Iyakutti Kombiah | Materials Chemistry | Lifetime Achievement Award

Dr. Iyakutti Kombiah | Materials Chemistry | Lifetime Achievement Award

Dr. Iyakutti Kombiah | SRM Institute of Science and Technology | India

Dr. Iyakutti Kombiah, an eminent physicist and computational materials scientist, has made outstanding contributions to condensed matter physics, nanomaterials, and energy storage research, with a career spanning over four decades. He obtained his M.Sc. and Ph.D. in Physics from the University of Madras, followed by postdoctoral research in quantum chemistry at Uppsala University, Sweden, supported by SIDA. He served as Lecturer at the University of Madras, Reader and Professor at Madurai Kamaraj University, and later as Professor Emeritus and CSIR Emeritus Scientist at SRM University. His pioneering expertise lies in computational design and experimental validation of nanomaterials for hydrogen storage, photovoltaics, and CO₂ conversion, demonstrated through his leadership of multiple AOARD and ONRG-funded international projects. A prolific scholar with over 229 publications, 1,804 citations, and an h-index of 24, his research continues to influence the fields of energy materials and quantum chemistry. Dr. Iyakutti has held visiting positions at leading institutions in Japan, Canada, and the USA, fostering global collaborations. His recent works (2020–2025) focus on graphene-based hydrogen storage, Heusler alloys, and 2D nanomaterials, combining density functional theory with experimental studies. Honored with CSIR and UGC Emeritus Fellowships, he remains a leading figure advancing computational and sustainable energy materials research in India and beyond.

Profile: ORCID  | Scopus 

Featured Publications

  • Iyakutti, K., Reji, R. P., Rajeswarapalanichamy, R., & Kawazoe, Y. (2025). DFT based computational investigation of 2D monolayer gold (Au)–the goldene. Computational Condensed Matter, 25, e01132.

  • Iyakutti, K., Reji, R. P., Jayan, S., AjayJawahar, K., Karthigeyan, A., Rajeswarapalanichamy, R., & Kawazoe, Y. (2025). Heterostructuring, electronic and hydrogen storage properties of boron, carbon, nitrogen based 2D nanomaterials – A DFT study. International Journal of Computational Materials Science and Engineering, 14(3), 2550028.

  • Iyakutti, K., Reji, R. P., Rajeswarapalanichamy, R., & Kawazoe, Y. (2025, February 26). DFT based computational investigation of 2D monolayer gold (Au)–the goldene. Preprint.

  • Kaliyaperumal, A., Periyasamy, G., Iyakutti, K., & Annamalai, K. (2024). Effect of a mesoporous NiCo₂O₄ urchin-like structure catalyzed with a surface oxidized LiBH₄ system for reversible hydrogen storage applications. RSC Advances, 14, 12345–12354.

  • Iyakutti, K., Reji, R. P., AjayJawahar, K., Lakshmi, I., Rajeswarapalanichamy, R., Surya, V. J., Karthigeyan, A., & Kawazoe, Y. (2024). Interaction of H, H₂, and MgH₂ with graphene and possible application to hydrogen storage—A density functional computational investigation. International Journal of Quantum Chemistry, 124(15), e27467.

 

 

 

Dr. PRANABA Nayak | Analytical Chemistry | Best Researcher Award

Dr. PRANABA Nayak | Analytical Chemistry | Best Researcher Award

Dr. PRANABA Nayak , Analytical Chemistry ,  Scientific Officer at Tata Institute of Fundamental Research, India

Dr. Pranaba K. Nayak is a Scientific Officer at the Tata Institute of Fundamental Research (TIFR), Mumbai, with over two decades of experience in nuclear and analytical chemistry, and astroparticle physics. He earned his Ph.D. from Utkal University in 2003, later serving at Kalasalingam University before joining TIFR in 2005 as a Senior Postdoctoral Fellow in the GRAPES-3 cosmic-ray experiment. His interdisciplinary research has led to over 75 peer-reviewed publications and significant discoveries, including gamma-ray flux shifts during solar eclipses and thunderstorm-related phenomena. He collaborates with 30+ national and international institutes and serves on editorial and scientific committees globally. An active mentor and scholar, Dr. Nayak has contributed to more than 50 book chapters and reviewed over 75 manuscripts. His work has been recognized for its impact on solar physics, atmospheric science, and nuclear astrophysics.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Pranaba K. Nayak is a highly accomplished researcher whose career spans over two decades of impactful work in astro particle physics, nuclear chemistry, and analytical techniques. His contributions to the internationally recognized GRAPES-3 cosmic-ray experiment at TIFR have led to several groundbreaking discoveries, such as the variation in cosmic gamma-ray flux during solar eclipses and record-setting atmospheric potential measurements. With 75+ peer-reviewed publications, 50+ book chapters, and extensive international collaborations with over 30 institutes worldwide, he has consistently demonstrated research excellence, innovation, and leadership. His h-index of 20 and i10-index of 28 reflect the scientific community’s recognition of his work. In addition, Dr. Nayak has actively mentored young scientists and contributed as a reviewer and editorial board member, strengthening scientific discourse in his field. Dr. Pranaba K. Nayak is eminently suitable for the “Best Researcher Award”. His sustained research output, pioneering discoveries, interdisciplinary reach, and international collaborations make him a deserving candidate whose contributions have significantly advanced both theoretical and applied aspects of high-energy physics and analytical sciences.

🎓Education:

Dr. Nayak holds a Ph.D. in Experimental Nuclear and Analytical Chemistry from Utkal University (2003). His doctoral research, guided by mentors from Anna University, Chennai, spanned nuclear, analytical, and solid-state chemistry. This strong academic foundation laid the groundwork for his transition into astroparticle physics and cosmic-ray studies. Prior to his Ph.D., he pursued postgraduate and undergraduate studies in chemistry, with a focus on nuclear instrumentation and environmental radiochemistry. His educational path blended theoretical insight with hands-on experimentation, equipping him with the tools necessary for high-impact interdisciplinary research. His continuing engagement with educational institutions, including mentoring young researchers and Ph.D. scholars, exemplifies his commitment to fostering scientific excellence. He frequently delivers lectures and training modules in cosmic ray physics and analytical techniques, contributing to capacity-building in India and abroad.

🏢Work Experience:

Dr. Pranaba K. Nayak began his professional journey as a faculty member at Kalasalingam University, focusing on nuclear and analytical chemistry. In 2005, he joined TIFR’s High Energy Physics Department as a Senior Postdoctoral Fellow and has since become a Scientific Officer, contributing extensively to the GRAPES-3 cosmic-ray experiment at Ooty. His work spans gamma-ray burst detection, cosmic-ray modulation, environmental radioactivity, and atmospheric physics. He has developed novel spectral analysis techniques and coordinated large-scale collaborations with over 30 institutions globally, including IITs, SINP, and partners in Japan, Europe, and Saudi Arabia. His interdisciplinary projects have addressed thunderstorm-related high-energy events and geomagnetic field studies. He also mentors students, reviews scientific manuscripts, and contributes to international committees. His role in advancing experimental techniques and fostering global scientific partnerships has made him a respected figure in high-energy astrophysics and nuclear research communities.

🏅Awards: 

Dr. Nayak has received widespread recognition for his pioneering work in cosmic-ray physics and analytical chemistry. His discovery of gamma-ray flux shifts during the 2009 total solar eclipse gained international acclaim and highlighted his ability to integrate astrophysics with atmospheric science. He has been an invited reviewer for over 75 manuscripts, primarily for the journal Talanta, showcasing his expertise in analytical chemistry. His scientific excellence earned him a position on the Scientific Committee of the Annual International Congress on Nanoscience & Nanotechnology (2025, Oxford, UK). He is also a life member of prestigious scientific organizations, including the Indian Society for Atomic & Molecular Physics, Indian Physics Association, Indian Association for Nuclear Chemist & Allied Sciences, and Indian Society for Technical Education. These accolades affirm his leadership and innovation in research, education, and scientific outreach.

🔬Research Focus:

Dr. Pranaba K. Nayak’s research centers on the intersection of experimental nuclear chemistry, analytical techniques, and astroparticle physics. At the heart of his work lies the GRAPES-3 cosmic-ray experiment, where he investigates high-energy phenomena such as cosmic-ray modulation, gamma-ray flux variations, and muon bursts during thunderstorms and solar eclipses. His contributions have led to significant insights into solar-terrestrial interactions, atmospheric electricity, and transient geomagnetic events. He has also developed novel analytical methods for monitoring environmental radioactivity, integrating advanced spectrometry with field-based cosmic-ray detection systems. His research uniquely bridges space physics with earth-based observations, advancing our understanding of cosmic particle behavior under extreme atmospheric conditions. Through collaborations with over 30 national and international institutions, Dr. Nayak continues to lead interdisciplinary studies that link nuclear processes with astrophysical and atmospheric phenomena, thereby contributing to global efforts in understanding high-energy cosmic environments and their terrestrial effects.

Publication Top Notes:

Title: Synthesis and characterization of cadmium ferrite
Citations: 76

Title: Forbush decreases and turbulence levels at coronal mass ejection fronts
Citations: 65

Title: Measurement of the Electrical Properties of a Thundercloud Through Muon Imaging by the GRAPES-3 Experiment
Citations: 51

Title: Energy dispersive X-ray fluorescence analysis of gallstones
Citations: 46

Title: Measurement of some EAS properties using new scintillator detectors developed for the GRAPES-3 experiment
Citations: 42

Title: PIXE & XRD analysis of nanocrystals of Fe, Ni and Fe₂O₃
Citations: 35

Title: External particle-induced X-ray emission
Citations: 35

Title: Elemental analysis of anti-diabetic medicinal plants using energy dispersive X-ray fluorescence technique
Citations: 34

Title: 57Fe Mössbauer and EDXRF studies on three representative banded iron formations (BIFs) of Orissa, India
Citations: 32

Title: A study of the γ-ray flux during the total solar eclipse of 1 August 2008 at Novosibirsk, Russia
Citations: 28

Title: Fast Fourier transform to measure pressure coefficient of muons in the GRAPES-3 experiment
Citations: 27

Mr. Lei Mou | Analytical Chemistry Award | Young Scientist Award

Mr. Lei Mou | Analytical Chemistry Award | Young Scientist Award

Mr. Lei Mou ,Guangzhou Medical University, China

Lei Mou is a Research Associate at the Terasaki Institute for Biomedical Innovation, Los Angeles, specializing in biosensors, wearable devices, and organ-on-a-chip technology. With a robust background in biomedical engineering and materials science, Lei completed a Ph.D. from the National Center for Nanoscience and Technology (NCNST) under Prof. Xingyu Jiang. His work integrates advanced microfluidic and biosensor platforms aimed at enhancing clinical diagnostics and wearable health monitoring. With extensive research and technical skills, he has contributed to innovative approaches in immunoassay technology, HPV detection, and biosignal computing. Lei’s contributions to nanobiotechnology are also reflected in his numerous patents, high-impact publications, and presentations at international conferences.

Professional Profile:

Google Scholar

Summary of Suitability for Award:

Lei Mou demonstrates strong potential for the “Young Scientist Award,” with impressive accomplishments in biomedical engineering, especially in clinical biosensors, wearable devices, and organs-on-a-chip technology. His academic foundation is rooted in a Ph.D. from the Chinese Academy of Sciences, where he specialized in biomaterials and point-of-care diagnostic platforms, laying a solid groundwork for his current innovative research.

🎓Education:

Lei Mou earned his Ph.D. in Biomedical Engineering from the National Center for Nanoscience and Technology, Chinese Academy of Sciences (2016-2020), where he researched biosensors and microfluidic devices under Prof. Xingyu Jiang’s mentorship. His undergraduate studies in Materials Science and Engineering were completed at the University of Science and Technology Beijing (USTB) in 2016, as part of the Excellent Engineer Training Program. Here, he laid the foundation for his expertise in nanomaterials and engineering design, achieving numerous accolades for academic excellence. Lei’s educational path has emphasized interdisciplinary research, equipping him with a skill set to bridge materials science, biomedical engineering, and clinical applications effectively.

🏢Work Experience:

Lei Mou is currently a Research Associate at the Terasaki Institute for Biomedical Innovation (TIBI), where he focuses on the development of organ-on-a-chip systems and advanced biosensors. Prior to this, he was a Researcher at the Third Affiliated Hospital of Guangzhou Medical University, where he specialized in clinical biosensors and wearable device technology. Lei’s professional experience has enabled him to develop high-sensitivity immunoassay platforms and contribute to significant projects in health-related microfluidic applications. His work bridges clinical settings and advanced engineering, bringing laboratory innovations closer to real-world applications.

🏅Awards:

Lei Mou has earned numerous awards for his academic and research excellence, including the Director’s Scholarship at NCNST and the First Class Scholarship for Master’s Students, recognizing him as a top 3% student. During his undergraduate studies, he received the prestigious 86 Alumni Scholarship, the National Scholarship from China’s Ministry of Education, and the Beijing Outstanding Graduates Award. His achievements reflect his commitment to excellence and innovation in his field, with honors that highlight his performance and contributions to biomedical engineering and materials science.

🔬Research Focus:

Lei Mou’s research focuses on microfluidic immunoassays, wearable biosensors, and organs-on-a-chip technologies. He specializes in integrating nanotechnology with biomedical engineering to develop advanced diagnostic tools for healthcare. His work includes creating chemiluminescence immunoassay platforms that amplify biomarker signals using gold nanoparticles, as well as developing portable devices for detecting high-risk HPV strains. His research has significant implications for personalized medicine and remote diagnostics, aiming to improve accessibility and precision in clinical diagnostics and healthcare monitoring.

Publication Top Notes:

  • Surface chemistry of gold nanoparticles for health-related applications
    • Citations: 277
  • Microfluidics‐based biomaterials and biodevices
    • Citations: 183
  • Materials for microfluidic immunoassays: a review
    • Citations: 154
  • Printable metal-polymer conductors for highly stretchable bio-devices
    • Citations: 130
  • Highly stretchable and biocompatible liquid metal‐elastomer conductors for self‐healing electronics
    • Citations: 109

 

 

 

 

Sabita Nayak | Organic Synthesis | Best Researcher Award

Dr. Sabita Nayak | Organic Synthesis | Best Researcher Award

Doctorate at  Ravenshaw University, India

Dr. Sabita Nayak is the Head of the Department of Chemistry at Ravenshaw University, Cuttack, Odisha. With a rich academic background and extensive research experience, Dr. Nayak has made significant contributions to the field of chemistry, focusing on the synthesis of novel hybridized molecules and their biological activities.

Author Metrics

Scopus profile

Dr. Nayak has an impressive portfolio of over 49 publications in peer-reviewed journals, including high-impact journals such as ChemistrySelect, Bioorganic Chemistry, and Carbohydrate Research. Her work has been cited extensively, reflecting her significant impact in the field of chemical research

Education

Dr. Nayak earned her Ph.D. in Chemistry from Pune University in 2008, where she worked on the total synthesis of complex molecules. Her educational journey includes an M.Phil. in Chemistry from Utkal University, an M.Sc. in Chemistry from Ravenshaw University, and a B.Sc. in Chemistry from Utkal University.

Research Focus

Her research primarily explores the synthesis of small novel hybridized molecules, heterocyclic and carbocyclic molecules through Diels-Alder and Michael Addition Reactions, and carbohydrate sugar products. She is particularly interested in the biological activities of these synthesized molecules, contributing to advancements in medicinal chemistry.

Professional Journey

Dr. Nayak began her career as a Research Associate at Chembiotek Pharma Ltd. and later as a Postdoctoral Researcher at the University of Southwestern Medical Research Center, Dallas, Texas. Since 2010, she has been serving as an Assistant Professor in Chemistry at Ravenshaw University, where she continues to advance her research and teaching.

Honors & Awards

Dr. Nayak was awarded the “Dr. Mahamaya Pattnaik Smruti Samman” by Bigyan Prachar Samiti in 2022, recognizing her outstanding contributions to the field of chemistry.

Publications Noted & Contributions

Dr. Nayak’s notable publications include her research on [4+2]-cycloaddition reactions, thia-Michael addition-oxidation reactions, and the synthesis of 2H-chromene-based hydrazone derivatives. Her contributions have significantly advanced the understanding of synthetic methodologies and their applications in drug discovery.

Improving the therapeutic window of anticancer agents by β-cyclodextrin encapsulation: Experimental and theoretical insights

Authors: Priyadarsini Mishra, Kumar Sahoo, Mohapatra, Nayak, Nath Kundu

Journal: Journal of Molecular Liquids

Year: 2024

Volume: 404

Page: 124967

Abstract: The study investigates the use of β-cyclodextrin (β-CD) encapsulation to enhance the therapeutic window of anticancer agents. Through a combination of experimental data and theoretical modeling, the research provides insights into how β-CD can improve the efficacy and reduce the side effects of anticancer drugs by modulating their release and bioavailability. The findings highlight the potential of β-CD as a valuable tool in drug delivery systems for cancer therapy.

New 2H-Chromene-Based Hydrazone Derivatives as Promising Anti-Breast Cancer Agents: Efficient Synthesis, Spectral Characterization, Molecular Docking, and ADMET Studies

Authors: Shankar Panda, Samanta, Sudha Ambadipudi, Nayak, Mohan Behera, Samanta

Journal: ChemistrySelect

Year: 2024

Volume: 9(15)

Article Number: e202400115

Abstract: This paper presents the synthesis of novel 2H-chromene-based hydrazone derivatives and their evaluation as potential anti-breast cancer agents. The study includes detailed spectral characterization, molecular docking studies, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. The results suggest that these derivatives exhibit promising anti-cancer activity and could be developed into effective therapeutic agents for breast cancer treatment.

Transition-Metal Catalyzed [4+2]-Cycloaddition Reactions: A Sexennial Update

Authors: Panda, Mohapatra, Ansar Ahemad, Nayak, Mohapatra

Journal: ChemistrySelect

Year: 2024

Volume: 9(12)

Article Number: e202303643

Abstract: This review provides a comprehensive update on transition-metal catalyzed [4+2]-cycloaddition reactions over the past six years. It covers recent advances in reaction conditions, catalyst development, and applications in organic synthesis. The review highlights key developments and trends in the field, offering insights into how these reactions have evolved and their impact on synthetic chemistry.

Base Catalyzed One-Pot Thia-Michael Addition-Oxidation Reaction of Hetero-Aromatic Thiols to 2-Aryl-3-Nitro-2H-Chromenes and Their Antibacterial Evaluation

Authors: Samanta, Panda, Mohapatra, Bhattacharya, Sahoo

Journal: New Journal of Chemistry

Year: 2024

Volume: 48(11)

Pages: 4953–4959

Abstract: The article explores a base-catalyzed one-pot thia-Michael addition-oxidation reaction to synthesize 2-aryl-3-nitro-2H-chromenes from hetero-aromatic thiols. The synthesized compounds were evaluated for their antibacterial activity. The study demonstrates the efficiency of the proposed method in creating novel chromene derivatives with potential antimicrobial properties.

Palladium-Catalyzed Facile Synthesis of Imidazo[1,2-a]Pyridine-Flavone Hybrids and Evaluation of Their Antiplasmodial Activity

Authors: Raiguru, Panda, Mohapatra, Nayak

Journal: Journal of Molecular Structure

Year: 2023

Volume: 1294

Article Number: 136282

Abstract: This research presents a palladium-catalyzed approach for the synthesis of imidazo[1,2-a]pyridine-flavone hybrids. The study includes an evaluation of the antiplasmodial activity of these hybrids, highlighting their potential as new candidates for malaria treatment. The synthesis method is described as straightforward and efficient, offering a valuable addition to the development of antimalarial agents.

Research Timeline

Dr. Nayak’s research career began with her doctoral work at Pune University and has evolved through significant projects funded by agencies such as SERB, UGC, and CSIR. Her research timeline includes the completion of several projects and the initiation of ongoing studies in collaboration with esteemed institutions.

Collaborations and Projects

Dr. Nayak has collaborated with various researchers and institutions, including National Chemical Laboratory, Pune, and University of Southwestern Medical Research Center, Dallas. Her projects encompass a range of topics, from synthetic methodologies to biological evaluations, reflecting her broad expertise and collaborative approach in advancing chemical research.

Charles Perrin | Chemistry and Materials Science | Best Researcher Award

Prof Dr. Charles Perrin | Chemistry and Materials Science | Best Researcher Award

 Professor at Distinguished Professor Emeritus of UCSD, United States

Professor Dr. Charles L. Perrin, born on July 22, 1938, in Pittsburgh, PA, is a distinguished professor emeritus at UC San Diego, where he has served since 1964. 🎓 He holds an A.B. summa cum laude in Chemistry from Harvard College (1959) and a Ph.D. in Organic Chemistry from Harvard University (1963). 💍 Married to Marilyn Heller Perrin, they have two sons. 👨‍👩‍👦‍👦 Dr. Perrin’s career is marked by numerous awards, including the Alfred P. Sloan Foundation Fellowship, the ACS James Flack Norris Award, and multiple teaching excellence awards at UCSD. 🏅 His research in physical-organic chemistry encompasses molecular structure, reaction mechanisms, NMR methods, and hydrogen bonding. 🧪 He has authored over 190 scientific articles and has made significant contributions, such as the synthesis of malonic anhydrides and elucidating proton exchange mechanisms in amides. 📚 Dr. Perrin has also served as a consultant, expert witness, and editorial board member, and has chaired and organized various scientific conferences. 🌍🔬

Professional Profile:

Education🎓

Professor Dr. Charles L. Perrin’s education is rooted in his outstanding academic achievements. 🎓 He graduated summa cum laude with an A.B. in Chemistry from Harvard College in 1959. 🏛️ He then pursued a Ph.D. in Organic Chemistry under the guidance of Frank H. Westheimer at Harvard University, completing it in 1963. 📜 Following his doctorate, he was awarded an NSF Post-Doctoral Fellowship to work with Andrew Streitwieser, Jr., at the University of California, Berkeley, further solidifying his expertise in the field. 🔬

 

Professional Experience 📚

Professor Dr. Charles L. Perrin has had a distinguished professional career at UC San Diego, where he began as an Assistant Professor of Chemistry in 1964. 👨‍🏫 He was promoted to Associate Professor in 1971 and became a full Professor in 1980. 🌟 In 2018, he was honored as a Distinguished Professor Emeritus and was recalled to active service. 🎓 Over the decades, he has made significant contributions to physical-organic chemistry, published over 190 scientific articles, and received numerous prestigious awards. 🏅 Dr. Perrin has also served as a consultant, expert witness, and member of several editorial boards, and has chaired and organized key scientific conferences, solidifying his reputation as a leading figure in his field. 🌍

Research Interest 🔍

Professor Dr. Charles L. Perrin’s research interests lie in the realm of physical-organic chemistry, focusing on the molecular structure and mechanisms of organic reactions. 🧪 His work includes the study of malonic anhydrides, NMR methods for chemical kinetics, and proton exchange kinetics in amides and related compounds. 🔄 He delves into solvation and hydrogen bonding, stereoelectronic control in the cleavage of tetrahedral intermediates and acyl shifts, as well as kinetic and equilibrium isotope effects. 🔬 Dr. Perrin also explores the symmetry of hydrogen bonds, anomeric effects, conformational analysis, and steric hindrance to ionic solvation, alongside nonradical reactions of p-benzyne diradicals and the chemistry of resulting “naked” aryl anions. 🌐 🧬💻

Award and Honor🌟 

Professor Dr. Charles L. Perrin has received numerous awards and honors throughout his distinguished career. 🏅 He was elected to Phi Beta Kappa at Harvard College in 1958 and received an Alfred P. Sloan Foundation Fellowship in 1967-69. 🌟 He was honored with a Special HEW Research Fellowship at Göteborgs Universitet in Sweden (1972-73) and was named a Fellow of the American Association for the Advancement of Science in 1984. 🔬 Dr. Perrin has been recognized for his teaching excellence with multiple awards from UCSD, including the Revelle College Excellence in Teaching Awards (1977, 1993) and the UCSD Chancellor’s Associates’ Faculty Excellence Award for Teaching in 2001. 🎓 He received the prestigious ACS James Flack Norris Award in Physical Organic Chemistry in 2015 and was named the Distinguished Scientist Award of the ACS San Diego Section in 2017. 🌍 Additionally, he has held various visiting professorships and lectureships worldwide, further cementing his status as a leading figure in his field. 🌐

 

Research Skills 🔬 

Professor Dr. Charles L. Perrin possesses exceptional research skills in physical-organic chemistry. 🧪 He is adept at utilizing NMR methods for chemical kinetics and developing innovative techniques such as variable-temperature NMR and magnetization-transfer and 2D-NMR methods for multisite kinetics. 🔄 His expertise includes synthesizing complex molecules like malonic anhydrides and elucidating reaction mechanisms at the molecular level. 🔬 Dr. Perrin has a keen ability to investigate proton exchange kinetics, solvation, hydrogen bonding, and stereoelectronic effects, making significant contributions to understanding the fundamental principles governing organic reactions. 🌟 His work also includes the application of isotopic perturbation and kinetic isotope effects, showcasing his comprehensive analytical and experimental capabilities. 🌐

 

Achievements 🏅 🏆

Professor Dr. Charles L. Perrin has made numerous groundbreaking achievements in physical-organic chemistry. 🧪 He recognized the generality of ipso substitution and introduced the related terminology. 📚 He authored the textbook “Mathematics for Chemists” and ACS Audio Courses on “Probability and Statistics for Chemists” and “Calculus for Chemists.” 🔬 His work elucidated the mechanisms of proton exchange in amides, peptides, and proteins, and he synthesized malonic anhydrides, classic molecules sought for 70 years. 🔄 Dr. Perrin developed innovative NMR methods, discovered a chain mechanism for proton exchange, and made significant advancements in understanding the Curtin-Hammett Principle. 🌐 He critically assessed stereoelectronic control, evaluated the anomeric effect, and measured the rate of NH4+ rotation within its solvent cage. 🔍 His research demonstrated the nonexistence of the reverse anomeric effect, elucidated the symmetry of hydrogen bonds, and developed an accurate NMR titration method. 🌟 He also discovered new reactions involving p-benzyne and demonstrated nonadditivity of secondary deuterium isotope effects on basicities.

 

Publications📖📚

Symmetry of Hydrogen Bonds: Application of NMR Method of Isotopic Perturbation and Relevance of Solvatomers

  • Publication: Molecules, 2023, 28(11), 4462 📄
  • Author: Perrin, C.L.
  • Citations: 1 🔬

My First Publication

  • Publication: Journal of Physical Or
  • ganic Chemistry, 2022, 35(11), e4302 📄
  • Author: Perrin, C.L.
  • Citations: 0 🚫

The Complete Mechanism of an Aldol Condensation in Water

  • Publication: Physical Chemistry Chemical Physics, 2022, 24(31), pp. 18978–18982 📄
  • Authors: Perrin, C.L., Kim, J.
  • Citations: 1 🔬

Nucleophilic Addition of Enolates to 1,4-Dehydrobenzene Diradicals Derived from Enediynes: Synthesis of Functionalized Aromatics

  • Publication: ACS Omega, 2022, 7(26), pp. 22930–22937 📄
  • Authors: Shrinidhi, A., Perrin, C.L.
  • Citations: 2 🔬🔬

Malonic Anhydrides, Challenges from a Simple Structure

  • Publication: Journal of Organic Chemistry, 2022, 87(11), pp. 7006–7012 📄
  • Author: Perrin, C.L.
  • Citations: 0 🚫

Glossary of Terms Used in Physical Organic Chemistry (IUPAC Recommendations 2021)

  • Publication: Pure and Applied Chemistry, 2022, 94(4), pp. 353–534 📄
  • Authors: Perrin, C.L., Agranat, I., Bagno, A., Uggerud, E., Williams, I.H.
  • Citations: 19 🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬🔬

Ipso

  • Publication: Journal of Organic Chemistry, 2021, 86(21), pp. 14245–14249 📄
  • Author: Perrin, C.L.
  • Citations: 6 🔬🔬🔬🔬🔬🔬

Comment on “Topography of the Free Energy Landscape of Claisen-Schmidt Condensation: Solvent and Temperature Effects on the Rate-Controlling Step” by N. D. Coutinho, H. G. Machado, V. H. Carvalho-Silva and W. A. da Silva

  • Publication: Physical Chemistry Chemical Physics, 2021, 23(38), pp. 22199–22201 📄
  • Author: Perrin, C.L.
  • Citations: 1 🔬

Cyclohexeno[3,4]cyclodec-1,5-diyne-3-ene: A Convenient Enediyne

  • Publication: Organic Letters, 2021, 23(17), pp. 6911–6915 📄
  • Authors: Shrinidhi, A., Perrin, C.L.
  • Citations: 2 🔬🔬

Enthalpic and Entropic Contributions to the Basicity of Cycloalkylamines

  • Publication: Chemical Science, 2020, 11(32), pp. 8489–8494 📄
  • Authors: Perrin, C.L., Shrinidhi, A.
  • Citations: 3 🔬🔬🔬