Assist. Prof. Dr Rajesh Kumar | Chemistry | Excellence in Research Award

Assist. Prof. Dr Rajesh Kumar | Chemistry | Excellence in Research Award

Assist. Prof. Dr Rajesh Kumar | Assistant Professor | Government Degree College Chaubattakhal Pauri Garhwal Uttarakhand India | India

Dr. Rajesh Kumar is an Assistant Professor in the Department of Chemistry at Government Degree College, Chaubattakhal, Pauri Garhwal, Uttarakhand, India. With a strong academic foundation, he holds a Ph.D. in Chemistry (Nanochemistry) from Kumaun University, Nainital, obtained, after completing his M.Sc. in Organic Chemistry from the same university . His career demonstrates a commitment to advancing nanochemical research with a focus on environmental sustainability, mixed oxide-based nanomaterials, water remediation, biofuels, and bioactive nanoparticles. Dr. Kumar has published 230 research documents, which have collectively received 6,577 citations across 6,161 referencing works, reflecting a strong academic footprint with an h-index of 32. He has authored 35 publications, including 25 research papers and 10 book chapters, and has participated in over 60 national and international conferences. Dr. Kumar has also been recognized with several prestigious honors such as the Young Scientist Awards (2019 & 2022), multiple Best Oral and Paper Presentation Awards (2024), and the Best Abstract Award (2017). His dedication extends beyond research, as he actively serves on editorial boards of reputed international journals and is a life member of leading scientific associations including ISCA, STRA, and TERA. With five years of teaching experience, he continues to guide postgraduate dissertations and promote scientific inquiry among emerging scholars. Dr. Kumar’s innovative contributions, including multiple published patents in nanomaterial synthesis and biodiesel production, reflect his pursuit of practical, sustainable chemical solutions for modern environmental challenges.

Profile : Scoups | Orcid 

Featured Publications :

  • Tamta, A., Lohiya, G., Kumar, R., Kandpal, A., Chandra, B., Joshi, R., & Kandpal, N. D. (2025). Evaluating the in-vitro antioxidant, anti-inflammatory and anticancer potentials of NiO-cellulose nanocomposites. BioNanoScience, 15, 1–17.

  • Kumar, R., Ali, S. R., Karmakar, R., Sharma, R., & Haider, N. (2024). Adsorption potential of iron-zirconium oxide nanoparticles for 3-chlorophenol and 3-nitrophenol: Thermodynamic, kinetic and mechanistic studies. Russian Journal of General Chemistry, 94, 1419–1435.

  • Semwal, N., Mahar, D., Chatti, M., Kumar, R., & Arya, M. C. (2024). Ni-Zn/CeO2 nanocomposites for enhanced adsorptive removal of 4-chlorophenol. Environmental Science and Pollution Research, 31, 51934–51953.

  • Vaishali, Sharma, S., Sharma, P., Das, D., Vashistha, V. K., Dhiman, J., Sharma, R., Kumar, R., Singh, M. V., & Kumar, Y. (2024). Magnetic nanoparticle-catalysed synthesis of quinoline derivatives: A green and sustainable method. Heliyon, 10, 1–54.

  • Kumar, R., Bhoj, G. S., Arya, M. C., Karmakar, R., Sharma, P. K., & Tripathi, V. (2024). Polymer precursor method for the synthesis of zinc oxide nanoparticles: A novel approach. Environmental Conservation Journal, 1–7.

Dr. Hyun Jung Lee | Materials chemistry | Best Researcher Award

Dr. Hyun Jung Lee | Materials chemistry | Best Researcher Award

Dr. Hyun Jung Lee, Materials chemistry, Korea Institute of Fusion Energy, South Korea

Dr. Hyunjung Lee is a distinguished physicist and Principal Investigator at the Korea Institute of Fusion Energy (KFE) in Daejeon, South Korea. With a Ph.D. in Physics from Kyungpook National University, she has over two decades of research expertise in superconducting magnet systems, cryogenics, and fusion technology. She has made vital contributions to flagship projects like KSTAR, K-DEMO, and ITER, leading multi-million-dollar development efforts. A committed advocate for women in STEM, she represents Korea at international physics conferences and plays key roles in national scientific committees. Dr. Lee has authored over 60 peer-reviewed publications and continues to lead innovative research on high-field magnet design, quench analysis, and thermo-hydraulics. Her contributions significantly advance global nuclear fusion efforts, showcasing both technical excellence and visionary leadership.

Professional Profile :         

Scopus 

Summary of Suitability for Award:

Dr. Hyunjung Lee is a highly accomplished researcher with a robust and diverse academic and professional background in fusion energy and superconductivity. She has extensive experience in superconducting magnet systems and cryogenic technologies, leading significant projects like the development of superconducting magnets for the K-DEMO and KSTAR fusion reactors. As a principal investigator at the Korea Institute of Fusion Energy (KFE), her work involves cutting-edge research in fusion physics, including the design, analysis, and operational stability of superconducting magnets. Dr. Hyunjung Lee is undoubtedly a suitable candidate for the “Best Researcher Award”, due to her impactful research, leadership in large-scale international projects, and her contributions to the advancement of fusion energy technology. Her innovative work in superconducting magnet systems has advanced both scientific understanding and practical applications in fusion energy, making her an outstanding candidate for this prestigious award.

🎓Education:

Dr. Hyunjung Lee completed her Ph.D. in Physics at Kyungpook National University, Daegu, South Korea, in 2003. Her doctoral research focused on the behavior of materials in extreme magnetic fields and low temperatures, setting the stage for her future work in superconducting systems. Prior to that, she earned her B.S. in Physics from Daegu University in 1997. Her strong academic foundation enabled her to transition seamlessly into high-level research, with early postdoctoral training at the Korea Basic Science Institute (KBSI). Dr. Lee’s educational background reflects a deep commitment to fundamental physics, with an application-driven focus on fusion energy systems and superconducting technologies. Her continuous engagement with advanced analytical and cryogenic systems throughout her education laid the groundwork for her leadership in magnet design and thermo-hydraulic simulation for nuclear fusion applications.

🏢Work Experience:

Dr. Lee began her career as a Postdoctoral Associate (2003–2006) at the Korea Basic Science Institute (KBSI), where she researched material properties under extreme conditions. She then joined the Korea Institute of Fusion Energy (KFE) in 2006, advancing from Senior Researcher to Principal Investigator. From 2006–2013, she focused on thermo-hydraulic and quench analysis for KSTAR and K-DEMO superconducting magnets. Between 2013–2015, she contributed to cryogenic system design for the RAON project. From 2016–2018, she also served as an Associate Professor at the University of Science and Technology (UST), teaching accelerator and fusion physics. Her key achievements include designing 16T superconducting magnets, establishing experimental facilities (~$30 million), and collaborating with global fusion initiatives such as ITER, ENEA, and General Atomics. She is currently a leading figure in Korea’s national fusion reactor (K-DEMO) magnet program and a central voice in international fusion technology forums.

🏅Awards: 

While Dr. Hyunjung Lee’s CV does not list specific named awards, her achievements are reflected through her prestigious roles, international collaborations, and scientific committee appointments. She serves as an Executive Officer in the Korean Physical Society’s Academic and Women’s Committees (2021–present), showcasing her leadership in Korea’s physics community. She has been a Mentoring Fellow of the Korea Foundation for Women in Science and Technology (2008–2020), guiding the next generation of scientists. Her appointment to the Peaceful Unification Advisory Council (2015–2017) reflects national recognition beyond science. Dr. Lee frequently represents Korea in international conferences, including the International Conference on Women in Physics and the Magnet Technology Conference, evidencing her global stature. Her research is highly regarded in fusion communities and continues to influence policies and project planning at the international level. Her awards lie in the transformative impact of her research and leadership across nuclear fusion initiatives.

🔬Research Focus:

Dr. Hyunjung Lee’s research is centered on superconducting magnet systems and cryogenic thermo-hydraulics for nuclear fusion reactors. Her core contributions span magnet design, quench analysis, and the establishment of fusion magnet experimental infrastructure. A key architect of Korea’s K-DEMO and KSTAR fusion magnet programs, she focuses on developing high-field (up to 16T) superconducting magnets and advanced quench protection mechanisms. Her work includes detailed thermo-hydraulic modeling, AC loss analysis, and cooling loop simulations to ensure cryogenic stability. She also leads international collaboration on magnet technologies with partners like ITER, ENEA, and General Atomics. Dr. Lee has also contributed to the RAON rare isotope accelerator project, analyzing cryogenic systems for linear accelerators. Her research directly advances fusion energy’s feasibility, offering safe, efficient, and scalable superconducting systems for future reactors. She is a thought leader in fusion technology development, particularly in enabling long-term stability of superconducting devices under high-stress operations.

Publication Top Notes:

Design Updates of a Fusion Superconducting Conductor Test Facility Magnet (SUCCEX)

Assessment of KSTAR Nb₃Sn Superconducting Magnet Property After Long-Term Operation Since 2008

Effect of Flow Imbalance on the Operational Performance of the KSTAR PF1UL Magnets

Design Updates and Thermo-Hydraulic Analysis of K-DEMO CS Magnets

Thermo-Hydraulic Analysis of the KSTAR PF Cryogenic Loop Using SUPERMAGNET Code

Citations: 1​

 

Assoc. Prof. Dr. Shixiong Li | Inorganic Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Shixiong Li | Inorganic Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Shixiong Li,  Inorganic Chemistry,  Teacher at Wuzhou University, China

Dr. Shixiong Li is a dedicated environmental scientist and academician serving as a lecturer and associate professor at Wuzhou University. He is also a master’s supervisor at Guangxi University and holds multiple expert roles, including membership in the Guangxi Science and Technology Expert Database and the Wuzhou Environmental Emergency Expert Database. Dr. Li obtained his Ph.D. in Environmental Science and Engineering from South China University of Technology in 2018. His research interests lie in the synthesis of functional environmental materials and water resource reuse technologies. With a strong presence in scientific publishing, he has authored numerous papers in prestigious journals like Angewandte Chemie International Edition, Journal of Catalysis, and Inorganic Chemistry Frontiers. He also serves as a peer reviewer for high-impact journals. In addition to academia, he contributes to legal and civic activities as a people’s assessor at the Changzhou District Court.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Shixiong Li, currently serving as a teacher and researcher at Wuzhou University, has built a distinguished research career in the field of environmental chemistry. With a Ph.D. in Environmental Science and Engineering from South China University of Technology (2018), he has demonstrated strong academic training in environmental disciplines. Dr. Shixiong Li is a highly deserving candidate for the Research for “Environmental Chemistry Award”. His substantial contributions to environmental material synthesis and pollutant remediation directly align with the award’s mission to recognize impactful environmental chemistry research. His innovative approaches, quality publications, and practical focus on water purification and waste treatment place him among the leading researchers in this domain.

🎓Education:

Dr. Shixiong Li earned his Doctorate (Ph.D.) in Environmental Science and Engineering from South China University of Technology . His doctoral research focused on the design and synthesis of environmentally functional materials and the mechanisms underpinning water purification technologies. Prior to his Ph.D., Dr. Li completed his undergraduate and possibly master’s degrees (specific details not mentioned) likely in chemistry, materials science, or environmental engineering, forming a solid foundation for his current research. His academic journey reflects a strong commitment to interdisciplinary environmental studies, particularly involving the synthesis of metal-organic frameworks (MOFs), photocatalytic systems, and advanced adsorption materials. His education equipped him with a deep understanding of green chemistry, catalysis, nanomaterials, and environmental remediation technologies, which he now applies in both academic and real-world contexts. Dr. Li continues to expand his educational expertise through supervising graduate students and participating in academic collaborations at regional and international levels.

🏢Work Experience:

Dr. Shixiong Li currently serves as a full-time lecturer and associate professor at the School of Mechanical and Resource Engineering, Wuzhou University. He is also a recognized master’s supervisor at Guangxi University. Over the years, Dr. Li has contributed significantly to teaching, curriculum development, and guiding graduate research. His professional roles extend beyond teaching — he is an expert member of multiple scientific and technical committees, including the Guangxi Science and Technology Expert Database, Wuzhou Environmental Emergency Expert Database, and the Materials Expert Committee at Viser Publishing (Singapore). He also serves as a standardization expert and legal assessor in Wuzhou. His experience includes managing and executing national and regional research projects, particularly in the field of photocatalysis and wastewater treatment. Furthermore, he acts as a peer reviewer for elite scientific journals, such as JACS and Journal of Catalysis, demonstrating his prominence in the academic community.

🏅Awards: 

Dr. Shixiong Li has been recognized for his academic and professional excellence with various prestigious appointments and honors. He is a selected expert in the Guangxi Science and Technology Expert Database, indicating regional recognition of his expertise. In Wuzhou, he holds positions in the Environmental Emergency Expert Database and serves as a Standardization Expert, which reflect his contributions to public environmental safety and policy. His peer-reviewing roles in high-ranking SCI journals like Angewandte Chemie, JACS, and Inorganic Chemistry highlight international acknowledgment of his scientific merit. Furthermore, his appointment as a People’s Assessor at the Changzhou District Court demonstrates his trusted civic role in community and judicial matters. His invitation to the Materials Expert Committee of Viser Publishing (Singapore) further indicates global engagement in scientific publishing. Collectively, these honors underline his multifaceted contributions in research, public service, and scientific leadership.

🔬Research Focus:

Dr. Shixiong Li’s research centers on the design and synthesis of functional environmental materials, with a particular emphasis on metal-organic frameworks (MOFs) and their applications in photocatalysis, adsorption, and wastewater treatment. His work explores green, in-situ synthetic approaches for constructing Cu(I)/Cu(II) hybrid materials, aiming to degrade organic pollutants and remove heavy metals from aqueous systems efficiently. He investigates the mechanistic roles of inorganic ions and coordinated ligands in modulating the photocatalytic and adsorption performances of MOFs. Additionally, his current projects explore hydroxyl-modified two-dimensional Cu-based photocatalysts, revealing insights into molecular-level interactions that boost reactivity and selectivity. Dr. Li’s findings have advanced sustainable material applications for water reuse and environmental remediation. Through interdisciplinary approaches combining inorganic chemistry, materials science, and environmental engineering, his research contributes to scalable, eco-friendly technologies for real-world problems. His publications in top-tier journals and ongoing collaborations confirm the practical relevance and innovation of his scientific contributions.

Publication Top Notes:

1. Mechanism of Coordinated Anions Regulating the Photocatalytic Performance of Cu(I) Metal–Organic Frameworks

2. An Iron-Based Metal–Organic Framework with Strong Water Stability and Effective Adsorption of Methylene Blue from Wastewater

3. Zinc Complexes with Mixed Ligands and the Effect on Excitation and Emission Spectra by Changing the Binding Sites

4. Praseodymium–Selenium Connecting Selenotungstate Containing Mixed Building Blocks for Catalytic Synthesis of Aza-Heterocycles

5. A Two-Dimensional Cobalt-Based Metal–Organic Framework Efficiently Adsorbs Cr(VI) from Wastewater

6. Effect and Mechanism of Inorganic Ions on the Photocatalytic Performance of Amino Modified UIO-67 Type Metal–Organic Framework

7. Two‐Dimensional Copper‐Based Metal–Organic Framework for Efficient Removal of Methylene Blue from Wastewater

8. Performance and Mechanism of the Modified Group Regulated the MIL-101(Fe) Type Fenton-like Catalysts

9. A Bifunctional Three-Dimensional Zn(II) Metal–Organic Framework with Strong Luminescence and Adsorption Cr(VI) Properties

10. Effect and Mechanism of Inorganic Anions on the Adsorption of Cd²⁺ on Two-Dimensional Copper-Based Metal–Organic Framework

 

Dr. Imran Aslam | Materials Chemistry | Best Researcher Award

Dr. Imran Aslam | Materials Chemistry | Best Researcher Award

Dr. Imran Aslam | Materials Chemistry | Associate Professor at Department of Physics, GC Women University Sialkot , Pakistan

Dr. Imran Aslam is an Associate Professor (BPS-20) at the Department of Physics, GC Women University, Sialkot, Pakistan. With over 15 years of teaching and research experience, he has authored 60+ research articles in international peer-reviewed journals, accumulating 3250 citations, an H-index of 27, and an i10-index of 47. His research specializes in nano- heterostructured materials for energy storage, environmental applications, and density functional theory (DFT). He serves as a reviewer for prestigious journals like Scientific Reports (Nature), Journal of Crystal Growth, and Chemosphere. As an HEC-approved PhD supervisor, he has supervised 11 MS students and 4 PhD candidates. He has also been a keynote speaker at multiple international conferences. His contributions to academia have earned him accolades such as the CAS President’s International Fellowship (2016) and the Quaid-e-Azam Gold Medal Award (2020).

Professional Profile :         

Google Scholar

Scopus  

Summary of Suitability for Award:

Dr. Imran Aslam, an Associate Professor at GC Women University Sialkot, is a distinguished researcher in the field of nanomaterials and energy storage. With over 15 years of research and teaching experience, he has authored/co-authored more than 60 research articles in high-impact international journals, accumulating a total impact factor of 300 and over 3,250 citations (H-index: 27, i10-index: 47). His extensive research contributions span the synthesis and characterization of micro/nano heterostructured materials, photocatalysis, supercapacitors, and density functional theory (DFT). Additionally, he serves as a reviewer for multiple reputed journals and is an HEC-approved Ph.D. supervisor. His role as an invited speaker at international conferences further highlights his expertise. Dr. Imran Aslam’s significant contributions to material science, coupled with his prolific publication record, high citation impact, and leadership in research supervision, make him an outstanding candidate for the “Best Researcher Award.” His dedication to advancing nanotechnology and sustainable energy solutions further strengthens his suitability for this prestigious recognition.

🎓Education:

Dr. Imran Aslam holds a Postdoctoral Fellowship (2017) from the National Centre for Nanoscience and Technology (NCNST), Chinese Academy of Sciences. He earned his PhD (2015) from the Beijing Institute of Technology, China, as a recipient of the CSC Scholarship (2011-2015). His M.Phil. (2010) degree is from GC University, Lahore, Pakistan, where he was awarded the M.Phil. Fellowship at Salam Chair in Physics. Prior to that, he completed his M.Sc. (2008) in Physics from the University of the Punjab, Lahore. His academic achievements also include the Distinguished Student Award (2013/2014) at Beijing Institute of Technology, China. Throughout his education, Dr. Aslam has demonstrated a strong focus on nanotechnology, energy storage, photocatalysis, and computational material science, laying the foundation for his extensive research career.

🏢Work Experience:

Dr. Imran Aslam has an extensive 15-year career in academia and research. Currently, he is an Associate Professor at GC Women University, Sialkot. He has previously served as Resident Officer (2020-2023), Convener of the Mess Committee (2021-2023), Technical Evaluation Committee (2020-2023), and Events Management Committee (2022-2023) at UET Lahore, Narowal Campus. Additionally, he was MPhil Coordinator and Exam Superintendent (2015-2016) at the University of Gujrat. His contributions extend to exam coordination, admissions, and scholarship programs at GCWUS. He is an external examiner for MS/PhD theses at multiple universities, including University of Gujrat, Riphah International University, and The University of Chenab. As a co-PI of an HEC-funded project worth 9.4 million rupees, his expertise also spans research administration. Dr. Aslam actively reviews manuscripts for top-tier journals, ensuring quality contributions to the scientific community.

🏅Awards: 

Dr. Imran Aslam has received numerous national and international accolades in recognition of his academic and research contributions. In 2020, he was awarded the Quaid-e-Azam Gold Medal by Istehkam-e-Pakistan Foundation. His international recognition includes the CAS President’s International Fellowship Initiative (PIFI) 2016 for postdoctoral studies at the Chinese Academy of Sciences. As a PhD scholar at Beijing Institute of Technology, he was honored with the Distinguished Student Award (2013/2014) and the CSC Scholarship (2011-2015). During his M.Phil. at GC University, Lahore, he secured a fellowship at Salam Chair in Physics. His consistent excellence in research and leadership in various academic roles has further solidified his reputation as a distinguished scientist in materials science, photocatalysis, and nanotechnology.

🔬Research Focus:

Dr. Imran Aslam’s research is centered on the synthesis and characterization of micro/nano heterostructured materials using cost-effective methods. His work explores optical, photoluminescence, and energy storage properties with applications in supercapacitors and lithium-ion batteries. Additionally, his expertise extends to photocurrent response, incident photo-to-current conversion efficiency (IPCE), and photocatalytic hydrogen production via water-splitting. His environmental research involves photo-degradation processes for pollutant removal. He also conducts computational studies using Density Functional Theory (DFT) to predict and optimize material properties for various energy applications. His contributions have significantly advanced material science, nanotechnology, and environmental sustainability. His findings are published in high-impact journals, and he collaborates internationally to push the frontiers of nano-engineered materials.

Publication Top Notes:

Multifunctional g-C₃N₄ Nanofibers: A Template-Free Fabrication and Enhanced Optical, Electrochemical, and Photocatalyst Properties

Citations: 412

Tubular graphitic-C₃N₄: A Prospective Material for Energy Storage and Green Photocatalysis

Citations: 275

High-Valence-State NiO/Co₃O₄ Nanoparticles on Nitrogen-Doped Carbon for Oxygen Evolution at Low Overpotential

Citations: 239

Synthesis of Novel ZnV₂O₄ Hierarchical Nanospheres and Their Applications as Electrochemical Supercapacitor and Hydrogen Storage Material

Citations: 183

Template-Free Synthesis of CuS Nanosheet-Based Hierarchical Microspheres: An Efficient Natural Light Driven Photocatalyst

Citations: 174

Green Synthesis of TiO₂ Nanoparticles Using Lemon Peel Extract: Their Optical and Photocatalytic Properties

Citations: 147

Bifunctional Catalysts of Co₃O₄@GCN Tubular Nanostructured (TNS) Hybrids for Oxygen and Hydrogen Evolution Reactions

Citations: 143

Large-Scale Production of Novel g-C₃N₄ Microstrings with High Surface Area and Versatile Photodegradation Ability

Citations: 129

A Novel Z-Scheme WO₃/CdWO₄ Photocatalyst with Enhanced Visible-Light Photocatalytic Activity for the Degradation of Organic Pollutants

Citations: 128

One-Dimensional Graphitic Carbon Nitrides as Effective Metal-Free Oxygen Reduction Catalysts

Citations: 101

The Synergistic Effect Between WO₃ and g-C₃N₄ Towards Efficient Visible-Light-Driven Photocatalytic Performance

Citations: 95

Assoc. Prof. Dr. Yue-Jin Liu | Organic Chemistry | Green Chemistry Award

Assoc. Prof. Dr. Yue-Jin Liu | Organic Chemistry | Green Chemistry Award

Assoc. Prof. Dr. Yue-Jin Liu | Organic Chemistry | Hubei University ,China

Dr. Yue-Jin Liu is an Associate Professor at Hubei University, specializing in organic chemistry and catalytic transformations. His research primarily focuses on developing novel methodologies for inert chemical bond activation, particularly carbon-hydrogen (C–H) bond functionalization. Dr. Liu has made significant contributions to the field by designing innovative strategies for multi-component reactions, paving the way for more efficient synthesis of biologically active molecules and functional organic compounds. His recent work on ruthenium-catalyzed remote C–H functionalization of naphthalenes has been widely recognized. Dr. Liu has published in leading journals such as Chemical Science, contributing valuable insights to the scientific community. Despite his intensive academic engagements, he continues to explore new synthetic strategies that promote sustainable and green chemistry approaches. Dr. Liu’s dedication to advancing organic synthesis has established him as an emerging expert in the field, with an ever-growing impact on modern synthetic methodologies.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Yue-Jin Liu’s research focuses on developing novel organic synthesis methods with an emphasis on C–H bond activation, a key aspect of green chemistry. His work on ruthenium-catalyzed three-component reactions enables efficient, modular, and atom-economical synthesis of multifunctional naphthalenes. This aligns with green chemistry principles by minimizing waste, reducing the need for hazardous reagents, and enhancing reaction efficiency. His catalyst-driven methodologies promote sustainable chemical transformations, making his research highly relevant to the Green Chemistry Award category. Dr. Yue-Jin Liu’s contributions to sustainable organic synthesis through C–H activation strategies make him a strong contender for the “Green Chemistry Award”. His work reduces environmental impact by utilizing direct functionalization approaches, avoiding toxic reagents, and increasing efficiency in organic synthesis. These advancements have significant implications for eco-friendly chemical manufacturing, supporting global sustainability goals.

🎓Education:

Dr. Yue-Jin Liu pursued his higher education in organic chemistry, focusing on advanced synthesis and catalysis. He obtained his Bachelor’s, Master’s, and Ph.D. degrees from prestigious institutions where he specialized in carbon-hydrogen bond activation and synthetic methodologies. His doctoral research laid the foundation for his career, emphasizing transition-metal-catalyzed organic transformations. During his academic journey, Dr. Liu worked under the guidance of renowned chemists, gaining expertise in molecular design, reaction mechanisms, and green synthetic approaches. Throughout his education, he engaged in multiple research projects that contributed to the development of new catalytic systems. His commitment to innovation and excellence in organic synthesis has led him to a successful career in academia, where he continues to mentor students and advance research in C–H activation. His strong academic background serves as the backbone of his contributions to the field of organic and medicinal chemistry.

🏢Work Experience:

Dr. Yue-Jin Liu currently serves as an Associate Professor at Hubei University, where he focuses on organic synthesis and catalysis. With years of experience in developing new methodologies for carbon-hydrogen bond activation, he has contributed significantly to green chemistry and efficient molecular synthesis. His expertise extends to transition-metal catalysis, multi-component reactions, and synthetic applications in biologically active molecules. Dr. Liu has led several research projects, including the ruthenium-catalyzed three-component tandem remote C–H functionalization of naphthalenes, which has enhanced the efficiency of modular synthesis. Beyond academia, he actively collaborates with researchers worldwide, contributing to high-impact publications in Chemical Science. His commitment to teaching and mentoring young researchers has shaped the next generation of scientists in organic chemistry. Dr. Liu’s extensive experience in synthetic methodologies continues to drive forward the boundaries of modern organic transformations.

🏅Awards: 

Dr. Yue-Jin Liu’s groundbreaking work in organic synthesis and catalysis has earned him recognition in the scientific community. His research on C–H activation strategies has been cited extensively, reflecting his contributions to green chemistry and innovative molecular synthesis. In 2025, he was nominated for the Green Synthesis Award for his pioneering work on ruthenium-catalyzed multi-component reactions. His publications in top-tier journals like Chemical Science have solidified his reputation as an emerging leader in organic chemistry. Despite his focus on fundamental research, Dr. Liu’s methodologies have practical applications in pharmaceutical synthesis and materials chemistry, earning him academic accolades. He continues to strive for excellence, pushing the boundaries of modern synthetic techniques and contributing to sustainable chemical transformations. His commitment to innovation and environmental responsibility has positioned him as a rising figure in green and sustainable chemistry.

🔬Research Focus:

Dr. Yue-Jin Liu’s research is dedicated to developing novel strategies for carbon-hydrogen (C–H) bond activation, aiming to create efficient, sustainable, and selective organic transformations. His work emphasizes multi-component reactions (MCRs), enabling the synthesis of complex molecular frameworks with high atom economy. A significant part of his research involves ruthenium-catalyzed tandem remote C–H functionalization, which facilitates the modular and concise synthesis of multifunctional naphthalenes. His studies contribute to green chemistry, reducing the need for harsh reagents and wasteful synthetic steps. Dr. Liu also explores transition-metal catalysis and ligand-controlled selectivity, expanding the scope of synthetic methodologies for biologically active compounds. His innovative approaches have potential applications in drug discovery, materials science, and fine chemical production. By integrating computational chemistry and experimental design, he continuously seeks to enhance reaction efficiency, selectivity, and sustainability in modern organic synthesis.

Publication Top Notes:

Cobalt(II)-Catalyzed Selective C2–H Heck Reaction of Native (N–H) Indoles Enabled by Salicylaldehyde Ligand

Salicylaldehyde-Enabled Co(II)-Catalyzed Oxidative C–H Alkenylation of Indoles with Olefins

Ruthenium-Catalyzed Three-Component Tandem Remote C–H Functionalization of Naphthalenes: Modular and Concise Synthesis of Multifunctional Naphthalenes

Mild C−H Alkoxylation of Aromatic Amides Catalyzed by Salicylaldehyde‐Co(II) Complexes

Cobalt/Salicylaldehyde-Enabled C–H Alkoxylation of Benzamides with Secondary Alcohols under Solvothermal Conditions

Salicylaldehyde-Cobalt(II)-Catalyzed C–H Alkoxylation of Indoles with Secondary Alcohols

Selective Synthesis of Sulfonamides and Sulfenamides from Sodium Sulfinates and Amines

Rapid Modular Synthesis of Indole Ethers via Dehydrogenative Cross-Coupling Reaction of Indoles and Alcohols

Remote C5-Selective Functionalization of Naphthalene Enabled by P–Ru–C Bond-Directed δ-Activation

Ru(II)-Catalyzed P(III)-Assisted C8-Alkylation of Naphthphosphines

Ruthenium-Catalyzed Meta-Difluoromethylation of Arene Phosphines Enabled by 1,3-Dione

Salicylaldehyde-Promoted Cobalt-Catalyzed C–H/N–H Annulation of Indolyl Amides with Alkynes: Direct Synthesis of a 5-HT3 Receptor Antagonist Analogue

 

Assist. Prof. Dr. Arman Zarebidaki | Materials Chemistry | Best Researcher Award

Assist. Prof. Dr. Arman Zarebidaki | Materials Chemistry | Best Researcher Award

Assist. Prof. Dr. Arman Zarebidaki | Materials Chemistry | Assistant professor at Amirkabir University of Technology , Iran

Dr. Arman Zarebidaki is an Assistant Professor and Head of the Corrosion Engineering and Material Protection Group at Amirkabir University of Technology (Tehran Polytechnic), Bandarabbas Campus, Iran. With a strong background in materials engineering, electrochemistry, and surface engineering, his research focuses on advanced coatings for corrosion protection, hydrogen evolution, and oxygen evolution reactions. He has extensive experience in electrochemical techniques such as polarization methods, voltammetry, and impedance spectroscopy. Dr. Zarebidaki has supervised over 25 master’s theses and has authored multiple high-impact journal articles. He holds three national patents in corrosion prevention and is recognized for his contributions to sustainable energy technologies and industrial material protection.

Professional Profile :                       

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Arman Zarebidaki is a highly accomplished researcher in materials science, electrochemistry, and surface engineering, making him an exceptional candidate for the “Best Researcher Award”. His research spans crucial areas such as corrosion protection, electrocatalysis, and advanced coating technologies, which have significant industrial and environmental applications. His high-impact publications, extensive teaching experience, and contributions to innovative material protection methods demonstrate his leadership in the field. He has also secured three national patents, reflecting his ability to translate research into practical solutions. Recognized as the Top Researcher in Hormozgan Province (2023) and a Distinguished Researcher at Azad University (2015), his accolades further establish his excellence in scientific innovation. Dr. Zarebidaki’s outstanding research in corrosion-resistant coatings, electrochemical energy applications, and material durability makes him a strong contender for the “Best Researcher Award”. His work not only advances scientific knowledge but also has direct implications for industry and sustainability, positioning him among the top researchers in his field.

🎓Education:

Dr. Arman Zarebidaki holds a Ph.D. in Metallurgical & Materials Engineering from the University of Tehran (2006–2012), where he investigated the tribo-corrosion behavior of Ni-P electroless coatings with SiC nanoparticles and carbon nanotubes. His doctoral research resulted in multiple high-impact publications. Prior to that, he earned an M.S. in Metallurgical & Materials Engineering from the University of Tehran (2003–2006), focusing on optimizing and characterizing Al/Gr composites produced by in-situ powder metallurgy. His master’s research led to a Q2-ranked ISI publication. He completed his B.S. in Materials Engineering-Industrial Metallurgy at Azad University, Yazd Branch (1998–2003), where he studied surface hardening of cast iron using the TIG process. Throughout his academic journey, he maintained outstanding GPAs and received multiple accolades for his research excellence. His extensive educational background laid the foundation for his expertise in materials engineering, corrosion protection, and advanced electrochemical methods.

🏢Work Experience:

Dr. Arman Zarebidaki is an Assistant Professor at Amirkabir University of Technology, where he has been leading the Corrosion Engineering and Material Protection Group since 2023. He has been actively involved in teaching courses such as oxidation and hot corrosion, corrosion inhibitors, and advanced electrochemistry laboratory techniques. Prior to this, he served as an Assistant Professor at Azad University, Yazd Branch (2008–2014), where he taught advanced electrochemistry, cathodic & anodic protection, and corrosion science. With over 25 master’s theses supervised, he has contributed significantly to the field of corrosion and electrocatalysis . His expertise includes deposition techniques for coatings and nanocomposite materials, corrosion assessments, and electrochemical analysis. He is proficient in methods such as cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. His research extends to nanotube production via anodizing, corrosion inhibition using green inhibitors, and the development of protective coatings for industrial applications.

🏅Awards: 

Dr. Arman Zarebidaki has received several prestigious awards throughout his career. In 2023, he was recognized as the Top Researcher in technical and engineering fields in Hormozgan province. He was also named a Distinguished Researcher by the Deputy of Education and Technology at Islamic Azad University, Yazd Branch, in 2015. His exceptional teaching abilities earned him the Exemplary Professor Award in 2014. Additionally, his Ph.D. thesis was awarded as a Superior Dissertation at the University of Tehran in 2012. As an M.Sc. student, he ranked 1st among 50 peers in the Department of Material Science and Engineering. His contributions to the field of corrosion prevention and control are further highlighted by three national patents, including innovations in self-healing epoxy coatings, corrosion-fatigue assessment apparatus, and electroless coatings for oil and gas steel equipment, demonstrating his commitment to advancing materials engineering and corrosion protection technologies.

🔬Research Focus:

Dr. Arman Zarebidaki’s research centers on materials engineering, electrochemistry, and surface engineering, with a strong emphasis on developing advanced coatings to enhance material durability and performance. His work involves designing metallic, composite, and nanocomposite coatings for industrial applications, particularly for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), aiming to improve the efficiency of electrolysis in hydrogen and oxygen production. He specializes in electrochemical characterization techniques, including polarization methods, linear sweep voltammetry, cyclic polarization, and electrochemical impedance spectroscopy (EIS), to analyze corrosion resistance and material degradation. Additionally, he investigates electrocatalysis mechanisms and surface chemistry to develop sustainable energy solutions. His expertise extends to nanotube production through anodizing, corrosion inhibitors, and smart coatings. His contributions help address global challenges related to energy sustainability, environmental protection, and climate change, making his research pivotal in the advancement of corrosion-resistant and energy-efficient materials.

Publication Top Notes:

Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024–graphite composites produced by in situ powder metallurgy method

Citations: 396

An investigation on effects of heat treatment on corrosion properties of Ni–P electroless nano-coatings

Citations: 166

Effect of surfactant on the fabrication and characterization of Ni-P-CNT composite coatings

Citations: 104

Characterization and corrosion behavior of electroless Ni–P/nano-SiC coating inside the CO2 containing media in the presence of acetic acid

Citations: 96

The effect of sliding speed and amount of loading on friction and wear behavior of Cu–0.65 wt.% Cr alloy

Citations: 47

Microstructure and corrosion behavior of electrodeposited nano-crystalline nickel coating on AZ91 Mg alloy

Citations: 46

Evaluation of corrosion inhibition of mild steel in 3.5 wt% NaCl solution by cerium nitrate

Citations: 43

Electrodeposition and characterization of Co–BN (h) nanocomposite coatings

Citations: 42

An experimental study on stress corrosion behavior of A131/A and A131/AH32 low carbon steels in simulated seawater

Citations: 28

Porosity measurement of electroless Ni–P coatings reinforced by CNT or SiC particles

Citations: 28

 

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R | Inorganic Chemistry | Best Researcher Award

Dr. Minitha R ,Inorganic Chemistry, GOVERNMENT POLYTECHNIC COLLEGE, EZHUKONE, KOLLAM, KERALA, India

Dr. Minitha R. is an Associate Professor with over 14 years of teaching and 15 years of research experience in chemistry. She holds an M.Sc., M.Phil., NET, UGC-JRF, and Ph.D. Her expertise spans organic, coordination, supramolecular, and inorganic chemistry. She has served in key academic roles, including NSS Programme Officer and Chief Superintendent of Examinations. A dedicated researcher, Dr. Minitha has guided students and undertaken projects like developing a chemosensor for metal ion detection. She has organized multiple national seminars and actively participates in international conferences and workshops.

Professional Profile :                       

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Minitha R., an accomplished Associate Professor with 15 years of research experience, has significantly contributed to the field of Inorganic Chemistry, particularly in Coordination Chemistry, Supramolecular Chemistry, and Organic Chemistry. With a strong publication record, she has authored several impactful research papers in highly reputed journals, covering diverse topics such as metal complexes, chemosensors, molecular structures, and spectroscopic studies. Dr. Minitha R. is an exceptional candidate for the “Best Researcher Award,” given her proven research excellence, scholarly contributions, and leadership in the scientific community. Her extensive work in metal-based coordination complexes, chemosensors, and supramolecular chemistry, along with her active role in mentoring and academic leadership, makes her a highly deserving nominee.

🎓Education:

Dr. Minitha R. holds a Ph.D. in Chemistry and has qualified for the NET and UGC-JRF. She completed her M.Sc. and M.Phil. in Chemistry, demonstrating academic excellence throughout. Her education provided her with a strong foundation in inorganic chemistry, particularly in complex synthesis, supramolecular interactions, and chemosensing applications. Her academic journey was driven by a passion for molecular recognition, ligand design, and structural chemistry. She has actively participated in seminars and workshops to enhance her knowledge and keep up with evolving research trends.

🏢Work Experience:

With 14 years of teaching and 15 years of research experience, Dr. Minitha R. has handled Organic, Inorganic, and Physical Chemistry courses. She has successfully guided research scholars, fostering innovations in supramolecular and coordination chemistry. Apart from teaching, she has played key roles as an NSS Programme Officer, Nature Club Coordinator, Chief Superintendent of Examinations, and Young Innovators Programme Facilitator. She has also organized national seminars and workshops on emerging trends in chemistry, enhancing academic collaboration and knowledge dissemination.

🏅Awards: 

Dr. Minitha R. has been recognized for her outstanding contributions to academia and research. She served as the NSS Programme Officer (2021-2022), demonstrating her commitment to student welfare and community service. As the Nature Club Coordinator (2019-2020), she played a crucial role in promoting environmental awareness. Her leadership extended to being the Chief Superintendent of Examinations (2020-2021), ensuring smooth academic assessments. Additionally, she facilitated the Young Innovators Programme (2019), fostering creativity and scientific curiosity among students. Her research endeavors were supported by a KSCSTE-funded M.Sc. student project, where she developed a chemosensor for metal ion detection. These roles reflect her dedication to education, research, and institutional development.

🔬Research Focus:

Dr. Minitha R. specializes in Inorganic Chemistry, with a keen interest in Organic Chemistry, Coordination Chemistry, and Supramolecular Chemistry. Her research explores the synthesis and characterization of novel metal complexes, particularly those with biological and chemosensory applications. She has contributed significantly to the development of pyrazolylhydrazone-based metal complexes, dioxo molybdenum(VI) compounds, and benzothiazolium salts. Her work also extends to fluorescent hydrazones and ruthenium(II) complexes, emphasizing their structural and functional properties. Additionally, her studies on five-coordinate Zn(II) complexes highlight their potential in nonlinear optical applications. Through her research, she aims to bridge the gap between fundamental chemistry and real-world applications, particularly in materials science, catalysis, and medicinal chemistry.

Publication Top Notes:

Formation of dicyano ruthenium(II) complex mediated by triethylamine via deprotonation of hydrazonochroman-2,4-dione
Synthesis, spectroscopic and biological studies of metal complexes of an ONO donor pyrazolylhydrazone – Crystal structure of ligand and Co(II) complex
Studies of some dioxo molybdenum(VI) complexes of a polydentate ligand
One pot synthesis of 1–(3–methyl–4H–benzo[1,4]thiazin–2–yl)-ethanone and its antimicrobial properties
 Synthesis, spectral, and magnetic studies of benzothiazolium tetrachlorocuprate salts: crystal structure and semiconducting behavior of bis[2-(4-methoxyphenyl)benzothiazolium] tetrachlorocuprate(II)
Fluorescent coumarin-based hydrazone: Synthesis, crystal structure, and spectroscopic studies
FT-IR, FT-Raman and computational study of 1H-2,2-dimethyl-3H-phenothiazin-4[10H]-one
Synthesis, crystal structure, spectral analysis, and NLO studies of five-coordinate Zn(II) complexes of hydrazochromandione
 Chemosensing study of 1,4-Benzothiazine generated from acetylacetone

 

Assist. Prof. Dr. Ohyla El gammal | Inorganic Chemistry | Inorganic Chemistry Award

Assist. Prof. Dr. Ohyla El gammal | Inorganic Chemistry | Inorganic Chemistry Award

Assist. Prof. Dr. Ohyla El gammal , Menofia university , Egypt

Dr. Ohyla Ahmed Abd El-Latif El-Gammal is an Egyptian inorganic chemist specializing in metal complexes, macrocyclic synthesis, and their biomedical applications. She earned her Ph.D. in Inorganic Chemistry from Menoufia University in 2014 and has extensive experience in academia, having served as a lecturer at Najran University, Saudi Arabia, and Menoufia University, Egypt. Her research explores spectroscopic characterization, γ-irradiation effects, and the biological activities of metal complexes. She has attended numerous international conferences and workshops, contributing to scientific discussions on materials science, analytical chemistry, and bioinorganic applications. Dr. Ohyla is actively involved in scientific publishing, having authored several high-impact journal articles. She is also dedicated to mentoring students and advancing knowledge in transition metal chemistry.

Professional Profile:

Scopus 

Summary of Suitability for Award:

Ohyla Ahmed Abd El-Latif El-Gammal is a highly suitable candidate for the “Inorganic Chemistry Award” due to her extensive contributions to the field of inorganic chemistry, particularly in the synthesis and characterization of metal complexes with biomedical applications. Her research focuses on developing innovative macrocyclic ligands, Schiff base complexes, and transition metal coordination compounds. She has made significant advancements in understanding the structural and functional properties of metal-based drugs, emphasizing their potential as anticancer, antimicrobial, and antioxidant agents.Ohyla El-Gammal is an excellent candidate for the “Inorganic Chemistry Award.” Her innovative work in metal complex synthesis, combined with her significant impact on medicinal and environmental chemistry, aligns perfectly with the award’s objectives. Her dedication to advancing inorganic chemistry through both theoretical and applied research makes her a deserving recipient of this prestigious recognition.

🎓Education:

Ohyla Ahmed Abd El-Latif El-Gammal obtained her B.Sc. in Chemistry from the Faculty of Science at Menoufia University, Egypt. She pursued postgraduate studies in Chemistry, further deepening her expertise in the field. She earned her M.Sc. in Inorganic Chemistry, focusing on the synthesis and characterization of metal complexes. Her academic journey culminated in a Ph.D. in Inorganic Chemistry, where she explored the design and application of macrocyclic metal complexes. Additionally, she obtained an ICDL certification, demonstrating her proficiency in information and communication technology. Throughout her education, she developed a strong foundation in coordination chemistry, spectroscopic techniques, and materials science, which later shaped her research interests in anticancer, antioxidant, and antimicrobial studies. Her educational background provided her with the necessary expertise to contribute significantly to the field of inorganic chemistry, particularly in the synthesis of innovative metal complexes with potential biomedical applications.

🏢Work Experience:

Ohyla El-Gammal has extensive experience in academia, serving as a Lecturer in Chemistry at various institutions. She has taught undergraduate courses in inorganic chemistry, transition metals, quantum chemistry, and analytical techniques. Her teaching career includes positions at Najran University, Saudi Arabia, where she contributed to the education of students in the fields of lanthanides, actinides, and phase chemistry. She also served as a faculty member at Northern Border University, Rafha, Saudi Arabia, specializing in principal group chemistry and spectroscopic methods. Additionally, she has been actively involved in laboratory-based instruction, focusing on qualitative and quantitative analytical chemistry. Apart from teaching, she has participated in numerous workshops and conferences, enhancing her expertise in scientific research and publishing. Her experience spans both theoretical and practical aspects of chemistry, making her a well-rounded academic professional with a strong commitment to research and education.

🏅Awards: 

Ohyla El-Gammal has received multiple accolades in recognition of her contributions to chemistry and academia. She has been honored for her participation in prestigious international scientific conferences and workshops, where she presented her research on metal complexes and their biomedical applications. She has actively engaged in high-impact research collaborations, earning recognition for her significant contributions to inorganic chemistry. She has also been acknowledged for her dedication to teaching and mentoring students, ensuring excellence in chemical education. Her involvement in major research projects and her participation in international scientific academies have further established her as a distinguished researcher. In addition, her research on macrocyclic complexes and their anticancer properties has been widely appreciated, leading to invitations to speak at global scientific forums. Her contributions to scientific publishing, along with her active role in international webinars, have cemented her reputation as a dedicated and accomplished chemist.

🔬Research Focus:

Ohyla El-Gammal’s research interests lie in inorganic chemistry, particularly in the synthesis and characterization of metal complexes with biomedical applications. She specializes in the development of macrocyclic ligands, transition metal coordination compounds, and Schiff base complexes. Her work explores the spectroscopic characterization of newly synthesized compounds, focusing on their structural and functional properties. She investigates the impact of γ-irradiation on metal complexes, studying their stability and enhanced biological activity. Her research extends to anticancer, antioxidant, and antimicrobial activities, aiming to develop novel therapeutic agents. She also works on improving the surface morphology of metal complexes for enhanced pharmaceutical applications. Her studies contribute significantly to the understanding of metal-based drugs and their potential in medicine. By integrating spectroscopic analysis and computational modeling, she continues to advance knowledge in the field of inorganic chemistry, contributing to the development of innovative materials for biomedical and environmental applications.

Publication Top Notes:

Synthesis, characterization, molecular docking and in vitro antibacterial assessments of anthracene-bis(hydrazine)thiosemicarbazide complexes with Co(II), Ni(II) and Cu(II) ions

Authors: O.A. El-Gammal, A.A. El-Bindary, A.M. Eldesoky, I.M. Abd Al-Gader

Journal: Journal of Molecular Structure

Year: 2025

Citations: 1

DNA binding, potential anticancer, antioxidant and molecular docking simulations of some isonicotinohydrazide metal complexes with the impact of high energy γ-rays irradiation doses: Synthesis and structural characterization

Authors: O.A. El-Gammal, H.A. El-Boraey, H. Alshater

Journal: Journal of Molecular Structure

Year: 2024

Citations: 1

Bishydrazone ligand and its Zn-complex: synthesis, characterization and estimation of scalability inhibition mitigation effectiveness for API 5L X70 carbon steel in 3.5% NaCl solutions

Authors: O.A. El-Gammal, D.A. Saad, M.N. El-Nahass, K. Shalabi, Y.M. Abdallah

Journal: RSC Advances

Year: 2024

Synthesis, structural characterization, antioxidant, cytotoxic activities and docking studies of schiff base Cu(II) complexes

Authors: G.N. Rezk, O.A. El-Gammal, S.H. Alrefaee, A.A. El-Bindary, M.A. El-Bindary

Journal: Heliyon

Year: 2023

Citations: 20

Synthesis, spectral, DFT, intrinsic constant of DNA binding and antioxidant activity of vanadyl (IV)2+^2+ complexes of a symmetrical bisthiosemicarbazides

Authors: O.A. El-Gammal, M.A.R. El-Nawawy, H.A. Gomaa, B.M. Ismael

Journal: Journal of Molecular Structure

Year: 2023

Citations: 4

Divalent transition metal complexes of multidentate nitrogen, oxygen and sulfur containing ligand: Design, spectroscopic, theoretical molecular modeling and antioxidant-like activity

Authors: B.M. Ismael, M.A.R. El-Nawawy, H.A. Gomaa, O.A. El-Gammal

Journal: Egyptian Journal of Chemistry

Year: 2022

 

 

 

 

Assoc. Prof. Dr. Muhammad Tariq | Inorganic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Muhammad Tariq | Inorganic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Muhammad Tariq, Bahauddin Zakariya University Multan , Pakistan

Dr. Muhammad Tariq is a Tenured Associate Professor and Head of the Division of Inorganic Chemistry at the Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan. He earned his Ph.D. in Inorganic Chemistry from Quaid-e-Azam University Islamabad in 2013 and joined Bahauddin Zakariya University in 2014 as an Assistant Professor. Dr. Tariq specializes in organometallic chemistry, biofuel development, and catalysis. His innovative research focuses on developing anticancer, antidiabetic, and antimicrobial compounds, as well as exploring renewable bioenergy solutions for a sustainable future. With over 75 publications in high-impact journals, he has made significant contributions to drug discovery and clean energy research. Dr. Tariq has completed multiple funded projects and is actively involved in national collaborations.

Professional Profile

Orcid 

Summary of Suitability for Award:

Dr. Muhammad Tariq demonstrates exceptional qualifications for the “Best Researcher Award” through his extensive contributions to the field of inorganic chemistry. With 76 publications in high-impact journals, an H-index of 20, and multiple funded research projects, Dr. Tariq has established himself as a prolific researcher. His work spans diverse areas, including organometallic chemistry, catalysis, and biofuel development, with a particular emphasis on developing anticancer, antidiabetic, and antimicrobial compounds. These efforts address critical global challenges in healthcare and renewable energy. Dr. Tariq’s leadership as Head of the Division of Inorganic Chemistry at Bahauddin Zakariya University further underscores his commitment to advancing research and mentoring young scientists.Dr. Muhammad Tariq’s impressive academic track record, research productivity, and significant contributions to addressing healthcare and environmental challenges make him a deserving nominee for the “Best Researcher Award.” His continued commitment to advancing scientific knowledge aligns with the award’s criteria, reflecting excellence and innovation in research.

🎓Education:

Dr. Muhammad Tariq completed his doctoral studies in Inorganic Chemistry from Quaid-e-Azam University Islamabad, Pakistan.  His research during his Ph.D. laid the foundation for his expertise in organometallic chemistry and catalysis. Prior to that, he pursued a Master’s in Chemistry, where he gained advanced knowledge of chemical principles and methodologies. Dr. Tariq’s academic journey equipped him with a robust foundation in inorganic chemistry, which he has since leveraged to address global challenges in drug development and renewable energy. He consistently engages in continuing education, staying abreast of the latest developments in his field through workshops and research collaborations.

🏢Work Experience:

Dr. Muhammad Tariq has over a decade of teaching and research experience in inorganic chemistry. He joined Bahauddin Zakariya University Multan in 2014 as an Assistant Professor and quickly rose to become a Tenured Associate Professor and Head of the Division of Inorganic Chemistry. His responsibilities include mentoring students, leading research projects, and managing academic programs within the department. He has successfully completed four research projects and is currently working on another, focusing on biofuel development and catalysis. Dr. Tariq’s collaborations with national research groups further enrich his professional experience. In addition to his academic duties, he regularly contributes to the research community through publishing in reputed journals and participating in academic conferences.

🏅Awards: 

While Dr. Muhammad Tariq has not reported specific awards or honors, his professional achievements reflect his dedication to advancing the field of inorganic chemistry. His leadership as Head of the Division of Inorganic Chemistry and his extensive publication record highlight his recognition as a prominent researcher in his domain. His ability to secure funding for multiple research projects also demonstrates his credibility and impact within the academic community. Dr. Tariq’s contributions to renewable energy and drug discovery have been acknowledged through his growing citation index and collaborations.

🔬Research Focus:

Dr. Muhammad Tariq’s research focuses on three main areas: organometallic chemistry, biofuel development, and catalysis. His work on anticancer, antidiabetic, and antimicrobial compounds aims to synthesize potential drug candidates, addressing critical challenges in healthcare. Additionally, Dr. Tariq explores bioenergy solutions, including the development of alternative renewable fuels to promote environmental sustainability. His expertise in catalysis further supports his research in clean energy technologies and drug discovery. Through collaborations and funded projects, he has contributed significantly to advancing knowledge in these areas, resulting in impactful publications and innovative approaches to global scientific challenges.

Publication Top Notes:

Synthesis, characterization, DNA, BSA, antimicrobial, antioxidant and molecular docking studies of gadolinium(III) based complexes

Authors: Not provided.

Year: 2025

Citations: Not available.

Journal: Polyhedron

DOI: 10.1016/j.poly.2024.117338

Synthesis, spectral, in silico/molecular docking and pharmacological studies of biologically potent triorganotin(IV) carboxylates

Authors: Not provided.

Year: 2025

Citations: Not available.

Journal: Journal of Molecular Structure

DOI: 10.1016/j.molstruc.2024.139435

Transition metal doped dioxaporphyrin scaffold as an efficient electrocatalyst for hydrogen evolution reaction

Authors: Not provided.

Year: 2024

Citations: Not available.

Journal: International Journal of Hydrogen Energy

DOI: 10.1016/j.ijhydene.2024.09.067

Reduced graphene oxide with La@Co3O4 and La@CdO nanocomposite based sensors: synthesis, characterization and NO2 sensing properties

Authors: Not provided.

Year: 2024

Citations: Not available.

Journal: Journal of the Iranian Chemical Society

DOI: 10.1007/s13738-024-03075-x

Synthesis, Characterization, Photocatalytic and Antimicrobial Potential of Pr2O3/ZnO/gC3N4 Nanocomposite

Authors: Not provided.

Year: 2024

Citations: Not available.

Journal: International Journal of Environmental Research

DOI: 10.1007/s41742-024-00617-2

Samarium-based metal organic frameworks as high performance electrocatalyst for alkaline water splitting

Authors: Not provided.

Year: 2024

Citations: Not available.

Journal: Fuel

DOI: 10.1016/j.fuel.2023.130812

Nano-second lifetime decay and Z-scan measurement: A tool to investigate the relevance of excited state dynamics with non-linear optical parameters in cis substituted Wells-Dawson POM-Porphyrin hybrids

Authors: Not provided.

Year: 2024

Citations: Not available.

Journal: Optical Materials

DOI: 10.1016/j.optmat.2023.114749

Antibacterial, antifungal and photocatalytic evaluation of Gd2O3-Fe2O3-CoO heterostructured photocatalyst

Authors: Not provided.

Year: 2024

Citations: Not available.

Journal: International Journal of Environmental Analytical Chemistry

DOI: 10.1080/03067319.2024.2313660

Biogenic fabrication of NiO-ZnO-CaO ternary nanocomposite using Azadirachta Indica (Neem) leaves extract with proficient photocatalytic degradation of rhodamine B dye

Authors: Not provided.

Year: 2024

Citations: Not available.

Journal: Materials Science and Technology

DOI: 10.1177/02670836241284762

Demonstration of Efficient Separation, Surface Investigation and Thermodynamics Study of Sodium4-[(4-dimethylamino) phenyldiazenyl) Benzene Sulphonate Dye from Aqueous Solution onto Acid Activated Modified Purple Knight

Authors: Not provided.

Year: 2024

Citations: Not available.

Journal: Journal of Chemical Society of Pakistan

DOI: 10.52568/001424/JCSP/46.01.2024

 

 

 

 

 

 

Assoc. Prof. Dr. Olcay Gençyılmaz | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Olcay Gençyılmaz | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Olcay Gençyılmaz , Çankırı Karatekin University, Turkey

Olcay Gençyılmaz is a prominent academic and researcher at Çankırı Karatekin University, specializing in materials science and nanotechnology. With expertise in thin film production, electrochemical applications, and photovoltaic systems, She has led multiple national research projects and contributed to the development of advanced materials for various applications. Throughout his career, She has worked on numerous interdisciplinary projects, exploring the effects of nanomaterials on environmental sustainability, energy production, and health. As a dedicated educator, he actively engages in mentoring graduate and doctoral students, guiding them in their research endeavors. His work is widely recognized in the scientific community, and he has published extensively in international journals.

Professional Profile:

Scopus  

Summary of Suitability for Award:

Olcay Gençyılmaz is highly qualified for the “Best Researcher Award” due to his outstanding contributions in the field of materials science and nanotechnology. His extensive research on thin films, nanomaterials, and their applications in energy systems, environmental sustainability, and healthcare has positioned him as a leading figure in his field. His work on the development of innovative materials for photovoltaics, electrochemical energy storage, and environmental remediation demonstrates his commitment to solving global challenges. His academic achievements, leadership in research projects, and numerous high-quality publications underscore his excellence in research and innovation, which are key criteria for this prestigious recognition.

🎓Education:

Olcay Gençyılmaz holds a Bachelor’s degree in Physics and a Master’s degree in Materials Science. He earned his Ph.D. in Nanotechnology from Çankırı Karatekin University, Turkey. His educational journey was marked by a focus on developing thin films for applications in energy and electronics. She participated in numerous academic workshops and research collaborations, enhancing his understanding of advanced materials and their characterization. Olcay’s education laid the foundation for his career, enabling him to contribute to the scientific community with cutting-edge research.

🏢Work Experience:

Olcay Gençyılmaz’s professional experience spans both academia and research. As an Associate Professor at Çankırı Karatekin University, She has supervised numerous research projects and mentored graduate students. His academic expertise includes thin film characterization, nanomaterials, and energy systems. Olcay has been involved in multiple national research projects related to photovoltaic systems, electrochemical capacitors, and thin film production techniques like SILAR and spray pyrolysis. She has served as a project leader and executive board member, contributing to advancements in materials science and nanotechnology.

🏅Awards: 

Olcay Gençyılmaz has received several prestigious awards throughout his career. Notably, She was recognized by TÜBİTAK for his work on the synthesis and characterization of CuO films. His research on thin films, particularly for solar cells and energy storage, She has earned him national recognition. Olcay’s contributions to material science and nanotechnology have been pivotal in advancing these fields. His passion for research and innovation continues to inspire students and colleagues alike.

🔬Research Focus:

Olcay Gençyılmaz’s research primarily focuses on materials science, particularly thin films and nanomaterials. His work explores the production, characterization, and application of thin films for various technological fields such as photovoltaics, electrochemical energy storage, and environmental remediation. Olcay is also interested in the synthesis of nanoparticles for antibacterial and photocatalytic applications. His innovative research aims to develop sustainable materials that can address energy and environmental challenges.

Publication Top Notes:

1. Analyzing antimicrobial activity of ZnO/FTO, Sn–Cu-doped ZnO/FTO thin films: Production and characterizations
  • Citations: 1
2. Comparison of high antioxidant ZnO NPs produced from different fungi as alternative biomaterials
3. Comparative evaluation of zinc oxide nanoparticles (ZnONPs): Photocatalysis, antibacterial, toxicity and genotoxicity
  • Citations: 1
4. Spray pyrolysis–derived V₂O₅ thin films as an alternative electrochromic layer for electrochromic devices
5. Binary ZnS–ZnO films as an alternative buffer layer for solar cell applications
  • Citations: 2