Prof. Dr. Xuanmeng He | Inorganic Chemistry | Best Researcher Award

Prof. Dr. Xuanmeng He | Inorganic Chemistry | Best Researcher Award

Prof. Dr. Xuanmeng He , Inorganic Chemistry , Laboratory Chief at Shaanxi University of Science and Technology, China

Prof. He Xuanmeng is a distinguished faculty member at the School of Materials Science and Engineering, Shaanxi University of Science and Technology. With a profound dedication to material innovation and functional nanomaterials, he has risen through academic ranks from lecturer to full professor since joining the university in 2008. His research primarily focuses on energy-related materials, including high-entropy oxides, electrocatalysts for oxygen evolution reactions (OER), and advanced color pigments. A prolific researcher, Prof. He has authored several impactful publications in reputed journals like Journal of Alloys and Compounds, ACS Applied Nano Materials, and Journal of Colloid and Interface Science. His interdisciplinary approach bridges inorganic chemistry, electrochemistry, and materials engineering. Through years of rigorous academic training and research, he has emerged as a key contributor to China’s materials science domain. Prof. He continues to inspire future scientists through both his scholarly work and academic leadership.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Prof. He Xuanmeng, currently serving as a Professor at the School of Materials Science and Engineering, Shaanxi University of Science and Technology, exemplifies all the qualities befitting a recipient of the “Best Researcher Award”. His academic path, entirely pursued at Shaanxi University, reflects both loyalty and progressive excellence in materials science. With over 15 years of research experience, he has consistently advanced from lecturer to full professor, demonstrating a strong trajectory of academic growth and leadership. Prof. He Xuanmeng is a highly qualified and deserving nominee for the “Best Researcher Award”.  Honoring him with this award would be a recognition of research excellence, sustained innovation, and impactful scholarship. His research output includes high-impact publications in reputed international journals such as ACS Applied Nano Materials, Journal of Alloys and Compounds, and Journal of Colloid and Interface Science.Prof. He’s ability to integrate multifunctionality, sustainability, and performance optimization in material design stands out. His interdisciplinary work impacts both the energy sector and ceramic industries, illustrating his broad contribution to science and technology. His work on high-entropy oxides, energy electrocatalysts, Li-S battery materials, and environmentally friendly ceramic pigments showcases innovation, application relevance, and scientific depth. Moreover, his expertise bridges nanomaterials, electrochemistry, and optical engineering, aligning with contemporary global research priorities.

🎓Education:

Prof. He Xuanmeng’s academic journey is deeply rooted in Shaanxi University of Science and Technology, where he pursued all three degrees in materials science. He earned his Ph.D. in Materials in 2018, focusing on advanced material synthesis and applications. Earlier, he completed his Master’s in Materials Physics and Chemistry in 2008, laying the foundation for his work on functional coatings and hybrid materials. His undergraduate degree, completed in 2005, was in Inorganic Non-metallic Materials Engineering—a program emphasizing ceramics, pigments, and structural materials. This consistent academic path has endowed him with a deep, layered understanding of both the theoretical and applied aspects of materials science. The continuity of education at the same institution reflects his long-standing commitment to its academic culture and research goals. His comprehensive training across materials chemistry and engineering now informs his innovative research in energy materials and ceramic-based nanostructures.

🏢Work Experience:

Prof. He Xuanmeng began his professional career in 2008 as a Lecturer at Shaanxi University of Science and Technology. With a passion for research and academic excellence, he was promoted to Associate Professor in 2010, a role he held for eight years. In 2018, he was elevated to the position of Professor in the School of Materials Science and Engineering. Over more than 15 years of service, he has been instrumental in shaping the department’s research direction, focusing on functional nanomaterials and energy applications. He has successfully mentored graduate students, led research initiatives, and published extensively. His multidisciplinary collaborations and expertise in high-entropy oxides, pigment design, and electrode materials have significantly contributed to the university’s reputation in materials science. Prof. He’s progression through academic ranks highlights his dedication to teaching, research, and scientific advancement in the field of advanced functional materials.

🏅Awards: 

While specific awards and honors were not listed in the resume provided, Prof. He Xuanmeng’s academic journey and publication record strongly indicate a career marked by peer recognition and scholarly impact. His multiple first-author papers in top-tier journals like ACS Applied Nano Materials, Journal of Alloys and Compounds, and Journal of Colloid and Interface Science reflect high academic merit. He likely has received internal recognition for excellence in teaching and research within Shaanxi University of Science and Technology. Additionally, contributing to high-impact studies in areas like oxygen evolution reaction and Li-S battery applications suggests involvement in nationally or provincially funded research projects. Given his track record and position, he may also be serving as a reviewer or editorial board member for reputed journals in materials science. Further details of awards can be included upon availability to comprehensively highlight his career achievements.

🔬Research Focus:

Prof. He Xuanmeng’s research focuses on advanced functional materials with applications in energy conversion, storage, and optical properties. He specializes in the synthesis and design of high-entropy oxides, spinel-type nanostructures, and graphene-composite hybrids for electrocatalysts, particularly the oxygen evolution reaction (OER). His work also explores Li-S battery materials, utilizing hollow microspheres and reduced graphene oxide for sulfur hosting. Additionally, Prof. He has made significant contributions to the development of ceramic pigments with core-shell structures for enhanced coloration and NIR reflectance, offering sustainable alternatives with reduced heavy metal content. His interdisciplinary approach bridges material chemistry, solid-state physics, and energy applications, aiming to develop cost-effective and high-performance materials. His research outputs demonstrate innovation in structural control, electronic modulation, and multifunctionality in both energy and optical domains, aligning with global goals for sustainable energy and environmental-friendly technologies.

Publication Top Notes:

1. Enhanced Multienzyme‑like and Antibacterial Activity by Copper Atomically Dispersed into Molybdenum Disulfide for Accelerated Wound Healing

2. Carbon Cloth Supporting (CrMnFeCoCu)₃O₄ High‑Entropy Oxide as Electrocatalyst for Efficient Oxygen Evolution Reactions

Citations: 2

3. Highly Stable Hierarchical Core‑Shell Structure CuMn₀.₅Co₂O₄@CC with Self‑Regulating Electronic and Conductivity for Its Improved OER Performance

Citations: 5

4. Nanocrystalline (CrMnFeCoCu)₃O₄ High‑Entropy Oxide for Efficient Oxygen Evolution Reaction

Citations: 15

Prof. Reine NEHME | Analytical Chemistry | Best Researcher Award

Prof. Reine NEHME | Analytical Chemistry | Best Researcher Award

Prof. Reine NEHME, Analytical Chemistry , Head of analytical team at University of Orléans, ICOA UMR7311, France

Prof. Reine Nehmé is a renowned French scientist and Professor of Analytical Sciences at the University of Orléans, where she leads the “Analytical Strategies, Affinities and Bioactives” team at ICOA. With over 15 years of academic and research experience, she specializes in advanced separation techniques, bioanalysis, and microfluidics. She is deeply involved in both teaching and scientific governance—serving on multiple university and national scientific committees. Prof. Nehmé also contributes to scientific advancement as a supervisor of numerous Ph.D. and post-doctoral researchers and by coordinating key national research projects funded by ANR and regional bodies. Her prolific contributions to analytical chemistry are reflected in her numerous publications, particularly in the areas of enzymatic assays, capillary electrophoresis, and bioactive compound analysis. With a strong leadership role in Afsep and her involvement in high-level academic administration, she is recognized as a leading figure in analytical chemistry in France and Europe.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Nehmé holds a Ph.D. in Analytical Chemistry from the University of Montpellier (2008) and an HDR (Accreditation toSupervise Research) from the University of Orléans (2016). Her academic background demonstrates deep expertise and a commitment to high-level scientific scholarship. As a professor and group leader at ICOA, University of Orléans, she leads the “Analytical Strategies, Affinities and Bioactives” team, driving impactful research in analytical sciences, especially in bioanalysis, separative techniques, capillary electrophoresis, microfluidics, and mass spectrometry. Prof. Nehmé is deputy treasurer and a management committee member of the Capillary Electrophoresis Group of Afsep. She holds leadership roles at her university and is actively engaged in curriculum design, evaluation panels, and scientific committees. Prof. Reine Nehmé exemplifies the ideal profile for a “Best Researcher Award”: a high-impact scientist, strategic research leader, dedicated educator, and committed scientific community member. Her strong publication record, funded projects, mentoring, and institutional service collectively highlight her as a trailblazer in analytical chemistry. She fully deserves recognition through such a prestigious award.

🎓Education:

Prof. Reine Nehmé earned her Ph.D. in Analytical Chemistry from the University of Montpellier in 2008, following her Master’s degree (Master 2) in the same field from the same institution in 2005. Demonstrating her continued academic excellence and expertise, she received her Habilitation to Supervise Research (HDR) from the University of Orléans in 2016. This qualification represents the highest academic degree in France and reflects her capacity to independently lead doctoral research and large-scale scientific projects. Her academic training laid a robust foundation in analytical methodologies, chromatographic techniques, and advanced spectroscopy. These qualifications have enabled her to contribute extensively to the development of innovative analytical tools and methods in environmental, biological, and pharmaceutical research. Her educational background not only established her scientific depth but also positioned her to take on leadership and mentoring roles across both academic and research platforms.

🏢Work Experience:

Prof. Nehmé began her academic journey at the University of Orléans in 2008 as a Temporary Teaching and Research Assistant (ATER). She advanced to Associate Professor in 2009 and was promoted to Professor in 2019. Over the years, she has held multiple leadership roles, including Head of the Analytical Chemistry Department and Coordinator of the Professional License program in Chemistry at IUT Chimie d’Orléans. She has been a member of the laboratory’s scientific council since 2017, and also serves on the Commission of Disciplinary Experts. As an active educator, she teaches a range of courses in analytical sciences including electrochemistry, chromatography, mass spectrometry, and microfluidics. In research, she has successfully supervised 6 Ph.D. students (2 ongoing) and multiple post-doctoral and master’s interns. Her contributions extend to national committees such as Afsep’s CE group, where she has served as Deputy Treasurer since 2021.

🏅Awards: 

While specific awards are not explicitly listed, Prof. Reine Nehmé’s honors are evidenced by her numerous leadership and elected roles. She received the Habilitation to Supervise Research (HDR), a distinguished recognition in France for scholarly excellence. Her long-standing position on the scientific council of the ICOA laboratory and as a Commission Expert in disciplinary affairs at the University of Orléans speaks to her academic credibility. She was elected to the Management Committee of the CE group of Afsep in 2017 and appointed as Deputy Treasurer in 2021, underlining national recognition by her peers. She has consistently been entrusted with leadership in nationally funded research programs by ANR and regional agencies, confirming her scientific standing and project leadership ability. Her active role in supervising doctoral candidates and international collaborations further affirms her status as a respected figure in analytical sciences.

🔬Research Focus:

Prof. Nehmé’s research centers on analytical sciences, particularly in capillary electrophoresis, mass spectrometry, and microscale thermophoresis for studying molecular interactions. Her projects frequently explore bioanalysis, enzyme kinetics, and natural product evaluation. She leads or participates in numerous ANR-funded projects, including stapled peptide design, bioremediation via micromycetes, and enzyme behavior in crowded synthetic environments. A significant part of her work involves developing lab-on-a-chip (LoC) platforms for investigating target-ligand interactions at the single-cell level. She has also contributed to the miniaturization of enzymatic assays, passive sampling techniques for water analysis, and electrochemical sensors for environmental monitoring. Prof. Nehmé integrates separation sciences with biology and materials chemistry, bridging analytical method development with real-world biological and environmental challenges. Her interdisciplinary research fosters innovations in diagnostics, therapeutic monitoring, and ecological risk assessment, marking her as a pioneer in translating analytical chemistry into functional tools for bioactive discovery and environmental stewardship.

Publication Top Notes:

1. Using CE to Confirm the Activity of Fluorescent miRFP670-LIMK1 Protein Produced for MST Assays Directly in Cell Lysate

2. The Antimicrobial Activity of ETD151 Defensin is Dictated by the Presence of Glycosphingolipids in the Targeted Organisms

3. Glycolipid and Lipopeptide Biosurfactants: Structural Classes and Characterization—Rhamnolipids as a Model

4. Nutraceutical and Cosmetic Applications of Bioactive Compounds of Saffron (Crocus Sativus L.) Stigmas and Its By-products

5. Antioxidant and Anti-lipase Capacities from the Extracts Obtained from Two Invasive Plants: Ambrosia artemisiifolia and Solidago canadensis

6. Nutraceutical Capacities of Extracts from the Invasive Plants Ambrosia artemisiifolia and Solidago canadensis

7. Screening and Evaluation of Dermo-Cosmetic Activities of the Invasive Plant Species Polygonum cuspidatum

8. Biosurfactant-Producing Mucor Strains: Selection, Screening, and Chemical Characterization

9. Capillary Electrophoresis for Enzyme-Based Studies: Applications to Lipases and Kinases

10. Correction to: Reproducibility and Accuracy of Microscale Thermophoresis in the NanoTemper Monolith: A Multi Laboratory Benchmark Study

11. Design, Synthesis and SAR in 2,4,7-Trisubstituted Pyrido[3,2-d]Pyrimidine Series as Novel PI3K/mTOR Inhibitors

 

 

Prof. Mohammad Bakherad | Organic Chemistry | Best Researcher Award

Prof. Mohammad Bakherad | Organic Chemistry | Best Researcher Award

Prof. Mohammad Bakherad | Organic Chemistry | Researcher at Shahrood University of Technology, Iran

Mohammad Bakherad, born in 1969 in Mashhad, Iran, is a distinguished Professor of Organic Chemistry at Shahrood University of Technology. He earned his B.Sc. in Chemistry from Isfahan University (1992) and completed his M.Sc. (1995) and Ph.D. (2002) at Ferdowsi University of Mashhad under the mentorship of Majid M. Heravi and Mohammad Rahimizadeh. With a prolific research career, he has published over 147 ISI-indexed papers, contributing significantly to organic synthesis, heterocyclic chemistry, catalysis, and green chemistry. His expertise in organometallic reagents and innovative synthetic methodologies has gained international recognition. He has mentored numerous students and led cutting-edge research projects. His commitment to academic excellence and scientific contributions continues to shape the field of organic chemistry in Iran and beyond.

Professional Profile :         

Scopus 

Summary of Suitability for Award:

Dr. Mohammad Bakherad is a highly accomplished researcher in the field of organic chemistry, particularly in catalysis, heterocyclic chemistry, and green synthetic methodologies. His academic journey, from earning a Ph.D. in Organic Chemistry at Ferdowsi University of Mashhad to becoming a full Professor at Shahrood University of Technology, demonstrates his dedication to research and innovation. With over 147 ISI-cited papers, his contributions have significantly advanced the understanding and application of novel catalytic and environmentally friendly synthetic approaches. Dr. Mohammad Bakherad’s outstanding publication record, pioneering research in organic synthesis and catalysis, and commitment to sustainable chemistry make him an exceptional candidate for the “Best Researcher Award.” His work has had a profound impact on the scientific community, shaping the future of organic chemistry. His innovative methodologies, leadership in academia, and dedication to mentorship and collaborative research make him highly deserving of this recognition.

🎓Education:

Mohammad Bakherad pursued his B.Sc. in Chemistry at Isfahan University, Iran, from 1988 to 1992. He then continued his academic journey at Ferdowsi University of Mashhad, where he obtained his M.Sc. in Organic Chemistry (1993–1996) and later earned his Ph.D. in Organic Chemistry (1996–2002). His doctoral research was conducted under the supervision of esteemed professors Majid M. Heravi and Mohammad Rahimizadeh, focusing on advanced organic synthesis and heterocyclic chemistry. His academic background provided him with a strong foundation in organic methodologies, catalysis, and the development of novel heterocyclic compounds. Through rigorous training and research, he developed expertise in the synthesis of organic frameworks, organometallic reagents, and green chemistry applications. His educational journey laid the groundwork for a prolific career in organic synthesis, contributing significantly to the field with numerous publications and advancements in catalytic and environmentally friendly synthetic approaches.

🏢Work Experience:

Dr. Mohammad Bakherad has had an extensive academic career, beginning as an Assistant Professor of Organic Chemistry at Shahrood University of Technology in July 2003. His dedication and contributions to research and teaching led to his promotion to Associate Professor in January 2008. In February 2013, he achieved the rank of Professor, solidifying his position as a leading researcher in organic and heterocyclic chemistry. Throughout his career, he has mentored numerous students, guiding them in advanced research methodologies and fostering innovation in catalysis and organic synthesis. His teaching experience spans undergraduate and postgraduate levels, covering specialized topics such as organometallic chemistry, synthetic methodologies, and green chemistry. Additionally, he has been actively involved in collaborative research projects, contributing to cutting-edge developments in organic chemistry. His expertise has led to significant advancements in sustainable chemical processes and the development of novel heterocyclic frameworks.

🏅Awards: 

Dr. Mohammad Bakherad has received numerous accolades in recognition of his outstanding contributions to organic chemistry. He has been honored for his pioneering work in catalysis, green synthetic methods, and heterocyclic chemistry. His research excellence has been acknowledged through multiple awards from national and international scientific organizations. He has been invited as a keynote speaker at prestigious conferences, highlighting his expertise in organic synthesis and catalytic methodologies. His scholarly achievements include being recognized for his high-impact publications in leading scientific journals. Furthermore, his commitment to mentorship and academic excellence has earned him appreciation from students and colleagues alike. As a distinguished researcher, he has also been part of various scientific committees, contributing to the advancement of chemistry education and research. His contributions continue to shape the field, fostering innovation and inspiring future generations of chemists.

🔬Research Focus:

Dr. Mohammad Bakherad’s research focuses on organic synthesis, particularly in heterocyclic chemistry, catalysis, and green synthetic methodologies. He has made significant contributions to the development of novel heterocyclic compounds and organometallic reagents, which play a crucial role in medicinal and materials chemistry. His work in catalytic processes has led to innovative and environmentally friendly approaches for synthesizing complex organic molecules. He has explored palladium-catalyzed reactions, Sonogashira coupling, and cyclocondensation techniques to design efficient synthetic routes. Additionally, his interest in sustainable chemistry has driven his research on recyclable catalysts and water-based reactions, reducing the environmental impact of chemical synthesis. His extensive studies on heteroannulation reactions have resulted in the creation of novel bioactive molecules with potential pharmaceutical applications. With over 147 ISI-cited papers, his research continues to influence advancements in organic and green chemistry, making a lasting impact on the scientific community.

Publication Top Notes:

Synthesis, QSAR modeling, and molecular docking studies of 1,2,3-triazole-pyrazole hybrids as significant anti-cancer and anti-microbial agents

Synthesis of new hybrid compounds of imidazo[1,2-a]pyrimidine/pyridine based on quinoxaline through palladium-catalyzed coupling reactions and heteroannulation

A comprehensive review: medicinal applications and diverse synthetic strategies of pyrimidine-based compounds leveraging Suzuki and Sonogashira reactions

Synthesis, and molecular docking studies of novel 1,2,3-triazoles-linked pyrazole carboxamides as significant anti-microbial and anti-cancer agents

Copper catalysts supported by dehydroacetic acid chitosan schiff base for CuAAC click reaction in water

Citations: 1

Furo, Pyrano, and Pyrido[2,3-d]Pyrimidines: A Comprehensive Review of Synthesis and Medicinal Applications

Citations: 5

Synthesis of new 1,2,3-triazole-linked pyrimidines by click reaction

Synthesis of new 4,5-disubstituted-6-methyl-2-(methylthio) pyrimidines via C-C coupling reactions

New Hybrid Compounds from Imidazole and 1,2,3-Triazole: Efficient Synthesis of Highly Substituted Imidazoles and Construction of Their Novel Hybrid Compounds by Copper-Catalyzed Click Reaction

Citations: 1

An Efficient Synthesis of New Pyrazole-Linked Oxazoles via Sonogashira Coupling Reaction

Citations: 2

Dr. Kàshinath Lellala | Materials Chemistry | Best Researcher Award

Dr. Kàshinath Lellala | Materials Chemistry | Best Researcher Award

Dr. Kàshinath Lellala , Materials Chemistry , University of Mysore , India

Dr. Kashinath Lellala is an accomplished materials scientist with expertise in advanced functional materials for energy and environmental applications. With over 12 years of research experience and 10 years of teaching, he has made significant contributions to materials fabrication, catalysis, and battery technology. His research spans heterojunction materials, electrocatalysts, and Li-ion battery components. Dr. Lellala has held postdoctoral positions at esteemed institutions such as Xavier University (USA), Luleå University of Technology (Sweden), and Pandit Deendayal Petroleum University (India). He has also served as a lecturer at Xavier University, JSS University, and Royal University of Bhutan. His interdisciplinary approach integrates computational studies with experimental research, enhancing his contributions to materials science. He actively collaborates with global researchers and has served on editorial boards of reputed journals. His work has been recognized through multiple awards, including the Eminent Educator Award and prestigious fellowships.

Professional Profile : 

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Kashinath Lellala is exceptionally qualified for “Best Researcher Awards” due to his extensive and diverse contributions to materials science and engineering. With over 12 years of research experience and 10 years of teaching, his work spans advanced functional materials, photocatalysis, and lithium-ion battery technology. His innovative approaches in synthesizing heterojunction materials, semiconductor-supported catalysts, and graphene-based nanomaterials have significantly advanced the fields of energy and environmental applications. His global research stints—at institutions such as Xavier University, Luleå University of Technology, and Pandit Deendayal Petroleum University—underscore his ability to collaborate across borders and disciplines. Additionally, his editorial board roles, numerous publications, and prestigious awards, including the Caryl Trigger Research Fellowship and Eminent Educator Award, reflect both his academic rigor and leadership.

🎓Education:

Dr. Kashinath Lellala earned his Ph.D. in Materials Science from the University of Mysore, India, in 2019, under the guidance of Prof. K. Byrappa, focusing on hybrid metal oxide/metal sulfide-graphene oxide nanocomposites for energy and environmental applications. He completed his M.Phil. in Physics (Thin Films and Nanotechnology) from Alagappa University, India, in 2013, where he synthesized and characterized single-layered graphene via chemical exfoliation. His M.Sc. in Physics, with a specialization in electronics, was awarded by Kakatiya University, Warangal, Telangana, India, in 2007. Additionally, he holds a Diploma in Embedded Technology from Kionia Software Institution, Pune University, and a Postgraduate Diploma in Computer Applications (PGDCA) from Andhra Pradesh Electronics Limited (APEL). His academic background is complemented by a Certificate in Typing (English Lower Grade), reflecting his diverse skill set in computational work and experimental physics.

🏢Work Experience:

Dr. Lellala has 12 years of research and 10 years of teaching experience across prestigious institutions worldwide. He served as a Postdoctoral Fellow & Lecturer at Xavier University of Louisiana (2022–2023), working on semiconductor and heterojunction materials for batteries, 3D bio-inkjet printing, and fuel cells. At Lulea University of Technology, Sweden (2020–2022), he contributed to water remediation research through semiconductor-supported photocatalysis. Earlier, he was a Research Associate at Pandit Deendayal Petroleum University (2019–2020), focusing on silicon nanoparticle-based anode materials for lithium-ion batteries. His Ph.D. research (2014–2019) at the University of Mysore involved fabricating hybrid metal oxide/sulfide-graphene oxide nanocomposites for energy applications. Additionally, he has held teaching positions at JSS University, Bhutan Royal University, Iringa University (Tanzania), and New Science PG College, delivering lectures on physics, materials science, and nanotechnology.

🏅Awards: 

Dr. Kashinath Lellala has received multiple prestigious awards in recognition of his contributions to materials science and engineering. He was awarded the Caryl Trigger Research Foundation Postdoctoral Fellowship at Lulea University of Technology in 2020. He also received the Eminet Educator Award-2020 from the Forum of Interdisciplinary Research in Mathematical Sciences (FIRMS), India. His research excellence was recognized with a Certificate of Appreciation for Reviewing by Elsevier’s Journal of Cleaner Production (2021). Additionally, he was a Postdoctoral Fellow at the Department of Science & Technology, India (2019), and an International Visiting Research Student at the University of South Australia (2017). His research potential was acknowledged with the Senior Research Fellowship (SRF) at the University of Mysore (2017) and Junior Research Fellowship (JRF) by the Department of Science & Technology (2014).

🔬Research Focus:

Dr. Kashinath Lellala’s research is centered on advanced functional materials for energy and environmental applications. His expertise spans photo- and electro-catalysis, heavy metal removal, and organic pollutant degradation through semiconductor-supported photocatalysts. His work on heterojunction materials includes developing fuel cell electrodes (HER, OER, ORR) and lithium-ion battery anode/cathode materials using metal oxide/metal sulfide composites. He specializes in graphene-based nanomaterials, exploring the fabrication of porous graphene sheets doped with boron and nitrogen for enhanced electrochemical performance. Additionally, he has worked extensively on silicon-based anode materials for lithium-ion batteries, including the innovative synthesis of graphene from camphor. His research extends to microwave-assisted hydrothermal processing for fabricating high-efficiency heterostructures. His contributions in water remediation, particularly through photo-electrochemical oxidation, demonstrate his commitment to sustainable and green chemistry solutions for environmental challenges.

Publication Top Notes:

Fe₃O₄ nanoparticles decorated on N-doped graphene oxide nanosheets for elimination of heavy metals from industrial wastewater and desulfurization

Ceria Boosting on In Situ Nitrogen-Doped Graphene Oxide for Efficient Bifunctional ORR/OER Activity

Citations: 7

Sol-gel mediated microwave synthesis of Fe₃O₄ nanoparticles decorated on N-doped graphene oxide nanosheets: An excellent material for removal of heavy metals, organic pollutants, and desulfurization

Ceria boosting on in-situ nitrogen-doped graphene oxide for efficient bifunctional ORR/OER activity

Electrochemical Deposition of Si Nano-spheres from Water Contaminated Ionic Liquid at Room Temperature: Structural Evolution and Growth Mechanism

One-pot microwave synthesis of SnSe and Lanthanum doped SnSe nanostructure with direct Z scheme pattern for excellent photodegradation of organic pollutants

Microwave-hydrothermal synthesis of copper sulphide nanorods embedded on graphene sheets as an efficient electrocatalyst for excellent hydrogen evolution reaction

Sulphur Embedded On In-Situ Carbon Nanodisc Decorated On Graphene Sheets For Efficient Photocatalytic Activity And Capacitive Deionization Method For Heavy Metal Removal

Microwave-Assisted Facile Hydrothermal Synthesis of Fe₃O₄–GO nanocomposites for the Efficient Bifunctional Electrocatalytic Activity of OER/ORR

Role of surface passivation on the development of camphor-based Graphene/SiNWAs Schottky diode

Prof. Junfa Zhu | Surface Chemistry Award | Best Scholar Award

Prof. Junfa Zhu | Surface Chemistry Award | Best Scholar Award 

Prof. Junfa Zhu ,University of Science and Technology of China ,China

Dr. Junfa Zhu is a Chair Professor at the National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China (USTC). He earned his Ph.D. in Physical Chemistry from USTC in 1999. His postdoctoral and research tenure included positions at Johannes-Kepler-Universität Linz (Austria), Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany), and the University of Washington (USA). Returning to USTC in 2006 under the “Hundred Talent Program” by the Chinese Academy of Sciences, Dr. Zhu has been pivotal in advancing surface science research. His work emphasizes in-situ surface chemistry, functional material interfaces, and synchrotron radiation techniques. With over 460 peer-reviewed publications, including Nature Communications and J. Am. Chem. Soc., his contributions have garnered 40,000+ citations and an impressive H-index of 102. As an editor for Surface Science Reports and other journals, Dr. Zhu also manages two soft X-ray spectroscopy endstations at NSRL, facilitating cutting-edge scientific investigations.

Professional Profile:

Orcid 

Scopus

Summary of Suitability for Award:

Dr. Junfa Zhu is an exemplary candidate for the “Best Scholar Award” due to his outstanding contributions to the field of surface science and material chemistry. With over 460 peer-reviewed publications in top-tier journals like Nature Communications, J. Am. Chem. Soc., and Angew. Chem. Int. Ed., his work has garnered more than 40,000 citations, achieving an impressive H-index of 102. Dr. Zhu’s research has significantly advanced the understanding of in-situ surface chemistry, functional material interfaces, and synchrotron radiation techniques. Dr. Junfa Zhu exemplifies the qualities of an outstanding scholar: exceptional research productivity, international recognition, and substantial contributions to scientific advancements.

🎓Education:

Dr. Junfa Zhu completed his Ph.D. in Physical Chemistry at the University of Science and Technology of China (USTC), where he focused on advanced surface science methodologies. His academic foundation provided him with the expertise to investigate the intricate behaviors of chemical interactions and surface properties. Postdoctoral research at prestigious institutions further expanded his knowledge base. At Johannes-Kepler-Universität Linz in Austria, he explored experimental physics, while his tenure at Friedrich-Alexander-Universität Erlangen-Nürnberg in Germany deepened his specialization in physical chemistry. His research at the University of Washington in the United States provided him with hands-on experience in studying surface and interface structures in functional materials. This rigorous academic and research training equipped Dr. Junfa Zhu with interdisciplinary skills and a profound understanding of cutting-edge surface science techniques, laying the groundwork for his distinguished career in synchrotron radiation and material chemistry.

🏢Work Experience:

Dr. Junfa Zhu has cultivated an illustrious career that spans international institutions and interdisciplinary research. His postdoctoral appointments in Austria, Germany, and the United States honed his expertise in experimental physics, physical chemistry, and material science. He joined the University of Science and Technology of China as a professor, bringing global perspectives and advanced methodologies to his role. At the National Synchrotron Radiation Laboratory, he oversees two state-of-the-art soft X-ray spectroscopy endstations, enabling groundbreaking studies in surface chemistry and material interfaces. As an editor for influential journals, including Surface Science Reports, Dr. Junfa  Zhu contributes to advancing scientific dialogue in his field. His leadership and extensive collaborations have positioned him as a key figure in bridging fundamental research with real-world applications, further cementing his role as a leader in the scientific community and a catalyst for innovation in surface science.

🏅Awards:

Dr. Junfa Zhu has earned numerous accolades for his extraordinary contributions to surface science and material chemistry. His recognition under prestigious programs highlights his research excellence and potential to drive innovation in scientific discovery. He has received the National Science Fund for Distinguished Young Scholars, an acknowledgment of his groundbreaking studies in surface and interface chemistry. Designated as a Highly Cited Researcher, his extensive publications and remarkable citation impact underscore his global influence. As an editor for journals like Surface Science Reports, he has been acknowledged for his thought leadership in the academic community. Additionally, his role in managing state-of-the-art synchrotron facilities reflects his technical expertise and commitment to advancing experimental methodologies. These accolades, combined with his extensive contributions to high-impact journals, affirm Dr. Junfa  Zhu’s exceptional standing as a leader in the scientific community and a recipient of numerous prestigious honors.

🔬Research Focus:

Dr. Junfa Zhu’s research revolves around the innovative study of surface chemistry and functional materials using advanced experimental techniques. His work focuses on in-situ investigations of chemical reactions at surfaces, unraveling the complex interactions that govern material properties. He specializes in the structural and chemical analysis of interfaces in functional materials, which has implications for catalysis, nanotechnology, and material design. Leveraging advanced synchrotron radiation tools, Dr. Junfa Zhu explores atomic-level phenomena, providing critical insights into dynamic surface processes. His leadership in managing soft X-ray spectroscopy facilities enables cutting-edge experiments that bridge fundamental science and applied technology. His research has advanced the understanding of material behaviors under operational conditions, driving innovation in sustainable energy, electronic devices, and catalytic systems. Through interdisciplinary collaboration and a focus on real-time surface studies, Dr. Junfa  Zhu has made transformative contributions to the fields of material science and surface chemistry.

Publication Top Notes:

  • “Recent progress on surface chemistry II: Property and characterization”
      Citations: 3
  • “Recent progress on surface chemistry I: Assembly and reaction”
      Citations: 3
  • “Recent progress in on-surface synthesis of nanoporous graphene materials”
      Citations: 1
  • “Dualistic insulator states in 1T-TaS2 crystals”
      Citations: 1
  • “Substrate-modulation effect in on-surface synthesis”

 

 

 

Dr. Murat Dönmez | Organometallic Award | Inorganic Chemistry Award

Dr. Murat Dönmez | Organometallic Award | Inorganic Chemistry Award 

Dr. Murat Dönmez , Trakya University , Turkey

Dr. Murat Dönmez is an R&D Specialist at Teknik Kimya Donatım A.Ş. in Istanbul, Turkey. With a strong background in chemistry, he specializes in the synthesis of chemical formulations, particularly in the development of silicone-based products, antimicrobial agents, and metal complex applications. Dr. Murat Dönmez completed his Ph.D. in Chemistry at Trakya University, focusing on N-Heterocyclic Carbene complexes, and has gained significant experience in R&D roles at various chemical companies. Throughout his career, he has developed innovative solutions in polymeric defoaming, fiber production, and environmental-friendly textile processes. Dr. Murat Dönmez has contributed to multiple national and international projects, with extensive expertise in chemical formulations, process control, and laboratory management. His work in R&D has led to enhanced product quality and process optimization, contributing to his reputation as a dynamic researcher and specialist in industrial chemistry. He has published numerous articles and presented at prestigious chemistry congresses.

Professional Profile: 

Scopus 

Summary of Suitability for Award:

Based on the provided information, Dr. Murat Dönmez is highly suitable for the  ” Inorganic Chemistry Award” , particularly given his significant contributions to the field of inorganic chemistry through his research on N-heterocyclic carbenes (NHCs) and their metal complexes. His work primarily involves synthesizing and characterizing metal complexes, such as silver (Ag(I)) and palladium (Pd(II)) complexes, and studying their antimicrobial properties. These activities directly align with the focus of inorganic chemistry, which often explores the properties, synthesis, and applications of metal-containing compounds.

🎓Education:

Dr. Murat Dönmez holds a Ph.D. in Chemistry from Trakya University. His dissertation focused on the synthesis and antimicrobial analysis of new pincer-type N-Heterocyclic Carbene complexes involving metals like Silver, Palladium, and Platinum. He also earned a Master’s degree in Chemistry from Trakya University , where he further honed his research skills. His academic journey began with a Bachelor’s degree in Chemistry from Manisa Celal Bayar University,  Throughout his academic tenure, Dr. Dönmez developed a deep interest in organic synthesis, chemical formulations, and the antimicrobial properties of metal complexes. His solid educational foundation, combined with advanced training in chemical instrumentation (GC-MS, HPLC, FT-IR), has contributed significantly to his expertise in R&D. Dr. Dönmez’s education laid the groundwork for his successful career, which spans across multiple sectors, including industrial chemistry, textile production, and formulation development.

🏢Work Experience:

Dr. Murat Dönmez’s professional experience spans over a decade, during which he has held several significant positions in the chemical and textile industries. Currently, he works as an R&D Specialist at Teknik Kimya Donatım A.Ş. in Istanbul, where he develops silicone-based, oil, and polymeric defoaming products. He has contributed extensively to formulation projects for color masterbatch and mold release applications. Previously, Dr. Dönmez worked as an R&D Engineer at Akkim Kimya San. Ve Tic. A.Ş., where he managed process control for polyacrylonitrile fibers and contributed to Six Sigma projects aimed at improving fiber quality. His earlier roles included production supervision at Mogul Tekstil and R&D laboratory specialist positions at Eren Tekstil and Ecesoy Tekstil Fabrikası, where he improved processes, developed eco-friendly dyeing methods, and led safety training. Dr. Dönmez has also taught chemistry and science, imparting knowledge to students while coordinating with parents and faculty.

🏅Awards:

Dr. Murat Dönmez has received several accolades for his contributions to chemistry and research. His work in R&D has earned recognition in various industry sectors, including textile and chemical manufacturing. Dr. Dönmez was honored with certifications in GMP-GLP for drug production and effective communication techniques, reinforcing his leadership and technical communication skills. He has also been awarded for his work in energy efficiency and technical instrumentation, underscoring his commitment to environmental sustainability. Dr. Dönmez’s contribution to national R&D projects, particularly those focused on industrial processes and green chemistry, has been acknowledged through various training opportunities and professional development programs. His ability to balance technical expertise with educational outreach has positioned him as a key player in the field of chemical research and product development. Additionally, his participation in international conferences like the International Balkan Chemistry Congress and the National Chemistry Congress further highlights his recognition in the scientific community.

🔬Research Focus:

Dr. Murat Dönmez’s research focuses on organic synthesis, chemical formulations, and the antimicrobial properties of metal complexes. His work is particularly centered on the development of novel N-Heterocyclic Carbene complexes, involving silver, palladium, and platinum, with applications in antimicrobial and catalytic processes. In his recent work, Dr. Dönmez has conducted esterification studies on lithocholic acid derivatives, expanding the scope of chemical transformations and their industrial applications. He has also contributed significantly to process development in the textile industry, specifically in environmentally-friendly dyeing methods. His expertise in formulating silicone-based, oil, and polymeric defoaming products has been applied to improve manufacturing processes. Dr. Dönmez’s interdisciplinary research integrates aspects of organic chemistry, industrial applications, and green chemistry, focusing on practical, sustainable solutions. Through his research, Dr. Dönmez aims to advance the chemical industry by developing innovative materials and processes that are both effective and environmentally friendly.

Publication Top Notes:

  • The new pincer-type NHCs obtained by synthesizing Ag(I)-NHC complexes with various tails containing hydroxyl or acetate derivatives: Structural properties and in vitro antibacterial activities
  • Synthesis methods, characterizations and usage areas of medicinal compounds from THP, and their Ag(I)-NHC complexes, and their antimicrobial efficiencies
  • Synthesis, Spectral Analysis and Antimicrobial Activity of New Pd(II) Complexes Involving 5,6-Dimethylbenzimidazole
    • Citations: 3
  •  Synthesis of macrocyclization cyclophanes and their metal complexes, characterization and antimicrobial activity
  •  Synthesis of pincer type carbene and their Ag(I)-NHC complexes, and their antimicrobial activities
    • Citations: 3

 

 

 

 

Dr. Shu Tian | Surface Chemistry Award | Best Researcher Award

Dr. Shu Tian | Surface Chemistry Award | Best Researcher Award

Dr. Shu Tian, Ningbo Institute of Materials Technology & Engineering, CAS , China

Shu Tian is an Assistant Professor at Ningbo Institute of Materials Technology & Engineering, CAS. he holds a strong background in materials science and engineering, having earned his bachelor’s degree from Northeastern University and completed a joint master’s program between Shanghai University and Ningbo Institute. His Ph.D. in Chemical Engineering was awarded by Tianjin University. Dr. Tian’s research focuses on developing environmentally friendly, long-lasting antifouling materials, with a particular interest in organic and functional coatings. he has contributed to various advanced protective coatings and collaborates with several prestigious research institutions. Dr. Tian has published numerous research papers and holds multiple patents for his innovations in surface chemistry and materials science.

Professional Profile:

Google Scholar

Summary of Suitability for Award:

Dr. Shu Tian is highly suitable for the “Best Researcher Award” based on his extensive contributions to the field of materials science, particularly in the area of antifouling and functional coatings. his innovative approach to designing environmentally friendly, long-lasting coatings that address significant challenges such as marine biofouling, corrosion, and surface icing highlights his leadership in research. Dr. Tian has successfully led two major research projects and contributed to over 10 others, demonstrating her ability to drive impactful, collaborative scientific advancements.

🎓Education:

Shu Tian’s academic journey began with a Bachelor’s degree from the School of Materials Science and Engineering at Northeastern University. he continued his studies as a joint graduate student between Shanghai University and Ningbo Institute of Materials Technology and Engineering, CAS, where he completed his Master’s degree. Dr. Tian then pursued a Ph.D. at the School of Chemical Engineering, Tianjin University, focusing on advanced materials and coatings. He is strong educational foundation has propelled his into his  current position as an Assistant Professor at Ningbo Institute of Materials Technology & Engineering, where he continues to expand his expertise in surface chemistry and material science.

🏢Work Experience:

Dr. Shu Tian’s professional experience includes serving as an Assistant Professor at Ningbo Institute of Materials Technology & Engineering, CAS, since September 2023. Prior to this, he was involved in advanced research during his doctoral studies and contributed to various research projects on functional organic coatings. As the leader of two projects and a key member of over ten others, Dr. Tian has honed his skills in materials development, particularly in antifouling and protective coatings. he has also collaborated with top research institutes like Zhejiang University of Technology, Luoyang Ship Material Research Institute, and Soochow University. his research experience spans marine biofouling, corrosion, and surface icing prevention.

🏅Awards:

Dr. Shu Tian has received several recognitions for his innovative contributions to the field of materials science, particularly for his work on antifouling and functional coatings. While specific awards and honors were not listed, his recognition is evident in the numerous citations and patents he has achieved. his research has garnered attention in several international academic and scientific communities. his work continues to advance the field, earning his respect and acknowledgment from peers and industry leaders. The publication of his research and successful patent filings further demonstrate his commitment to innovation in the material sciences.

🔬Research Focus:

Dr. Shu Tian’s research is centered on the development of environmentally friendly and durable antifouling materials. his work explores surface chemistry and functional coatings, including bio-based antibacterial coatings, integrated anticorrosion and antifouling coatings, and biomimetic anti-icing coatings. he investigates ways to improve the longevity and performance of materials in harsh environments, focusing on the prevention of biofouling, corrosion, and surface icing in marine applications. Dr. Tian’s contributions are key to addressing challenges in protective coatings, with a focus on sustainability, material innovation, and the development of smart coatings with multi-functional properties.

Publication Top Notes:

  •  A new hybrid silicone-based antifouling coating with nanocomposite hydrogel for durable antifouling properties
    Citations: 110
  •  Pro-healing zwitterionic skin sensor enables multi-indicator distinction and continuous real-time monitoring
    Citations: 99
  •  Fabrication of bio-based amphiphilic hydrogel coating with excellent antifouling and mechanical properties
    Citations: 73
  •  Amphiphilic marine antifouling coatings based on a hydrophilic polyvinylpyrrolidone and hydrophobic fluorine–silicon-containing block copolymer
    Citations: 61
  •  Force-induced ion generation in zwitterionic hydrogels for a sensitive silent-speech sensor
    Citations: 52

 

 

 

 

 

Dr. Azza Hassoon | Metallodrugs | Best Researcher Award

Dr. Azza Hassoon | Metallodrugs | Best Researcher Award

Dr.Azza Hassoon,Mansoura University,Egypt

Dr. Azza Ahmed Mousad Megahed Hassoon is a Lecturer in the Department of Chemistry at Mansoura University, Egypt. Specializing in inorganic chemistry, she holds a Ph.D. from the University of Szeged, Hungary, where she graduated with honors. Dr. Hassoon’s research focuses on metal complex synthesis and bioinorganic chemistry, contributing to over seven publications in respected journals. She has also been recognized with various awards and scholarships, including the RSC Research Fund grant and travel awards for international conferences. An active participant in global conferences and summer schools, she is a member of the Spanish Royal Society of Chemistry (RSEQ).

Professional Profile:

Google Scholar

Orcid

Scopus

Summary of Suitability for Award:

Dr. Azza Ahmed Mousad Megahed Hassoon would be a strong candidate for a “Best Researcher Award.” Her contributions to inorganic and bioinorganic chemistry, especially in the synthesis and study of metallodrugs, demonstrate a significant impact on her field. Her international research experiences, including funded collaborations and recognition from prestigious societies like the RSC and RSEQ, underscore her commitment to advancing metallodrug research. Her impressive publication record, coupled with active involvement in global conferences and summer schools, reflect both her dedication to research excellence and her ongoing engagement with the scientific community.

🎓Education:

Dr. Azza Ahmed Mousad Megahed Hassoon a B.Sc. in Chemistry with honors from Mansoura University, Egypt, in 2012, achieving an impressive 85.52% grade. They went on to earn an M.Sc. in Inorganic Chemistry from the same institution in 2016. Recently, they completed a Ph.D. in Inorganic Chemistry at the University of Szeged, Hungary, in 2023, also graduating with honors.

🏢Work Experience:

Dr. Azza Ahmed Mousad Megahed Hassoon has accumulated extensive work experience in the Chemistry Department at Mansoura University, Egypt. She began her academic career as a Demonstrator from December 2012 to February 2016, where she supported faculty members in laboratory courses and student instruction. Following this role, she was appointed as an Assistant Lecturer from February 2016 to August 2023, during which she contributed to both teaching and research activities. In August 2023, she advanced to the position of Lecturer, where she continues to engage in teaching, mentoring students, and conducting research in inorganic chemistry. Her progressive roles reflect her commitment to academic excellence and her contributions to the field

🏅Awards:

Dr. Azza Ahmed Mousad Megahed Hassoon has received several prestigious awards and scholarships throughout her academic career. Notably, she was granted the Stipendium Hungaricum Scholarship for her Ph.D. at the University of Szeged, Hungary, from February 2019 to April 2023. Her contributions to the field have also been recognized through various Travel Awards for international conferences, including the International Conference on Metal-Binding Peptides (MBP) in July 2022 and the 16th International Symposium on Applied Bioinorganic Chemistry in June 2023. In 2024, she secured an RSC Research Fund Grant of £5000 to further her research. Additionally, Dr. Hassoon served as a Visiting Scholar at Brigham Young University in the USA from February to August 2016 and participated in a Visiting Summer School at JINR-Dubna, Russia, in May-June 2015, enhancing her international exposure and collaboration in the field of inorganic chemistry.

🔬Research Focus:

Dr. Azza Ahmed Mousad Megahed Hassoon specializes in Inorganic Chemistry, concentrating on metal complex synthesis and bioinorganic chemistry. Her research includes investigating metallodrugs and their applications in biological systems, which underscores her commitment to understanding the interactions between metal complexes and biological molecules. This focus not only highlights her academic expertise but also her contributions to developing innovative solutions in the field of chemistry, enhancing our understanding of how these compounds can be utilized in medical applications.

Publication Top Notes:

  • Synthesis, single crystal X-ray, spectroscopic characterization and biological activities of Mn²⁺, Co²⁺, Ni²⁺, and Fe³⁺ complexes
    • Citations: 20
  • New Square-Pyramidal Oxovanadium (IV) Complexes Derived from Polydentate Ligand (L1)
    • Citations: 19
  • Peptide-based chemical models for lytic polysaccharide monooxygenases
    • Citations: 5
  • Characterization of copper(II) specific pyridine containing ligands: Potential metallophores for Alzheimer’s disease therapy
    • Citations: 5
  • The interaction of half-sandwich (η⁵-Cp) Rh (III) cation with histidine containing peptides and their ternary species with (N, N) bidentate ligands*