceramic temperature sensor with excellent sensing performance
Citations: 17

Title: Fabrication of electrical semi-conductive SiCN ceramics by vat photopolymerization
Citations: 8

Title: 3D/4D additive–subtractive manufacturing of heterogeneous ceramics
Citations: 5

Title: Temperature and frequency dependent conductive behavior study on polymer-derived SiBCN ceramics
Citations: 3

Title: Novel anti-oxidation coating prepared by polymer-derived ceramic for harsh environments up to 1200°C
Citations: 2

Title: Real-time Bayesian model calibration method for C/SiC mechanical behavior considering model bias
Citations: 1

Title: Recent advances in stimuli-responsive materials for intelligent electronics

Title: Oxidation behavior of TiB2 from 600–1400°C considering microstructure evolution, oxidation kinetics, and mechanisms

Title: Evolution of dielectric properties of SiBCN ceramics and its derived wireless passive temperature sensor application

Assoc. Prof. Dr. Ningbo Li | Medicinal Chemistry | Best Researcher Award

Assoc. Prof. Dr. Ningbo Li | Medicinal Chemistry | Best Researcher Award

Assoc. Prof. Dr. Ningbo Li , Medicinal Chemistry , Shanxi Medical University, China

Dr. Ningbo Li is an accomplished Associate Professor at the School of Basic Medical Sciences, Shanxi Medical University, with a strong academic foundation and a passion for cancer research. With a doctorate in Organic Chemistry from Hunan University, Dr. Li has built a reputable career in green synthesis, targeted nano-drug delivery systems, and near-infrared fluorescent probes molecule for cancer diagnostics and therapy. He has led over 10 national and provincial research projects, published 46 SCI-indexed papers, and holds 5 authorized patents. Dr. Li also contributes to academia through textbooks and serves as a Young Editorial Board Member of Journal of Xiangtan University. His collaborations span leading institutions like Hunan University and Nankai University. With 863 citations and rising influence, Dr. Li is committed to pioneering innovative, low-toxicity cancer therapeutics and translating lab findings into clinical advances.

Professional Profile : 

Orcid   

Scopus 

Summary of Suitability for Award:

Dr. Ningbo Li, Associate Professor at Shanxi Medical University, has demonstrated exceptional research productivity and innovation in the fields of organic chemistry, nanomedicine, and cancer therapeutics. With over 50 SCI-indexed publications, 5 authorized patents, and leadership on more than 10 national and provincial-level research projects, Dr. Li has made significant contributions to targeted cancer treatment and green synthesis of anti-tumor agents. His pioneering work on magnetic nano-drug delivery systems and near-infrared fluorescent probes molecule showcases translational potential for clinical applications in oncology. Furthermore, his involvement in academic book publications, editorial duties, and inter-institutional collaborations reflects both leadership and scholarly impact. With a citation index of 863 and consistent innovation through funded research, Dr. Li exemplifies the qualities of a top-tier researcher. Dr. Ningbo Li is highly suitable for the “Best Researcher Award”, as he meets and exceeds the criteria in terms of research excellence, innovation, scientific impact, and societal relevance. His dedication to advancing cancer research through interdisciplinary chemistry and his strong track record in publications, patents, and funded projects make him a deserving and outstanding candidate for this prestigious recognition

🎓Education:

Dr. Ningbo Li’s academic journey began with a Bachelor’s degree in Chemistry from Shanxi Datong University (2005–2009). He pursued his postgraduate studies at Hunan University, earning a Master’s degree (2009–2012) and subsequently a Ph.D. in Organic Chemistry (2012–2015). His academic training emphasized organometallic chemistry, chiral complex synthesis, and catalysis, laying the groundwork for his future research in drug development and nanomedicine. During his doctoral studies, Dr. Li specialized in chiral Lewis acids, exploring their role in asymmetric synthesis—an area critical to pharmaceutical innovation. His graduate work was pivotal in shaping his later focus on bio-compatible metal complexes and tumor-targeted drug delivery platforms. The integration of organic synthesis with biomedical applications became a hallmark of his educational path, culminating in a multidisciplinary approach that bridges chemistry, nanotechnology, and medical science.

🏢Work Experience:

Dr. Ningbo Li began his academic career as a Lecturer (2015–2018) at the School of Basic Medical Sciences, Shanxi Medical University, where he conducted interdisciplinary research and mentored students. In December 2018, he was promoted to Associate Professor, reflecting his growing contributions to research and teaching. With over a decade in academia, he has supervised numerous graduate projects and continues to develop innovative strategies for targeted cancer therapy using nanomaterials and fluorescent probes. Dr. Li has consistently received competitive research funding from the National Natural Science Foundation of China and the Shanxi Provincial Science Foundations. He also actively contributes to national teaching excellence through authorship in leading organic chemistry textbooks. His dedication to both scientific advancement and student development underscores a career that blends high-impact research with academic leadership in medical and chemical sciences.

🏅Awards: 

While specific named awards are not detailed, Dr. Ningbo Li’s academic honors are evident through his prestigious research grants, editorial board appointment, and book contributions. He is the Principal Investigator for multiple national-level research projects, including NSFC Young Scholar Awards, which are highly competitive and indicative of early-career excellence. His appointment as a Young Editorial Board Member of the Journal of Xiangtan University (Natural Science Edition) further reflects his scientific influence and peer recognition. Dr. Li’s patents on chiral zirconium and titanium complexes also highlight his innovative contributions to chemical synthesis. Moreover, his extensive publishing record and the high citation index (863) attest to the impact of his research in organic and medicinal chemistry. Through his involvement in writing authoritative textbooks used in higher education, Dr. Li has contributed significantly to the academic development of students and educators in China.

🔬Research Focus:

Dr. Ningbo Li’s research is centered on the interdisciplinary interface of organic chemistry, nanotechnology, and cancer therapeutics, with a strong emphasis on green and sustainable chemistry. His primary focus lies in the design and synthesis of functionalized magnetic nanocomposites and near-infrared fluorescent probe molecules for the precise diagnosis and targeted treatment of malignant tumors. By engineering magnetic-targeted nano-drug delivery systems, his team aims to achieve site-specific drug accumulation, minimizing systemic toxicity and enhancing therapeutic efficacy. Another key area involves the green synthesis of novel bioactive compounds, particularly chiral organometallic complexes, which exhibit promising anti-tumor properties. His group also explores chiral Lewis acids as catalysts in asymmetric reactions, crucial for the development of structurally complex pharmaceuticals. Dr. Li’s research is highly translational, striving to bridge the gap between bench and bedside by accelerating the clinical application of biocompatible, efficient, and low-toxicity cancer therapeutics rooted in advanced chemical innovation.

Publication Top Notes:

1. g-C₃N₄-Based Heterogeneous Photocatalyzed Synthesis and Evaluation of Antitumor Activities of Fluoroalkylated 4H-Pyrido[1,2-a]pyrimidin-4-ones

2. Magnetic Nanocarriers for pH/GSH/NIR Triple-Responsive Drug Release and Synergistic Therapy in Tumor Cells

3. GSH-Responsive Magnetic Mesoporous Silica Nanoparticles for Efficient Controlled Drug Delivery in Tumor Cells

 

Prof. Zhilong Cao | Green Chemistry | Best Researcher Award

Prof. Zhilong Cao | Green Chemistry | Best Researcher Award

Prof. Zhilong Cao , Green Chemistry , Deputy Director at Beijing University of Technology, China

Dr. Zhilong Cao is a Professor and Ph.D. Supervisor at Beijing University of Technology, specializing in advanced materials and technologies for sustainable asphalt pavements. With a Ph.D. in Materials Science and Engineering from Wuhan University of Technology, he focuses on the development of low-carbon, green, and smart functional materials aimed at extending pavement life and promoting high-quality recycling. Since joining Beijing University of Technology in 2022, he has led several national and industrial research projects, particularly in asphalt modification and regeneration. His contributions have earned him prestigious recognitions, including the Outstanding Talent Award. Dr. Cao is driven by innovation and sustainability, exploring smart infrastructure solutions that align with global environmental goals. His research has practical implications in urban infrastructure development, especially in road and airport pavement systems. Dedicated to fostering future talent, he also mentors Master’s and Ph.D. students while actively collaborating with industry stakeholders to bridge academic research with real-world applications.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Zhilong Cao is a highly suitable candidate for the “Best Researcher Award”, given his impactful contributions in the field of sustainable pavement engineering. With a strong academic background in Materials Science and Engineering, and holding a Ph.D. from Wuhan University of Technology, he has shown exemplary leadership in the development of low-carbon, smart, and green construction materials. As a Professor and Ph.D. Supervisor at Beijing University of Technology, he has spearheaded nationally funded research projects, including grants from the NSFC and China Postdoctoral Science Foundation, focusing on advanced asphalt regeneration and modification technologies. His research not only addresses academic challenges but also meets urgent industrial and environmental needs. His honors, such as the Outstanding Talent Award and Best Ph.D. Thesis Award, further reflect his merit and potential. He actively mentors future researchers and collaborates with industry, making his work both impactful and translational.

🎓Education:

Dr. Zhilong Cao completed both his Ph.D. (2018–2021) and M.S. (2015–2018) in Materials Science and Engineering from Wuhan University of Technology, one of China’s premier institutions for engineering and material innovation. During his graduate years, he conducted cutting-edge research on asphalt materials, focusing on functional modifications and sustainability. His doctoral work received wide acclaim, earning him the Outstanding Ph.D. Graduate and Thesis Award. His academic training emphasized a strong integration of theoretical knowledge and experimental practices in materials science, particularly with applications in transportation engineering. He developed specialized expertise in pavement materials, polymer modification, and asphalt regeneration technologies. His strong academic foundation and passion for materials innovation led him to a faculty position at Beijing University of Technology, where he now mentors graduate students and leads significant research initiatives. Dr. Cao’s educational path reflects both academic excellence and a clear vision toward sustainable infrastructure development.

🏢Work Experience:

Dr. Zhilong Cao began his academic career as a graduate student at Wuhan University of Technology, where he earned his M.S. and Ph.D. in Materials Science and Engineering. Following the completion of his doctorate in 2021, he joined Beijing University of Technology in January 2022 as a Professor and Ph.D. Supervisor in the Department of Road and Rail Engineering. In this role, he leads research projects on green pavement materials and mentors Master’s and Doctoral students. His academic responsibilities include developing new course materials, overseeing lab-based research, and fostering collaborations with industry to apply advanced materials in real-world contexts. He has secured multiple prestigious research grants, including from the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. Dr. Cao’s professional experience demonstrates a strong trajectory from promising researcher to established academic leader, with a focus on sustainable infrastructure technologies and innovative material development.

🏅Awards: 

Dr. Zhilong Cao has received several prestigious awards in recognition of his outstanding contributions to research and academic excellence. In 2023, he was honored with the Outstanding Talent Award by Beijing University of Technology for his innovative work in the field of sustainable pavement engineering. During his Ph.D. at Wuhan University of Technology, he earned the Outstanding Ph.D. Graduate Award and the Thesis Award in 2021, reflecting the significance and impact of his doctoral research. These accolades underscore Dr. Cao’s commitment to excellence in both academic research and practical innovation. His ability to bridge theoretical insights with applied engineering solutions has made him a recognized name in his field. These honors not only mark his personal achievements but also highlight his leadership potential in driving forward environmentally friendly and high-performance pavement technologies. Dr. Cao continues to strive for innovation and sustainability in the infrastructure materials sector.

🔬Research Focus:

Dr. Zhilong Cao’s research is centered on sustainable and intelligent solutions for modern pavement infrastructure. His work explores low-carbon construction and maintenance materials, particularly for asphalt pavements, aiming to reduce environmental impact while improving performance. A key area of interest is the regeneration and recycling of SBS-modified asphalt, especially for aging road surfaces and airport runways. He also investigates green and smart functional materials that respond to environmental stimuli, enhancing pavement durability and functionality. Dr. Cao’s research extends to polyurethane-modified asphalts and innovative crosslinking networks for performance recovery in aged pavements. His interdisciplinary approach bridges materials science with transportation engineering, aligning his work with global sustainability goals. Through national projects and industry collaborations, he contributes to next-generation infrastructure technologies that emphasize longevity, efficiency, and eco-friendliness. His research has both academic and practical implications, improving the resilience and sustainability of urban transportation systems.

Publication Top Notes:

1. Investigation on Active Rejuvenation Mechanism of Aged SBS Modified Bitumen: Insights from Experiments and Molecular Dynamics

2. Laboratory Evaluation of Ultraviolet Aging Performance of Regenerated SBS Modified Bitumen Based on Active Flexible Rejuvenators with Different Molecular Structures

3. Creep Recovery Behavior of Fresh, Aged, and Rejuvenated SBS-Modified Asphalt under High Shear Stresses

4. Effect of Organic Coal Gangue Powder with Terminal Active Isocyanate Groups on the Performance of Asphalt and Its Mixture

5. VOCs Inhibited Asphalt Mixtures for Green Pavement: Emission Reduction Behavior, Environmental Health Impact and Road Performance

6. Environmentally Friendly End-Capped Polyurethane for Enhancing Asphalt-Granite Adhesion

 

 

Assoc. Prof. Dr. Shixiong Li | Inorganic Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Shixiong Li | Inorganic Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Shixiong Li,  Inorganic Chemistry,  Teacher at Wuzhou University, China

Dr. Shixiong Li is a dedicated environmental scientist and academician serving as a lecturer and associate professor at Wuzhou University. He is also a master’s supervisor at Guangxi University and holds multiple expert roles, including membership in the Guangxi Science and Technology Expert Database and the Wuzhou Environmental Emergency Expert Database. Dr. Li obtained his Ph.D. in Environmental Science and Engineering from South China University of Technology in 2018. His research interests lie in the synthesis of functional environmental materials and water resource reuse technologies. With a strong presence in scientific publishing, he has authored numerous papers in prestigious journals like Angewandte Chemie International Edition, Journal of Catalysis, and Inorganic Chemistry Frontiers. He also serves as a peer reviewer for high-impact journals. In addition to academia, he contributes to legal and civic activities as a people’s assessor at the Changzhou District Court.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Shixiong Li, currently serving as a teacher and researcher at Wuzhou University, has built a distinguished research career in the field of environmental chemistry. With a Ph.D. in Environmental Science and Engineering from South China University of Technology (2018), he has demonstrated strong academic training in environmental disciplines. Dr. Shixiong Li is a highly deserving candidate for the Research for “Environmental Chemistry Award”. His substantial contributions to environmental material synthesis and pollutant remediation directly align with the award’s mission to recognize impactful environmental chemistry research. His innovative approaches, quality publications, and practical focus on water purification and waste treatment place him among the leading researchers in this domain.

🎓Education:

Dr. Shixiong Li earned his Doctorate (Ph.D.) in Environmental Science and Engineering from South China University of Technology . His doctoral research focused on the design and synthesis of environmentally functional materials and the mechanisms underpinning water purification technologies. Prior to his Ph.D., Dr. Li completed his undergraduate and possibly master’s degrees (specific details not mentioned) likely in chemistry, materials science, or environmental engineering, forming a solid foundation for his current research. His academic journey reflects a strong commitment to interdisciplinary environmental studies, particularly involving the synthesis of metal-organic frameworks (MOFs), photocatalytic systems, and advanced adsorption materials. His education equipped him with a deep understanding of green chemistry, catalysis, nanomaterials, and environmental remediation technologies, which he now applies in both academic and real-world contexts. Dr. Li continues to expand his educational expertise through supervising graduate students and participating in academic collaborations at regional and international levels.

🏢Work Experience:

Dr. Shixiong Li currently serves as a full-time lecturer and associate professor at the School of Mechanical and Resource Engineering, Wuzhou University. He is also a recognized master’s supervisor at Guangxi University. Over the years, Dr. Li has contributed significantly to teaching, curriculum development, and guiding graduate research. His professional roles extend beyond teaching — he is an expert member of multiple scientific and technical committees, including the Guangxi Science and Technology Expert Database, Wuzhou Environmental Emergency Expert Database, and the Materials Expert Committee at Viser Publishing (Singapore). He also serves as a standardization expert and legal assessor in Wuzhou. His experience includes managing and executing national and regional research projects, particularly in the field of photocatalysis and wastewater treatment. Furthermore, he acts as a peer reviewer for elite scientific journals, such as JACS and Journal of Catalysis, demonstrating his prominence in the academic community.

🏅Awards: 

Dr. Shixiong Li has been recognized for his academic and professional excellence with various prestigious appointments and honors. He is a selected expert in the Guangxi Science and Technology Expert Database, indicating regional recognition of his expertise. In Wuzhou, he holds positions in the Environmental Emergency Expert Database and serves as a Standardization Expert, which reflect his contributions to public environmental safety and policy. His peer-reviewing roles in high-ranking SCI journals like Angewandte Chemie, JACS, and Inorganic Chemistry highlight international acknowledgment of his scientific merit. Furthermore, his appointment as a People’s Assessor at the Changzhou District Court demonstrates his trusted civic role in community and judicial matters. His invitation to the Materials Expert Committee of Viser Publishing (Singapore) further indicates global engagement in scientific publishing. Collectively, these honors underline his multifaceted contributions in research, public service, and scientific leadership.

🔬Research Focus:

Dr. Shixiong Li’s research centers on the design and synthesis of functional environmental materials, with a particular emphasis on metal-organic frameworks (MOFs) and their applications in photocatalysis, adsorption, and wastewater treatment. His work explores green, in-situ synthetic approaches for constructing Cu(I)/Cu(II) hybrid materials, aiming to degrade organic pollutants and remove heavy metals from aqueous systems efficiently. He investigates the mechanistic roles of inorganic ions and coordinated ligands in modulating the photocatalytic and adsorption performances of MOFs. Additionally, his current projects explore hydroxyl-modified two-dimensional Cu-based photocatalysts, revealing insights into molecular-level interactions that boost reactivity and selectivity. Dr. Li’s findings have advanced sustainable material applications for water reuse and environmental remediation. Through interdisciplinary approaches combining inorganic chemistry, materials science, and environmental engineering, his research contributes to scalable, eco-friendly technologies for real-world problems. His publications in top-tier journals and ongoing collaborations confirm the practical relevance and innovation of his scientific contributions.

Publication Top Notes:

1. Mechanism of Coordinated Anions Regulating the Photocatalytic Performance of Cu(I) Metal–Organic Frameworks

2. An Iron-Based Metal–Organic Framework with Strong Water Stability and Effective Adsorption of Methylene Blue from Wastewater

3. Zinc Complexes with Mixed Ligands and the Effect on Excitation and Emission Spectra by Changing the Binding Sites

4. Praseodymium–Selenium Connecting Selenotungstate Containing Mixed Building Blocks for Catalytic Synthesis of Aza-Heterocycles

5. A Two-Dimensional Cobalt-Based Metal–Organic Framework Efficiently Adsorbs Cr(VI) from Wastewater

6. Effect and Mechanism of Inorganic Ions on the Photocatalytic Performance of Amino Modified UIO-67 Type Metal–Organic Framework

7. Two‐Dimensional Copper‐Based Metal–Organic Framework for Efficient Removal of Methylene Blue from Wastewater

8. Performance and Mechanism of the Modified Group Regulated the MIL-101(Fe) Type Fenton-like Catalysts

9. A Bifunctional Three-Dimensional Zn(II) Metal–Organic Framework with Strong Luminescence and Adsorption Cr(VI) Properties

10. Effect and Mechanism of Inorganic Anions on the Adsorption of Cd²⁺ on Two-Dimensional Copper-Based Metal–Organic Framework