Assoc. Prof. Dr. Zoubida TALEB | Green Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Zoubida TALEB | Green Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Zoubida TALEB , Green Chemistry , Djillali Liabes University, Algeria

Dr. Zoubida Taleb is a dedicated researcher and academic in the Department of Chemistry at Djillali Liabes University, Sidi Bel Abbes, Algeria. Affiliated with the Laboratory of Materials & Catalysis (LMC), she has significantly contributed to the fields of analytical chemistry, water quality, catalysis, and polymer chemistry. With a passion for environmental sustainability, her research primarily focuses on wastewater treatment using natural and cost-effective materials. Dr. Taleb earned her doctorate in Applied Physics/Chemistry in 2015 and her habilitation in 2021. She has collaborated on numerous international projects and authored several peer-reviewed publications that address pressing global environmental challenges. She actively shares her work via platforms like ORCID, Google Scholar, and ResearchGate. Known for her dedication to scientific advancement and community impact, Dr. Taleb continues to lead projects that bridge fundamental chemistry with environmental applications.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Taleb’s scientific contributions center around analytical chemistry, wastewater treatment, natural adsorbents, polymer chemistry, and catalysis—all of which are crucial subfields of environmental chemistry. A significant part of her recent research targets removal of pollutants (e.g., phenolic compounds, Diuron, heavy metals) from olive oil mill wastewater, used vegetable oils, and industrial effluents. This aligns directly with global efforts toward sustainable water treatment.  Dr. Taleb has contributed meaningfully to the advancement of environmentally friendly chemical technologies and has collaborated internationally. She bridges chemistry, environmental engineering, and materials science, showcasing interdisciplinary impact—a hallmark of outstanding environmental chemists. Dr. Zoubida Taleb demonstrates exceptional alignment with the objectives of the “Environmental Chemistry Award”. Her research directly addresses global environmental challenges such as water pollution, green remediation techniques, and resource recovery using sustainable, low-cost methods. Her scholarly output, practical impact, and dedication to environmental solutions make her a strong and deserving candidate for this prestigious recognition.

🎓Education:

Dr. Zoubida Taleb’s academic journey began with a Baccalaureate in Natural and Life Sciences (1998) in Sidi Bel Abbes, Algeria. She then pursued her passion for chemistry by obtaining a Higher Education Diploma in Chemistry (2003) from Djillali Liabes University. Building upon this foundation, she earned a Master’s degree in Polymer Chemistry (2009) from Ahmed Ben Bella, Es-Senia University in Oran. Her pursuit of higher research led her back to Djillali Liabes University, where she was awarded a Doctorate in Applied Physics/Chemistry (2015). Demonstrating academic excellence and research leadership, she achieved the Habilitation (2021), the highest university qualification in Algeria. This extensive and focused educational background has equipped Dr. Taleb with robust expertise in chemical sciences, particularly in polymers, catalysis, and environmental applications.

🏢Work Experience:

Dr. Zoubida Taleb has over 15 years of academic and research experience in the field of chemistry. She currently serves as a faculty member in the Department of Chemistry at Djillali Liabes University, where she is also a core member of the Laboratory of Materials & Catalysis (LMC). Her responsibilities include supervising graduate research, conducting innovative projects, and teaching chemistry-related subjects. Dr. Taleb has actively collaborated with national and international researchers, contributing to projects in environmental remediation, adsorption processes, and sustainable materials. She has co-authored numerous high-impact articles and presented her research at various international forums. Her experience spans practical lab work, analytical instrumentation, and interdisciplinary collaboration in areas such as wastewater treatment, polymer chemistry, and surface catalysis. She also mentors students and promotes scientific awareness and innovation within the academic community.

🏅Awards: 

While specific awards are not listed in the provided data, Dr. Zoubida Taleb’s career is marked by significant academic accomplishments and recognition through her research contributions. Earning the Habilitation degree in 2021 reflects her expertise and capacity to supervise doctoral research—an honor reserved for highly accomplished scholars in Algeria. Her active participation in high-impact publications, including international collaborations with European scientists, underlines her global academic reputation. Her work has been published in leading journals such as Chem Engineering, Environmental Analytical Chemistry, and Waste Management & Research, often addressing critical environmental issues through green chemistry. Furthermore, her role in multiple projects on wastewater treatment and the valorization of natural materials highlights her commitment to sustainability and innovation. Continued invitations to co-author with globally renowned researchers are testament to her respected position in the field.

🔬Research Focus:

Dr. Zoubida Taleb’s research integrates chemistry with environmental sustainability, focusing on analytical chemistry, wastewater treatment, natural adsorbents, polymer chemistry, and catalysis. She explores low-cost, efficient techniques such as adsorption and catalytic degradation using Algerian clays, montmorillonite, and activated carbon to remove pollutants from industrial effluents. Her studies address real-world problems like the purification of used vegetable oils, olive mill wastewater treatment, and removal of phenolic compounds and pesticides from water. By emphasizing kinetic modeling and physicochemical characterization, she evaluates the efficiency and mechanisms of adsorption and catalysis. Her interdisciplinary work often combines chemical engineering, material science, and environmental science, promoting sustainable solutions. Collaborations with researchers from Spain, Italy, and France have broadened her impact, making her a key contributor in advancing eco-friendly remediation technologies.

Publication Top Notes:

1. Lead and cadmium removal by adsorption process using hydroxyapatite porous materials

Authors: A. Ramdani, A. Kadeche, M. Adjdir, Z. Taleb, D. Ikhou, S. Taleb, A. Deratani

Citations: 48

2. Mechanism study of metal ion adsorption on porous hydroxyapatite: experiments and modeling

Authors: A. Ramdani, Z. Taleb, A. Guendouzi, A. Kadeche, H. Herbache, A. Mostefai, …

Citations: 13

3. Removal of o-Cresol from aqueous solution using Algerian Na-Clay as adsorbent

Authors: H. Herbache, A. Ramdani, A. Maghni, Z. Taleb, S. Taleb, E. Morallon, …

Citations: 10

4. Electrochemical and In Situ FTIR Study of o-Cresol on Platinum Electrode in Acid Medium

Authors: Z. Taleb, F. Montilla, C. Quijada, E. Morallon, S. Taleb

Citations: 10

5. Physicochemical and microbiological characterisation of olive oil mill wastewater (OMW) from the region of Sidi Bel Abbes (Western Algeria)

Authors: S. Djeziri, Z. Taleb, M. Djellouli, S. Taleb

Citations: 7

6. Catalytic degradation of O‐cresol using H₂O₂ onto Algerian Clay‐Na

Authors: H. Herbache, A. Ramdani, Z. Taleb, R. Ruiz‐Rosas, S. Taleb, E. Morallón, …

Citations: 7

7. Discoloration of contaminated water by an industrial dye: Methylene Blue, by two Algerian bentonites, thermally activated

Authors: I. Feddal, Z. Taleb, A. Ramdani, H. Herbache, S. Taleb

Citations: 7

8. Variation of used vegetable oils’ composition upon treatment with Algerian clays

Authors: A. Serouri, Z. Taleb, A. Mannu, S. Garroni, N. Senes, S. Taleb, S. Brini, …

Citations: 6

9.Temperature and pH influence on Diuron adsorption by Algerian Mont-Na Clay

Authors: S. Tlemsani, Z. Taleb, L. Piraúlt-Roy, S. Taleb

Citations: 5

10. Recycling of used vegetable oils by powder adsorption

Authors: A. Mannu, M.E. Di Pietro, G.L. Petretto, Z. Taleb, A. Serouri, S. Taleb, …

Citations: 5

Assoc. Prof. Dr. Dongmei Wang | Inorganic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Dongmei Wang | Inorganic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Dongmei Wang , Inorganic Chemistry , Associate professor at Zhejiang Normal University, China 

Dr. Dongmei Wang is an accomplished researcher and academic in the field of materials chemistry. She earned her Ph.D. from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry, Jilin University in 2016. Following her graduation, she joined the College of Chemistry and Materials Sciences at Zhejiang Normal University. In recognition of her academic contributions, she was promoted to Associate Professor and Master Supervisor in 2020. Dr. Wang has led several funded research projects, including those supported by the National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang Province. Her scholarly output includes over 30 papers published in SCI-indexed journals. Her primary research interests lie in the synthesis and assembly of porous metal-organic frameworks (MOFs), particularly for applications in gas adsorption and separation. With a growing reputation in her field, Dr. Wang continues to contribute meaningfully to both fundamental research and applied science.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Dongmei Wang is a highly qualified and emerging researcher in the field of inorganic chemistry and materials chemistry, with a focused specialization in metal-organic frameworks (MOFs) and their application in gas adsorption and separation. Her academic journey began with a Ph.D. from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry, Jilin University, a nationally recognized center of excellence. Since joining Zhejiang Normal University in 2016, she has demonstrated rapid academic growth, attaining the position of Associate Professor and Master’s Supervisor by 2020. In conclusion, Dr. Dongmei Wang possesses the essential qualifications, research accomplishments, and societal relevance to be considered a strong candidate for the “Best Researcher Award.” Her early-career recognition through competitive grants, publication record, and rapid academic promotion all point to a dynamic and impactful scientific career. She is particularly suitable for this award in the emerging researcher or mid-career scientist category, and her contributions to environmentally significant applications further enhance her case.

🎓Education:

Dr. Dongmei Wang received her doctoral degree in 2016 from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry at Jilin University, one of China’s premier research institutions in the chemical sciences. Her Ph.D. work focused on the synthesis, design, and functionality of advanced inorganic and coordination materials. During her doctoral studies, she received rigorous training in the field of inorganic chemistry, especially in the design of metal-organic frameworks (MOFs) with controlled porosity and tailored functionalities. Her academic journey laid a solid foundation for her current research on porous materials and their environmental applications. Prior to her doctoral studies, she completed her undergraduate and possibly master’s studies (not specified) in related disciplines, which cultivated her passion for materials science. The comprehensive academic training she received equipped her with the theoretical knowledge and experimental skills necessary for her current research and teaching roles.

🏢Work Experience:

Dr. Dongmei Wang began her professional academic career in 2016 when she joined the College of Chemistry and Materials Sciences at Zhejiang Normal University as a faculty member. Within just four years, in 2020, she was promoted to the position of Associate Professor and Master Supervisor, acknowledging her contributions to both research and mentorship. At Zhejiang Normal University, she is actively involved in teaching undergraduate and postgraduate courses, supervising graduate students, and conducting independent research in materials chemistry. She has taken a leading role in managing research projects funded by both national and provincial foundations. Her expertise in metal-organic frameworks (MOFs) has positioned her as a recognized scientist in the field of porous materials. Throughout her career, Dr. Wang has demonstrated a commitment to academic excellence, fostering innovation, and mentoring the next generation of scientists. Her academic journey showcases a steady and impactful progression in both research and teaching.

🏅Awards: 

Dr. Dongmei Wang has received several accolades and research grants that underscore her excellence in scientific research and academic leadership. Notably, she has been the principal investigator for a Youth Project of the National Natural Science Foundation of China (NSFC)—a prestigious funding scheme supporting promising early-career scientists. She has also successfully led a project supported by the Natural Science Foundation of Zhejiang Province, highlighting regional recognition of her work. These competitive grants are awarded based on scientific merit and innovation potential, affirming the quality and relevance of her research. While specific honorary titles or awards are not detailed, her rapid promotion to Associate Professor and her role as a Master’s Supervisor by 2020 speak volumes about her scholarly reputation. Her publications in SCI-indexed journals further support her status as an influential researcher in porous materials and MOF chemistry.

🔬Research Focus:

Dr. Dongmei Wang’s research is centered on the design, synthesis, and functionalization of porous metal-organic frameworks (MOFs). These materials, known for their high surface areas, tunable porosity, and chemical versatility, are investigated for various applications under her supervision. A key area of interest in her lab is the application of MOFs in gas adsorption and separation, addressing urgent environmental and industrial challenges such as CO₂ capture, hydrogen storage, and selective gas separation. Her approach involves rational ligand and metal-node design to tailor the structural and adsorption properties of the frameworks. Additionally, Dr. Wang is exploring hybrid materials that combine MOFs with polymers or nanoparticles to improve stability and performance under real-world conditions. Her interdisciplinary research draws upon principles of inorganic chemistry, materials science, and environmental engineering, and aims to contribute to the development of sustainable and high-efficiency gas capture technologies.

Publication Top Notes:

1. Precipitation Conversion Induced Enhancement of Enzyme-Like Activity of Diatomite Supported Ag₂S Nanoparticles for Selective Hg(II) Detection via Colorimetric Signal Amplification

2. In Situ Production of Single-Cell Protein in Microbial Electrochemical Systems via Controlling the Operation and CO₂ Addition

3. Progress of MOFs Composites in the Field of Microwave Absorption

4. Reticular Chemistry Guided Function Customization: A Case Study of Constructing Low-Polarity Channels for Efficient C₃H₆/C₂H₄ Separation

5. Metal-Organic Framework with Polar Pore Surface Designed for Purification of Both Natural Gas and Ethylene

6. Revealing the Iceberg Beneath: A Merge-Net Approach for Designing Multicomponent Reticular Solids

7. Biomimetic Mineralization Synthesis of Tricobalt Tetraoxide/Nitrogen Doped Carbon Skeleton for Enhanced Capacitive Deionization

8. Assembly of Solvent-Incorporated Rod Secondary Building Units to Ultramicroporous Metal-Organic Frameworks for Acetylene Purification

 

 

Prof. Dr. Zhou Xu | Analytical Chemistry | Best Researcher Award

Prof. Dr. Zhou Xu | Analytical Chemistry | Best Researcher Award

Prof. Dr. Zhou Xu , Analytical Chemistry , Assistant Dean at Changsha University of Science & Technology, China

Dr. Zhou Xu is a distinguished Professor and Assistant Dean at the School of Food Science and Bioengineering, Changsha University of Science and Technology. He earned his Ph.D. in Physical Chemistry from Jiangnan University Specializing in food safety, bio sensing, and nanomaterials, Dr. Xu has led numerous national research projects focused on food quality monitoring and rapid detection technologies. With a proven record of innovative research, he has published extensively in top-tier journals like ACS Sensors, Analytical Chemistry, and Chemical Engineering Journal. His pioneering work in biosensors, nanozymes, and magnetic relaxation sensors has earned him multiple research grants and provincial awards. Dr. Xu is recognized for integrating interdisciplinary approaches involving chemistry, biology, and materials science to address critical food safety challenges. His leadership in scientific research and education continues to influence advancements in food science, public health, and nanotechnology applications.

Professional Profile : 

Orcid

Scopus  

Summary of Suitability for Award:

Prof. Zhou Xu is highly suitable for nomination for the “Best Researcher Award.” He holds a Ph.D. in Physical Chemistry (2013) from Jiangnan University and currently serves as a Professor and Assistant Dean at the School of Food Science and Bioengineering, Changsha University of Science and Technology. His academic trajectory—from Lecturer to Professor—demonstrates steady and significant advancement based on merit. His research focus on biosensors, food safety detection, magnetic relaxation sensors, and nanozyme-based immunoassays has led to high-impact publications in prestigious journals like ACS Sensors, Analyst, Analytical Chemistry, and Journal of Agricultural and Food Chemistry. Notably, many of his papers are published as first or corresponding author, reflecting his leadership in research projects. He has secured multiple national and provincial research grants totaling millions of RMB, notably presiding over projects under China’s National Key Research and Development Program. His ability to independently lead large-scale, cutting-edge research initiatives and translate them into real-world food safety applications highlights his excellence in innovation, scientific contribution, and societal impact.

🎓Education:

Dr. Zhou Xu began his academic journey with a Bachelor of Science (B.S.) degree in Biotechnology from Central South University of Forestry and Technology (2001–2005). He then pursued a Master of Science (M.S.) in Processing and Storage of Agricultural Products from the same university, graduating in 2009. Building on this strong foundation, Dr. Xu earned his Ph.D. in Food Nutrition and Safety (Physical Chemistry) from Jiangnan University in March 2013. His doctoral research focused on advanced methodologies for food quality assurance and safety analysis. Throughout his education, Dr. Xu consistently demonstrated excellence, laying the groundwork for a successful academic and research career. His interdisciplinary background spanning biotechnology, food science, and physical chemistry uniquely positions him to address complex issues at the intersection of food safety, nanotechnology, and biosensor development. His education equipped him with diverse skills crucial for his innovative contributions to food science research and technology.

🏢Work Experience:

Dr. Zhou Xu’s academic career began in January 2014 as a Lecturer at Changsha University of Science and Technology. His dedication and research achievements led to his promotion to Associate Professor in August 2018, and then to full Professor in January 2022. Currently, he also serves as the Assistant Dean of the School of Food Science and Bioengineering. Over the years, he has successfully led multiple major research projects funded by national and provincial agencies, focusing on intelligent food safety monitoring, rapid detection technologies, and biosensors. Dr. Xu’s professional journey reflects his strong leadership, mentorship of young researchers, and innovative project management. His deep expertise in bio sensing and nanomaterials has significantly advanced the field of food safety detection. Under his leadership, the university’s research capacity in biosensor technology has expanded greatly. He actively collaborates across disciplines to drive technological innovations addressing real-world food safety challenges.

🏅Awards: 

Dr. Zhou Xu has garnered numerous accolades throughout his illustrious career. He has been the recipient of the prestigious Fund for Excellent Youth of Hunan Province, recognizing his outstanding contributions to biosensor development for food safety (2022–2025). His projects have also secured significant funding from major national agencies, including the National Natural Science Foundation of China and the Natural Science Foundation of Hunan Province. Dr. Xu’s innovative work in food quality detection technologies has been praised for its practical impact and scientific excellence. His consistent success in obtaining competitive research grants highlights his reputation as a leading researcher in his field. Moreover, his work has earned him recognition in academic and government circles as a key contributor to the advancement of intelligent food safety monitoring systems. These awards and honors underline Dr. Xu’s exceptional dedication to scientific innovation, research excellence, and societal impact in the field of food science.

🔬Research Focus:

Dr. Zhou Xu’s research centers on the development of innovative biosensors and nanotechnology-based solutions for food safety detection. His work integrates magnetic relaxation switch sensors, nanozyme-based immunoassays, and metal-organic frameworks (MOFs) to enhance sensitivity and speed in detecting contaminants like aflatoxin B1, cadmium ions, and bisphenol A. By designing intelligent detection platforms based on the Internet of Things (IoT) and advanced materials, Dr. Xu aims to revolutionize food quality supervision and rapid analysis. His studies focus heavily on improving catalytic mechanisms, developing dual-mode immunosensors (fluorescence and magnetic sensing), and constructing biomimetic materials for enhanced assay performance. Through interdisciplinary collaborations, Dr. Xu bridges chemistry, biology, and material science to address major food safety challenges. His research not only advances academic knowledge but also directly impacts industrial practices and public health regulations. Dr. Xu is committed to pioneering practical, scalable technologies for real-time food safety monitoring.

Publication Top Notes:

1.Title: Alanine Substitution to Determine the Effect of LR5 and YR6 Rice Peptide Structure on Antioxidant and Anti-Inflammatory Activity

2.Title: Formation and Characterization of Self-Assembled Rice Protein Hydrolysate Nanoparticles as Soy Isoflavone Delivery Systems

3.Title: Target-modulated UCNPs-AChE assembly equipped with microenvironment-responsive immunosensor
Authors: Zhou Xu et al.

4.Title: Peroxidase-mimetic activity of a nanozyme with uniformly dispersed Fe₃O₄ NPs supported by mesoporous graphitized carbon for determination of glucose

5.Title: Three-dimensional assembly and disassembly of Fe₃O₄-decorated porous carbon nanocomposite with enhanced transversal relaxation for magnetic resonance sensing of bisphenol A

6.Title: Assembly of USPIO/MOF nanoparticles with high proton relaxation rates for ultrasensitive magnetic resonance sensing

7.Title: Metal Organic Frame-Upconverting Nanoparticle Assemblies for the FRET Based Sensor Detection of Bisphenol A in High-Salt Foods

8.Title: Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method

9.Title: A nanozyme-linked immunosorbent assay based on metal-organic frameworks (MOFs) for sensitive detection of aflatoxin B₁

10.Title: Aptamer-enhanced fluorescence determination of bisphenol A after magnetic solid-phase extraction using Fe₃O₄@SiO₂@aptamer

11.Title: Recent Advances in Porphyrin-Based Materials for Metal Ions Detection

12.Title: Metal-Organic Frameworks of MIL-100(Fe, Cr) and MIL-101(Cr) for Aromatic Amines Adsorption from Aqueous Solutions

Dr. Siyao Chen | Materials Chemistry | Best Researcher Award

Dr. Siyao Chen | Materials Chemistry | Best Researcher Award

Dr. Siyao Chen , Materials Chemistry , Senior research assistant at City University of Hong Kong , Hong Kong

Dr. Siyao Chen is a Senior Research Assistant at the City University of Hong Kong, specializing in additive manufacturing and polymer-derived ceramics. With an impressive track record in advanced material research, Dr. Chen has published 11 SCI-indexed papers, including two ESI highly cited works, amassing over 610 citations. He serves as an invited editor for Frontiers in Electronics and actively contributes as a peer reviewer for prestigious journals such as Aerospace Science and Technology and the Journal of the European Ceramic Society. His research has made significant strides in 3D/4D ceramic printing, smart sensors, and semiconductor applications. In addition to academic achievements, Dr. Chen has worked on two major research projects, collaborated on four industry consultancies, and is listed as an inventor on three patents. A rising figure in materials science, Dr. Chen’s work integrates cutting-edge technology with real-world applications, contributing meaningfully to the development of intelligent ceramic systems.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Chen has published 11 SCI-indexed papers, including 2 ESI highly cited works, demonstrating high-impact contributions. One of these papers has gathered over 610 citations, a remarkable achievement for an early-career researcher. His work in additive manufacturing, polymer-derived ceramics, and intelligent electronics is not only innovative but also addresses complex, high-tech engineering challenges. These fields are critical in both academic and industrial applications. He serves as an invited editor for Frontiers in Electronics and is a reviewer for top-tier journals like Aerospace Science and Technology and Journal of the European Ceramic Society, indicating recognition by peers in his domain. With 3 patents, 4 consultancy projects, and 2 ongoing research projects, Dr. Chen demonstrates both academic excellence and practical application, bridging the gap between theory and industry. Dr. Siyao Chen’s research excellence, demonstrated by high-impact publications, innovation through patents, editorial and peer-review contributions, and cross-disciplinary industrial collaborations, clearly qualify him as an exceptional candidate for the “Best Researcher Award.” His academic rigor and applied innovation mark him as a rising leader in materials science and engineering research.

🎓Education:

Dr. Siyao Chen earned his doctoral degree from City University of Hong Kong, where he laid the foundation for his expertise in additive manufacturing and ceramic. His academic training emphasized interdisciplinary knowledge at the intersection of materials engineering, mechanical design, and electronic systems. During his time at CityU, Dr. Chen developed critical skills in vat photopolymerization, polymer-derived ceramic processing, and microstructural design of smart ceramics. His graduate research focused on fabricating high-performance ceramic sensors and coatings using 3D/4D printing methods. Throughout his education, he was actively involved in publishing high-impact articles and contributing to collaborative research teams. His studies not only strengthened his theoretical foundation but also fostered practical lab experience, laying the groundwork for his continued academic and industrial research. The combination of rigorous education and hands-on innovation shaped Dr. Chen’s academic identity and enabled him to push boundaries in the field of intelligent ceramic-based electronics.

🏢Work Experience:

Dr. Siyao Chen currently works as a Senior Research Assistant at the City University of Hong Kong, where he leads multiple research efforts in the field of additive manufacturing and ceramic electronics. Over the years, he has contributed to both academic and industrial projects, participating in four consultancy collaborations and leading two significant research endeavors. He has also acted as a project coordinator for the development of smart ceramic sensors, coating systems, and semiconductor devices. His work includes guiding junior researchers, managing experimental workflows, and contributing to grant applications. Dr. Chen serves as a peer reviewer for several SCI-indexed journals and as an invited editor for Frontiers in Electronics, showcasing his academic authority. His multi-disciplinary experience, spanning ceramics, polymer chemistry, and semiconductor devices, equips him to work across diverse research environments. His consistent performance and hands-on innovation have made him a valuable member of the advanced materials research community.

🏅Awards: 

Although early in his career, Dr. Siyao Chen has achieved notable recognition in his field. He is the recipient of multiple citations in high-impact journals, including two ESI Highly Cited Papers — a significant mark of influence and excellence in scholarly research. His publication in Materials Science and Engineering: R: Reports alone has gathered over 550 citations. Additionally, he was invited to join the editorial board of Frontiers in Electronics, a testament to his research integrity and subject matter expertise. His role as a reviewer for high-tier journals such as the Journal of the European Ceramic Society and Aerospace Science and Technology also highlights his academic credibility. Dr. Chen’s patent contributions and collaboration in industrial projects demonstrate the practical impact of his work. With a growing reputation in the materials science community, he is an emerging leader in ceramic additive manufacturing and intelligent electronics.

🔬Research Focus:

Dr. Chen’s primary research interests lie in additive manufacturing, polymer-derived ceramics, and semiconductor applications. He focuses on the design and processing of smart ceramic materials using 3D/4D printing technologies. His work bridges traditional ceramics with modern electronics, enabling innovations in reconfigurable structures, temperature sensors, and electromagnetic devices. A key area of interest is the development of lightweight, high-performance ceramics with tunable properties, particularly for sensing, actuation, and aerospace applications. His recent projects explore vat photopolymerization for SiCN and SiBCN-based ceramics, real-time material behavior modeling, and coating technologies for extreme environments. He is also involved in stimuli-responsive material systems, contributing to the advancement of intelligent electronics. His interdisciplinary research integrates materials engineering, electronic design, and digital fabrication, offering scalable and programmable material solutions for future smart systems. By combining structural innovation with electronic functionality, Dr. Chen aims to reshape how materials are conceived and manufactured.

Publication Top Notes:

Title: Additive manufacturing of structural materials
Citations: 572

Title: Lightweight and geometrically complex ceramics derived from 4D printed shape memory precursor with reconfigurability and programmability for sensing and actuation applications
Citations: 43

Title: Fabrication of polymer-derived SiBCN ceramic temperature sensor with excellent sensing performance
Citations: 17

Title: Fabrication of electrical semi-conductive SiCN ceramics by vat photopolymerization
Citations: 8

Title: 3D/4D additive–subtractive manufacturing of heterogeneous ceramics
Citations: 5

Title: Temperature and frequency dependent conductive behavior study on polymer-derived SiBCN ceramics
Citations: 3

Title: Novel anti-oxidation coating prepared by polymer-derived ceramic for harsh environments up to 1200°C
Citations: 2

Title: Real-time Bayesian model calibration method for C/SiC mechanical behavior considering model bias
Citations: 1

Title: Recent advances in stimuli-responsive materials for intelligent electronics

Title: Oxidation behavior of TiB2 from 600–1400°C considering microstructure evolution, oxidation kinetics, and mechanisms

Title: Evolution of dielectric properties of SiBCN ceramics and its derived wireless passive temperature sensor application

Assist. Prof. Dr. TESFAYE HAILE HABTEMARIAM | Green Chemistry | Best Researcher Award

Assist. Prof. Dr. TESFAYE HAILE HABTEMARIAM | Green Chemistry | Best Researcher Award

Assist. Prof. Dr. TESFAYE HAILE HABTEMARIAM , Green Chemistry , Inorganic Chemist at Wolaita Sodo University, Ethiopia

Dr. Tesfaye Haile Habtemariam, is an Ethiopian inorganic chemist and Assistant Professor at Wolaita Sodo University. With over a decade of academic and research experience, he specializes in inorganic materials, nanotechnology, and environmental chemistry. He earned both his M.Sc. and Ph.D. in Chemistry from Addis Ababa University and undertook a research visit at the University of Nottingham, UK. Dr. Tesfaye has held leadership roles, including Head of the Chemistry Department at Wolaita Sodo University. An active member of prestigious chemical societies like the American Chemical Society and Royal Society of Chemistry, he contributes significantly to research in MOFs, photocatalysis, and nanomaterials. Dr. Tesfaye is well-regarded for his community-oriented research, particularly in water treatment and environmental remediation, and has authored multiple peer-reviewed publications. His commitment to scientific innovation and education makes him a valuable contributor to both national and international scientific communities.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Tesfaye Haile Habtemariam is highly suitable for the “Best Researcher Award”. His consistent research output, international exposure, impactful studies in environmental and materials chemistry, and leadership roles reflect a well-rounded academic profile. His work in nanotechnology and MOFs addresses pressing global issues, reinforcing his candidacy for this prestigious recognition. He is an exemplary researcher contributing meaningfully to science, innovation, and academic mentorship, making him a strong nominee for the “Best Researcher Award”.His impactful research on environmentally focused nanomaterials, global academic recognition, consistent publication record, and leadership in Ethiopian higher education underscore his contributions to science, innovation, and sustainable development.He exemplifies the qualities of a top-tier researcher with international collaborations, practical solutions, and dedication to academic excellence, making him an outstanding nominee for this honor.

🎓Education:

Dr. Tesfaye received both his advanced degrees in Inorganic Chemistry from Addis Ababa University. He completed his M.Sc. (2008–2010) with research focused on inorganic synthesis, followed by a Ph.D. (2014–2019), where he explored novel metal-organic frameworks and porous materials for environmental applications. During his Ph.D., he was awarded an opportunity to conduct part of his research at the University of Nottingham, UK, under the supervision of Prof. Neil R. Champness, gaining international exposure and experience in cutting-edge material science. This academic journey laid the foundation for his career in materials chemistry, environmental catalysis, and nanotechnology. His educational path reflects strong theoretical and applied understanding in inorganic chemistry, further enriched by hands-on laboratory skills and cross-disciplinary collaboration. This robust background enables him to contribute significantly to both teaching and research in the field of chemistry at national and international levels.

🏢Work Experience:

Since October 29, 2010, Dr. Tesfaye Haile Habtemariam has served as an Assistant Professor of Inorganic Chemistry at Wolaita Sodo University, Ethiopia. Over the years, he has been actively involved in teaching undergraduate and postgraduate chemistry courses, mentoring students, and leading numerous research projects. From October 2019 to November 2021, he served as the Head of the Department of Chemistry, where he played a crucial role in strengthening teaching, research, and community engagement activities in line with national education policy. Dr. Tesfaye has established himself as a proactive academician with expertise in nanotechnology, MOFs, and adsorptive materials. His collaborative approach has led to productive research engagements and multiple publications. He also contributed to institutional development and curriculum improvements while promoting sustainable technologies for environmental management. His experience integrates research, administration, and teaching—making him a well-rounded academic leader and contributor to Ethiopia’s scientific development.

🏅Awards: 

Dr. Tesfaye has received several honors recognizing his academic and research contributions. In 2019, he won a year’s subscription to ChemComm awarded at the PACN Congress by the Royal Society of Chemistry (RSC). This reflected his active participation and engagement with international scientific forums. Earlier in 2015, he was awarded a UNESCO-IHE short course scholarship for “Nanotechnology for Water and Wastewater Treatment” held in Delft, The Netherlands, which enhanced his expertise in water purification technologies using nanomaterials. These awards not only highlight his scientific curiosity but also his commitment to global knowledge exchange and interdisciplinary collaboration. Dr. Tesfaye is a Member of the Royal Society of Chemistry (MRSC), the American Chemical Society (ACS), and the Chemical Society of Ethiopia, affirming his engagement with the global scientific community. These accolades demonstrate both his potential and proven track record in sustainable science and innovation.

🔬Research Focus:

Dr. Tesfaye’s research focuses on the synthesis and application of inorganic and nanostructured materials for environmental and energy-related challenges. His core interests include the design and spectroscopic study of Metal-Organic Frameworks (MOFs) for use in photocatalysis, water and wastewater treatment, and removal of toxic contaminants. He also investigates adsorptive materials, exploring their capacity to eliminate pollutants such as heavy metals and dyes from aqueous systems. Additionally, he works on nanotechnology applications for antibacterial activity, leveraging biosynthesized nanoparticles from plant extracts for sustainable health applications. A particular strength of his research lies in green synthesis methods, combining traditional knowledge with modern chemistry to produce eco-friendly materials. His interdisciplinary work links material science, environmental chemistry, and nanotechnology, aiming to develop low-cost, efficient, and scalable solutions for real-world environmental problems in Ethiopia and beyond.

Publication Top Notes:

1. Nutritional and Mineral Composition of Amaranthus caudatus Leaves in Wolaita Zone, Southern Ethiopia

2. Adsorptive Removal of Cr(VI) from Aqueous Solution Using Activated Carbon of Enset Root (Ensete ventricosum)

3. Biological Synthesis of ZnO Nanoparticles Using Fruit Extract of Ruta Chalepensis as Photoelectrode for Dye Sensitized Solar Cell Application

4. Biosynthesis of CuO Nanoparticle Using Leaf Extracts of Ocimum lamiifolium Hochst. ex Benth and Withania somnifera (L) Dunal for Antibacterial Activity

5. Pillared‐Layer Metal‐Organic Frameworks (MOFs) for Photodegradation of Methyl Orange in Wastewater

6. Polyaniline‐ZnO‐NiO Nanocomposite Based Non‐Enzymatic Electrochemical Sensor for Malathion Detection

7. Room Temperature Synthesis of Pillared-Layer Metal–Organic Frameworks (MOFs)

8. The Determination of Caffeine Level of Wolaita Zone, Ethiopia Coffee Using UV-Visible Spectrophotometer

 

Prof. Zhilong Cao | Green Chemistry | Best Researcher Award

Prof. Zhilong Cao | Green Chemistry | Best Researcher Award

Prof. Zhilong Cao , Green Chemistry , Deputy Director at Beijing University of Technology, China

Dr. Zhilong Cao is a Professor and Ph.D. Supervisor at Beijing University of Technology, specializing in advanced materials and technologies for sustainable asphalt pavements. With a Ph.D. in Materials Science and Engineering from Wuhan University of Technology, he focuses on the development of low-carbon, green, and smart functional materials aimed at extending pavement life and promoting high-quality recycling. Since joining Beijing University of Technology in 2022, he has led several national and industrial research projects, particularly in asphalt modification and regeneration. His contributions have earned him prestigious recognitions, including the Outstanding Talent Award. Dr. Cao is driven by innovation and sustainability, exploring smart infrastructure solutions that align with global environmental goals. His research has practical implications in urban infrastructure development, especially in road and airport pavement systems. Dedicated to fostering future talent, he also mentors Master’s and Ph.D. students while actively collaborating with industry stakeholders to bridge academic research with real-world applications.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Zhilong Cao is a highly suitable candidate for the “Best Researcher Award”, given his impactful contributions in the field of sustainable pavement engineering. With a strong academic background in Materials Science and Engineering, and holding a Ph.D. from Wuhan University of Technology, he has shown exemplary leadership in the development of low-carbon, smart, and green construction materials. As a Professor and Ph.D. Supervisor at Beijing University of Technology, he has spearheaded nationally funded research projects, including grants from the NSFC and China Postdoctoral Science Foundation, focusing on advanced asphalt regeneration and modification technologies. His research not only addresses academic challenges but also meets urgent industrial and environmental needs. His honors, such as the Outstanding Talent Award and Best Ph.D. Thesis Award, further reflect his merit and potential. He actively mentors future researchers and collaborates with industry, making his work both impactful and translational.

🎓Education:

Dr. Zhilong Cao completed both his Ph.D. (2018–2021) and M.S. (2015–2018) in Materials Science and Engineering from Wuhan University of Technology, one of China’s premier institutions for engineering and material innovation. During his graduate years, he conducted cutting-edge research on asphalt materials, focusing on functional modifications and sustainability. His doctoral work received wide acclaim, earning him the Outstanding Ph.D. Graduate and Thesis Award. His academic training emphasized a strong integration of theoretical knowledge and experimental practices in materials science, particularly with applications in transportation engineering. He developed specialized expertise in pavement materials, polymer modification, and asphalt regeneration technologies. His strong academic foundation and passion for materials innovation led him to a faculty position at Beijing University of Technology, where he now mentors graduate students and leads significant research initiatives. Dr. Cao’s educational path reflects both academic excellence and a clear vision toward sustainable infrastructure development.

🏢Work Experience:

Dr. Zhilong Cao began his academic career as a graduate student at Wuhan University of Technology, where he earned his M.S. and Ph.D. in Materials Science and Engineering. Following the completion of his doctorate in 2021, he joined Beijing University of Technology in January 2022 as a Professor and Ph.D. Supervisor in the Department of Road and Rail Engineering. In this role, he leads research projects on green pavement materials and mentors Master’s and Doctoral students. His academic responsibilities include developing new course materials, overseeing lab-based research, and fostering collaborations with industry to apply advanced materials in real-world contexts. He has secured multiple prestigious research grants, including from the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. Dr. Cao’s professional experience demonstrates a strong trajectory from promising researcher to established academic leader, with a focus on sustainable infrastructure technologies and innovative material development.

🏅Awards: 

Dr. Zhilong Cao has received several prestigious awards in recognition of his outstanding contributions to research and academic excellence. In 2023, he was honored with the Outstanding Talent Award by Beijing University of Technology for his innovative work in the field of sustainable pavement engineering. During his Ph.D. at Wuhan University of Technology, he earned the Outstanding Ph.D. Graduate Award and the Thesis Award in 2021, reflecting the significance and impact of his doctoral research. These accolades underscore Dr. Cao’s commitment to excellence in both academic research and practical innovation. His ability to bridge theoretical insights with applied engineering solutions has made him a recognized name in his field. These honors not only mark his personal achievements but also highlight his leadership potential in driving forward environmentally friendly and high-performance pavement technologies. Dr. Cao continues to strive for innovation and sustainability in the infrastructure materials sector.

🔬Research Focus:

Dr. Zhilong Cao’s research is centered on sustainable and intelligent solutions for modern pavement infrastructure. His work explores low-carbon construction and maintenance materials, particularly for asphalt pavements, aiming to reduce environmental impact while improving performance. A key area of interest is the regeneration and recycling of SBS-modified asphalt, especially for aging road surfaces and airport runways. He also investigates green and smart functional materials that respond to environmental stimuli, enhancing pavement durability and functionality. Dr. Cao’s research extends to polyurethane-modified asphalts and innovative crosslinking networks for performance recovery in aged pavements. His interdisciplinary approach bridges materials science with transportation engineering, aligning his work with global sustainability goals. Through national projects and industry collaborations, he contributes to next-generation infrastructure technologies that emphasize longevity, efficiency, and eco-friendliness. His research has both academic and practical implications, improving the resilience and sustainability of urban transportation systems.

Publication Top Notes:

1. Investigation on Active Rejuvenation Mechanism of Aged SBS Modified Bitumen: Insights from Experiments and Molecular Dynamics

2. Laboratory Evaluation of Ultraviolet Aging Performance of Regenerated SBS Modified Bitumen Based on Active Flexible Rejuvenators with Different Molecular Structures

3. Creep Recovery Behavior of Fresh, Aged, and Rejuvenated SBS-Modified Asphalt under High Shear Stresses

4. Effect of Organic Coal Gangue Powder with Terminal Active Isocyanate Groups on the Performance of Asphalt and Its Mixture

5. VOCs Inhibited Asphalt Mixtures for Green Pavement: Emission Reduction Behavior, Environmental Health Impact and Road Performance

6. Environmentally Friendly End-Capped Polyurethane for Enhancing Asphalt-Granite Adhesion

 

 

Mr. Yong-Feng Cheng | Organic Chemistry | Best Researcher Award

Mr. Yong-Feng Cheng | Organic Chemistry | Best Researcher Award

Mr. Yong-Feng Cheng , Organic Chemistry, Anhui Normal University, China

Dr. Yong-Feng Cheng is an Associate Professor at the School of Chemistry and Materials Science, Anhui Normal University, China. He is a leading researcher in the field of radical chemistry and enantioselective catalysis. After earning his Ph.D. in Organic Chemistry from Nankai University, he pursued postdoctoral and faculty roles at the Southern University of Science and Technology, where he made significant contributions to copper-catalyzed asymmetric transformations. Dr. Cheng’s research, published in prestigious journals such as Nature Chemistry, JACS, and Nature Catalysis, emphasizes radical-based bond-forming reactions and novel catalytic systems. With a solid background in pharmacy and pharmaceutical analysis, he bridges organic synthesis with potential bioactive molecule development. His work is characterized by mechanistic insight, innovation in catalyst design, and collaboration with renowned scientists like Prof. X. Liu and Prof. K.N. Houk. Dr. Cheng continues to push boundaries in modern synthetic chemistry, mentoring students and contributing to cutting-edge discoveries.

Professional Profile :         

Orcid

Scopus  

Summary of Suitability for Award:

Assoc. Prof. Yong-Feng Cheng stands out as a highly suitable candidate for the “Best Researcher Award” . Based on his exceptional publication record, breakthrough contributions to enantioselective radical chemistry, rapid career advancement, and international collaboration, Assoc. Prof. Yong-Feng Cheng is highly deserving of the “Best Researcher Award.” His work reflects a balance of innovation, depth, and scientific rigor, and he has already made a significant mark in modern synthetic chemistry. Granting him this recognition would not only honor a deserving candidate but also inspire broader excellence in chemical sciences.

🎓Education:

Yong-Feng Cheng began his academic journey with a Bachelor’s degree in Pharmacy from Wannan Medical College (2005–2009). Motivated by a strong interest in the analytical and chemical aspects of drug development, he pursued a Master of Science in Pharmaceutical Analysis at Tianjin University of Traditional Chinese Medicine (2009–2012). His growing passion for organic synthesis led him to Nankai University, where he earned his Ph.D. in Organic Chemistry (2012–2015). At Nankai, he specialized in developing synthetic methodologies and advanced radical transformations. His doctoral training laid a solid foundation for his future work in radical catalysis. With this multidisciplinary education—spanning pharmacy, analytical science, and organic chemistry—Dr. Cheng brings a uniquely integrated perspective to the development of functional molecules and asymmetric synthesis. His academic background enables him to innovate at the intersection of fundamental chemistry and potential therapeutic applications.

🏢Work Experience:

Dr. Yong-Feng Cheng has steadily advanced through competitive academic roles in China’s premier institutions. From 2016 to 2018, he worked as a postdoctoral fellow at the Southern University of Science and Technology (SUSTech), collaborating on pioneering research in enantioselective radical transformations. Recognized for his innovative approach, he was promoted to Research Assistant Professor at SUSTech (2018–2022), where he co-authored several high-impact papers and contributed significantly to catalyst development. In 2023, he joined Anhui Normal University as an Associate Professor in the School of Chemistry and Materials Science. His current role involves leading a research group focused on asymmetric catalysis, mentoring graduate students, and securing national research grants. With a blend of research acumen and teaching excellence, Dr. Cheng continues to shape the future of synthetic chemistry, integrating his deep understanding of radicals, catalysis, and reaction mechanisms across disciplines.

🏅Awards: 

While the specific awards and honors of Dr. Yong-Feng Cheng are not explicitly listed, his track record of publishing in journals like Nature Chemistry, JACS, and Angewandte Chemie reflects high recognition in the international scientific community. Being co-first and corresponding author in several high-impact papers demonstrates peer acknowledgment of his leading role in radical catalysis. His research collaborations with globally renowned scientists like Prof. K.N. Houk and Prof. X. Liu further validate his standing as an innovative researcher. His rapid career progression—from Ph.D. to Associate Professor in under a decade—is itself a testimony to his scientific excellence. He has likely received institutional recognition for teaching and research performance and may have earned national-level research grants or young scientist accolades. As his work continues to draw citations and attention, more formal honors are anticipated in the near future.

🔬Research Focus:

Dr. Yong-Feng Cheng’s research is centered on enantioselective radical transformations, with a focus on copper-catalyzed asymmetric reactions. His work explores the interface of Organic chemistry and catalysis, developing novel methodologies for constructing C–O, S–O, and C–C bonds with high stereo control. His synthetic strategies employ innovative ligand systems and cooperative catalysis to achieve de- symmetrization and functionalization of otherwise inert molecules. Dr. Cheng has contributed significantly to the design of catalytic systems that enable precise manipulation of reactive radical intermediates, with potential applications in pharmaceuticals, agrochemicals, and material science. He is particularly interested in mechanistic insights, transition-state modeling, and computational collaboration to understand catalytic pathways. With a strong background in both pharmacy and organic synthesis, Dr. Cheng’s research is both methodologically rigorous and application-oriented. His group continues to develop sustainable and scalable reactions for asymmetric synthesis, including redox-triggered transformations and metal-catalyzed coupling strategies.

Publication Top Notes:

1. A P‐nucleophile Interrupted Seyferth‐Gilbert Reaction

2. Synthesis of Axially Chiral Vinyl Halides via Cu(I)-Catalyzed Enantioselective Radical 1,2-Halofunctionalization of Terminal Alkynes

3. Cu(I)-Catalyzed Chemo- and Enantioselective Desymmetrizing C–O Bond Coupling of Acyl Radicals

4. Cu-Catalyzed Enantioselective Radical Heteroatomic S–O Cross-Coupling

5. Catalytic Enantioselective Desymmetrizing Functionalization of Alkyl Radicals via Cu(I)/CPA Cooperative Catalysis

6. Desymmetrization of Unactivated Bis-Alkenes via Chiral Brønsted Acid-Catalyzed Hydroamination

7. Achiral Pyridine Ligand-Enabled Enantioselective Radical Oxytrifluoromethylation of Alkenes with Alcohols

8. Synthesis of γ-Lactams by Mild, o-Benzoquinone-Induced Oxidation of Pyrrolidines Containing Oxidation-Sensitive Functional Groups

9. Redox-Triggered α-C–H Functionalization of Pyrrolidines: Synthesis of Unsymmetrically 2,5-Disubstituted Pyrrolidines

10. A New Practical Approach Towards the Synthesis of Unsymmetric and Symmetric 1,10-Phenanthroline Derivatives at Room Temperature

 

Assist. Prof. Dr. Emilia Paone | Industrial Chemistry | Young Scientist Award

Assist. Prof. Dr. Emilia Paone | Industrial Chemistry | Young Scientist Award

Assist. Prof. Dr. Emilia Paone , Industrial Chemistry , Assistant Professor at Università degli Studi Mediterranea di Reggio Calabria, Italy

Dr. Emilia Paone is a dynamic and forward-thinking Fixed-Term Researcher (RTD-B) at the Università degli Studi Mediterranea di Reggio Calabria, specializing in Industrial Chemistry (SSD: CHIM/07). Born on September 14, 1990, in Reggio Calabria, Italy, she has emerged as a leading young scientist in the field of heterogeneous catalysis for sustainable chemical transformations. Her research pivots on the valorization of waste biomass and plastic residues into high-value chemicals and fuels. With over 41 peer-reviewed international publications, an h-index of 21, and significant international collaborations, Dr. Paone has built a formidable academic presence. She has held multiple national scientific qualifications for associate professorship in both CHIM/04 and CHIM/07. Her global perspective is enriched by research periods in Spain and collaboration with industrial partners. An active voice in green chemistry and environmental sustainability, she is a rising star driving innovation in catalytic materials and waste valorization technologies.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Emilia Paone exemplifies the core qualities sought in a “Young Scientist Award” recipient. With a Ph.D. in Civil, Environmental, and Safety Engineering, she has consistently demonstrated scientific maturity, innovation, and dedication in the realm of green and sustainable chemistry. Her postdoctoral and fixed-term research roles, particularly under national initiatives such as DM 1062/2021 in thematic GREEN areas, highlight her alignment with sustainability and circular economy goals. She has published 41 peer-reviewed papers, authored 2 book chapters, and amassed over 2,000 citations with an h-index of 21, which is remarkable for a young researcher. Her work on heterogeneous catalysis, biomass valorization, and e-waste upcycling contributes meaningfully to global sustainability challenges. She has held international research roles, including ERASMUS+ staff mobility in Spain, showing global engagement and collaborative spirit. Moreover, she has achieved dual National Scientific Qualifications for Associate Professor roles, underscoring her excellence and leadership potential.Dr. Emilia Paone’s proven research excellence, international collaborations, impactful publications, and clear contribution to sustainable technologies make her a strong, deserving, and outstanding candidate for the “Young Scientist Award’. Her work not only meets but exceeds the typical expectations for this recognition, and she stands as a role model for early-career researchers in green and industrial chemistry.

🎓Education:

Dr. Paone earned her Bachelor’s (2009–2013) and Master’s Degrees (2013–2015) in Chemistry from the Università degli Studi di Messina. She then completed her Ph.D. in Civil, Environmental, and Safety Engineering (2015–2018) at the Università degli Studi Mediterranea di Reggio Calabria, specializing in Science and Technology, Materials, and Energy. Her doctoral thesis was titled “Transfer Hydrogenolysis of Lignin and its Derived Aromatic Ethers Promoted by Heterogeneous Bimetallic Pd-Based Catalysts.” She has also completed a qualification exam in chemistry exercise in 2015. Emilia further enhanced her academic training with research internships in both Italy and Spain, including studies on chemical equilibria and potable water analysis. Notably, she has enriched her learning with international research mobility under Erasmus+, and visiting positions in Spain, gaining practical expertise in nanostructured materials, catalysis, and green technologies.

🏢Work Experience:

Dr. Paone currently serves as a Fixed-Term Researcher (RTD-B) at Università degli Studi Mediterranea di Reggio Calabria (since March 2024), focusing on Industrial Chemistry. Previously, she held an RTD-A position (2022–2024) under Italy’s GREEN program (Action IV.6), collaborating with Capua 1880 s.r.l. on sustainable technologies. Earlier, as a postdoctoral researcher (2021), she worked on the environmental sustainability of materials recovered from lithium battery waste. From 2019 to 2021, she worked with the University of Florence and Reggio Calabria on nanostructured materials for detecting metal ions in solutions. During her Ph.D. and internships, she explored lignin valorization and heterogeneous catalysis. Internationally, she served as a Visiting Researcher and Professor at the University of Córdoba, Spain, and as a Ph.D. student researcher in the same institution. Her experience spans academia, industrial collaboration, and international teaching and research exchanges—showcasing both scientific excellence and applied innovation.

🏅Awards: 

Dr. Emilia Paone has achieved significant recognition in the field of sustainable chemistry and heterogeneous catalysis through her impactful research and academic contributions. She holds two prestigious National Scientific Qualifications (Abilitazione Scientifica Nazionale) for the role of Associate Professor—one in Industrial Chemistry (CHIM/04 – 03/C2) awarded in 2023, and another in Principles of Chemistry for Applied Technologies (CHIM/07 – 03/B2) awarded in 2022. These qualifications are a testament to her high scientific standards and professional competence, as evaluated by national committees in Italy. Furthermore, her international engagement and excellence were highlighted when she was selected as a Visiting Researcher and Professor under the ERASMUS+ Staff Mobility program in 2023 at the Universidad de Córdoba, Spain. Her academic visibility is reinforced by her impressive bibliometric indicators, with over 2,000 citations and an h-index of 21, showcasing her growing influence in catalysis, green chemistry, and the valorization of waste to high-value products.

🔬Research Focus:

Dr. Paone’s research is at the cutting edge of green chemistry 🌱, with a core focus on heterogeneous catalysis for the valorization of waste and biomass into value-added products such as bioplastics, biofuels, and fine chemicals. Her work spans the transfer hydrogenolysis of lignin, reductive catalytic upgrading of plastic waste, and photocatalytic degradation of pollutants, contributing to sustainable circular economy models. She has developed MOF-derived, single-atom, and bimetallic Pd-based catalysts that efficiently convert industrial and e-waste streams. She actively collaborates on projects transforming orange peels, PET, polyolefins, and lithium battery residues into useful chemicals via eco-friendly methods. Her interdisciplinary approach combines catalyst design, nanomaterials, environmental remediation, and flow chemistry, with a strong emphasis on industrial scalability and green metrics. Dr. Paone’s research consistently addresses pressing climate and sustainability goals, establishing her as a key player in Europe’s scientific green transition.

Publication Top Notes:

Continuous flow production of γ-valerolactone from methyl-levulinate promoted by MOF-derived Al₂O₃–ZrO₂/C catalysts

Waste-minimized access to diarylamines and triarylamines via Csp²–N coupling under batch and flow conditions

E-Waste Wars: The Catalyst Awakens

Long-Term Preservation of Orange Peel Waste for the Production of Acids and Biogas

Direct Reuse of Spent Lithium-Ion Batteries as an Efficient Heterogeneous Catalyst for the Reductive Upgrading of Biomass-Derived Furfural

The reductive catalytic upcycling of polyolefin plastic waste

Hydrothermal Carbonization as Sustainable Process for the Complete Upgrading of Orange Peel Waste into Value-Added Chemicals and Bio-Carbon Materials

A New Biorefinery Approach for the Full Valorisation of Anchovy Residues: Use of the Sludge Generated during the Extraction of Fish Oil as a Nitrogen Supplement in Anaerobic Digestion

Electrospun Nanofibers and Electrochemical Techniques for the Detection of Heavy Metal Ions.

Self Standing Mats of Blended Polyaniline Produced by Electrospinning

Integral valorization of orange peel waste through optimized ensiling: Lactic acid and bioethanol production

Sustainably Sourced Olive Polyphenols and Omega-3 Marine Lipids: A Synergy Fostering Public Health

 

Dr. Ji-Wei Ren | Organic Chemistry | Best Researcher Award

Dr. Ji-Wei Ren | Organic Chemistry | Best Researcher Award

Dr. Ji-Wei Ren, Organic Chemistry, Taishan University , China 

Dr. Ji-Wei Ren is a Lecturer in the College of Chemistry and Chemical Engineering at Taishan University, China. He earned his Ph.D. in Chemical Engineering and Technology from Central South University, where he developed expertise in visible light catalysis, organo catalysis, and green synthesis. Dr. Ren has previously served as a Research Associate at Ningbo University’s Institute of Drug Discovery Technology, engaging in interdisciplinary research on biomimetic reducing agents and chiral resolution. With a strong foundation in heterocyclic construction and peptide synthesis, his work integrates sustainable and biomimetic chemistry with modern synthetic methodologies. Dr. Ren has published multiple high-impact research articles in leading journals such as Org. Lett., J. Org. Chem., and Org. Chem. Front.. His research is characterized by innovation, precision, and relevance to both pharmaceutical and materials chemistry. He actively contributes to academic platforms like ORCID and collaborates with renowned scientists across China.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Ji-Wei Ren exemplifies the qualities of an outstanding researcher through his pioneering work in the field of organic synthesis, particularly in visible light catalysis, organocatalysis, and green chemistry. He has published over 11 peer-reviewed articles in top-tier journals such as Organic Chemistry Frontiers, Journal of Organic Chemistry, Organic Letters, and Chemistry – A European Journal. Several of his works have been highlighted by Synfacts, showcasing their novelty and scientific impact. His innovative contributions include the development of racemization-free synthesis protocols, the application of biomimetic reducing agents, and the design of sustainable methodologies for heterocycle and peptide construction. He brings a fresh perspective to traditional synthetic methods by incorporating visible light and bio-inspired techniques, addressing both the efficiency and environmental responsibility in chemical synthesis. Dr. Ji-Wei Ren is highly suitable for the “Best Researcher Award”. His significant scientific output, innovation in research, recognition by the international community, and dedication to sustainable chemistry clearly distinguish him as a leading researcher in his field. His commitment to impactful and environmentally conscious science makes him not only an excellent candidate but also a role model for emerging researchers. This award would be a deserving recognition of his ongoing contributions to the scientific world.

🎓Education:

Dr. Ji-Wei Ren completed both his undergraduate and doctoral studies at Central South University. He earned his Bachelor of Engineering in Pharmaceutical Engineering in June 2013, where he gained foundational knowledge in pharmaceutical chemistry, drug design, and synthesis. Subsequently, he pursued a Doctorate in Chemical Engineering and Technology (2013–2019) at the same university. His Ph.D. research focused on innovative synthetic strategies using organo catalysis and visible-light-driven methodologies for the construction of functional molecules, especially in the development of peptide and heterocyclic compounds. Under the mentorship of distinguished faculty, he honed his skills in reaction design, stereoselective synthesis, and catalysis. His academic training also included a deep understanding of biomimetic reactions, green synthesis, and photochemical transformations. This robust educational background laid the groundwork for his interdisciplinary research efforts, enabling him to contribute significantly to the fields of sustainable and asymmetric synthesis.

🏢Work Experience:

Dr. Ji-Wei Ren began his academic career as a Research Associate (2019–2022) at the Institute of Drug Discovery Technology, Ningbo University, where he focused on peptide synthesis and the development of bio-inspired reducing agents. His role involved collaborative projects in pharmaceutical chemistry and catalysis, contributing to the advancement of efficient and eco-friendly synthetic methods. In August 2022, he joined Taishan University as a Lecturer in the College of Chemistry and Chemical Engineering. At Taishan University, Dr. Ren continues his research in visible light catalysis and organocatalytic transformations, guiding students in advanced organic chemistry techniques and experimental methodologies. He has also contributed to curriculum development and interdisciplinary research programs. His teaching and research philosophy is rooted in innovation, sustainability, and student engagement. With over a decade of academic training and research, Dr. Ren combines a strong theoretical foundation with hands-on experience in both industrial and academic labs.

🏅Awards: 

Dr. Ji-Wei Ren has been consistently recognized for his impactful contributions to organic chemistry and green synthesis methodologies. His 2021 publication in Organic Letters was highlighted by Synfacts in 2022 for its innovative racemization-free synthesis approach, underlining the originality and practical importance of his work. Additionally, his earlier work in The Journal of Organic Chemistry (2017) was also spotlighted in Synfacts, reflecting his ongoing excellence in visible light-mediated and organocatalytic transformations. During his doctoral studies at Central South University, he was honored with multiple academic excellence awards for his outstanding research and scholarly dedication. His publications in top-tier journals like Organic Chemistry Frontiers, Organic & Biomolecular Chemistry, and Chemistry – A European Journal have further established him as a rising expert in his field. These recognitions underscore both the scientific value and the practical applicability of his research in modern organic synthesis.

🔬Research Focus:

Dr. Ji-Wei Ren’s research is centered on the development of innovative, environmentally friendly methodologies in organic synthesis. His primary interests lie in visible light catalysis, where he designs photochemical processes to enable mild and selective transformations. He is also deeply involved in chiral resolution and organocatalysis, with a particular emphasis on enantioselective reactions that are crucial for pharmaceutical synthesis. A significant part of his work involves constructing complex heterocyclic compounds, often using biomimetic and green synthesis strategies to reduce environmental impact. Dr. Ren has pioneered the use of L-amino acid esters as biomimetic reducing agents and introduced new deoxygenation and amidation protocols that avoid racemization—critical for peptide and amide bond formation. His interdisciplinary approach blends traditional organic chemistry with sustainability, aiming to create scalable, efficient, and selective processes suitable for industrial application. His contributions significantly enhance both academic understanding and practical implementation in organic synthesis.

Publication Top Notes:

“A visible light-mediated deoxygenation protocol for the synthesis of dipeptides, amides and esters without racemization”

“L-Amino acid ester as a biomimetic reducing agent for the reduction of unsaturated C=C bonds”

“Umpolung Strategy for the One-Pot Synthesis of Highly Steric Bispirooxindoles via the L-Amino Acid Ester-Promoted In Situ Reduction/Nucleophilic Addition/Cyclization Cascade Reaction”

“A visible light-induced deoxygenative amidation protocol for the synthesis of dipeptides and amides”

“An organocatalytic enantioselective ring-reorganization domino sequence of methyleneindolinones with 2-aminomalonates”

“Straightforward Synthesis of 3-Selenocyanato-Substituted Chromones through Electrophilic Selenocyanation of Enaminones under Grinding Conditions”

“Organocatalytic, Enantioselective, Polarity-Matched Ring-Reorganization Domino Sequence Based on the 3-Oxindole Scaffold”

“A One‐Pot Ring‐Opening/Ring‐Closure Sequence for the Synthesis of Polycyclic Spirooxindoles”

“L-Pyroglutamic Sulphonamide as Hydrogen-Bonding Organocatalyst: Enantioselective Diels–Alder Cyclization to Construct Carbazolespirooxindoles”

“Acid-Relayed Organocatalytic exo-Diels-Alder Cycloaddition of Cyclic Enones with 2-Vinyl-1H-indoles”

 

Prof. Mohammad Bakherad | Organic Chemistry | Best Researcher Award

Prof. Mohammad Bakherad | Organic Chemistry | Best Researcher Award

Prof. Mohammad Bakherad | Organic Chemistry | Researcher at Shahrood University of Technology, Iran

Mohammad Bakherad, born in 1969 in Mashhad, Iran, is a distinguished Professor of Organic Chemistry at Shahrood University of Technology. He earned his B.Sc. in Chemistry from Isfahan University (1992) and completed his M.Sc. (1995) and Ph.D. (2002) at Ferdowsi University of Mashhad under the mentorship of Majid M. Heravi and Mohammad Rahimizadeh. With a prolific research career, he has published over 147 ISI-indexed papers, contributing significantly to organic synthesis, heterocyclic chemistry, catalysis, and green chemistry. His expertise in organometallic reagents and innovative synthetic methodologies has gained international recognition. He has mentored numerous students and led cutting-edge research projects. His commitment to academic excellence and scientific contributions continues to shape the field of organic chemistry in Iran and beyond.

Professional Profile :         

Scopus 

Summary of Suitability for Award:

Dr. Mohammad Bakherad is a highly accomplished researcher in the field of organic chemistry, particularly in catalysis, heterocyclic chemistry, and green synthetic methodologies. His academic journey, from earning a Ph.D. in Organic Chemistry at Ferdowsi University of Mashhad to becoming a full Professor at Shahrood University of Technology, demonstrates his dedication to research and innovation. With over 147 ISI-cited papers, his contributions have significantly advanced the understanding and application of novel catalytic and environmentally friendly synthetic approaches. Dr. Mohammad Bakherad’s outstanding publication record, pioneering research in organic synthesis and catalysis, and commitment to sustainable chemistry make him an exceptional candidate for the “Best Researcher Award.” His work has had a profound impact on the scientific community, shaping the future of organic chemistry. His innovative methodologies, leadership in academia, and dedication to mentorship and collaborative research make him highly deserving of this recognition.

🎓Education:

Mohammad Bakherad pursued his B.Sc. in Chemistry at Isfahan University, Iran, from 1988 to 1992. He then continued his academic journey at Ferdowsi University of Mashhad, where he obtained his M.Sc. in Organic Chemistry (1993–1996) and later earned his Ph.D. in Organic Chemistry (1996–2002). His doctoral research was conducted under the supervision of esteemed professors Majid M. Heravi and Mohammad Rahimizadeh, focusing on advanced organic synthesis and heterocyclic chemistry. His academic background provided him with a strong foundation in organic methodologies, catalysis, and the development of novel heterocyclic compounds. Through rigorous training and research, he developed expertise in the synthesis of organic frameworks, organometallic reagents, and green chemistry applications. His educational journey laid the groundwork for a prolific career in organic synthesis, contributing significantly to the field with numerous publications and advancements in catalytic and environmentally friendly synthetic approaches.

🏢Work Experience:

Dr. Mohammad Bakherad has had an extensive academic career, beginning as an Assistant Professor of Organic Chemistry at Shahrood University of Technology in July 2003. His dedication and contributions to research and teaching led to his promotion to Associate Professor in January 2008. In February 2013, he achieved the rank of Professor, solidifying his position as a leading researcher in organic and heterocyclic chemistry. Throughout his career, he has mentored numerous students, guiding them in advanced research methodologies and fostering innovation in catalysis and organic synthesis. His teaching experience spans undergraduate and postgraduate levels, covering specialized topics such as organometallic chemistry, synthetic methodologies, and green chemistry. Additionally, he has been actively involved in collaborative research projects, contributing to cutting-edge developments in organic chemistry. His expertise has led to significant advancements in sustainable chemical processes and the development of novel heterocyclic frameworks.

🏅Awards: 

Dr. Mohammad Bakherad has received numerous accolades in recognition of his outstanding contributions to organic chemistry. He has been honored for his pioneering work in catalysis, green synthetic methods, and heterocyclic chemistry. His research excellence has been acknowledged through multiple awards from national and international scientific organizations. He has been invited as a keynote speaker at prestigious conferences, highlighting his expertise in organic synthesis and catalytic methodologies. His scholarly achievements include being recognized for his high-impact publications in leading scientific journals. Furthermore, his commitment to mentorship and academic excellence has earned him appreciation from students and colleagues alike. As a distinguished researcher, he has also been part of various scientific committees, contributing to the advancement of chemistry education and research. His contributions continue to shape the field, fostering innovation and inspiring future generations of chemists.

🔬Research Focus:

Dr. Mohammad Bakherad’s research focuses on organic synthesis, particularly in heterocyclic chemistry, catalysis, and green synthetic methodologies. He has made significant contributions to the development of novel heterocyclic compounds and organometallic reagents, which play a crucial role in medicinal and materials chemistry. His work in catalytic processes has led to innovative and environmentally friendly approaches for synthesizing complex organic molecules. He has explored palladium-catalyzed reactions, Sonogashira coupling, and cyclocondensation techniques to design efficient synthetic routes. Additionally, his interest in sustainable chemistry has driven his research on recyclable catalysts and water-based reactions, reducing the environmental impact of chemical synthesis. His extensive studies on heteroannulation reactions have resulted in the creation of novel bioactive molecules with potential pharmaceutical applications. With over 147 ISI-cited papers, his research continues to influence advancements in organic and green chemistry, making a lasting impact on the scientific community.

Publication Top Notes:

Synthesis, QSAR modeling, and molecular docking studies of 1,2,3-triazole-pyrazole hybrids as significant anti-cancer and anti-microbial agents

Synthesis of new hybrid compounds of imidazo[1,2-a]pyrimidine/pyridine based on quinoxaline through palladium-catalyzed coupling reactions and heteroannulation

A comprehensive review: medicinal applications and diverse synthetic strategies of pyrimidine-based compounds leveraging Suzuki and Sonogashira reactions

Synthesis, and molecular docking studies of novel 1,2,3-triazoles-linked pyrazole carboxamides as significant anti-microbial and anti-cancer agents

Copper catalysts supported by dehydroacetic acid chitosan schiff base for CuAAC click reaction in water

Citations: 1

Furo, Pyrano, and Pyrido[2,3-d]Pyrimidines: A Comprehensive Review of Synthesis and Medicinal Applications

Citations: 5

Synthesis of new 1,2,3-triazole-linked pyrimidines by click reaction

Synthesis of new 4,5-disubstituted-6-methyl-2-(methylthio) pyrimidines via C-C coupling reactions

New Hybrid Compounds from Imidazole and 1,2,3-Triazole: Efficient Synthesis of Highly Substituted Imidazoles and Construction of Their Novel Hybrid Compounds by Copper-Catalyzed Click Reaction

Citations: 1

An Efficient Synthesis of New Pyrazole-Linked Oxazoles via Sonogashira Coupling Reaction

Citations: 2