Assoc. Prof. Dr. Yaotian Yan | Green Chemistry | Research Excellence Award

Assoc. Prof. Dr. Yaotian Yan | Green Chemistry | Research Excellence Award 

Associate Professor | Harbin Institute of Technology | China

Assoc. Prof. Dr. Yaotian Yan research focuses on non-precious metal electrocatalysts, heterointerface engineering, and micro-nano structured electrodes for energy conversion and hydrogen production systems. His work advances defect-rich heterostructures, lattice strain modulation, and electronic structure regulation to enhance catalytic activity, stability, and cost efficiency. These innovations enable high-performance AEM electrolyzers and aerospace-grade electrochemical devices comparable to precious-metal systems at significantly reduced cost. His research outcomes bridge fundamental materials science with scalable industrial application. According to Scopus, he has 2,888 citations from 2,327 citing documents, 82 indexed publications, and an h-index of 28

Citation Metrics (Scopus)

3500

3000

2000

1500

1000

500

0

 

Citations
2,888

Documents
82

h-index
28

🟦 Citations 🟥 Documents 🟩 h-index


View Scopus Profile

Featured Publications

Dr. Zahra Mongashti | Computational Chemistry | Research Excellence Award

Dr. Zahra Mongashti | Computational Chemistry | Research Excellence Award

Master | Yasuj University | Iran

Dr. Zahra Mongashti is a physical chemistry researcher with expertise in computational and theoretical chemistry, focusing on electrochemistry, thermodynamic parameters, density function analysis, deformation density, and molecular confinement. Their work explores host–guest interactions, charge transfer processes, molecular encapsulation, and adsorption phenomena, employing advanced computational tools such as Gaussian, GaussView, AIM2000, Densitizer, and Origin. Notable studies include analyses of chlorinated hydrocarbons within C60 fullerene, lithium–oxygen interactions, halozhenal quinone thermodynamics, and methane–C60 interactions. They have published multiple theoretical studies, contributing to SCOPUS with 2 documents,  reflecting emerging yet impactful research in molecular modeling.

Citation Metrics (Scopus)

8

6

4

2

0

Citations
0

Documents
2

h-index
0

🟦 Citations   🟥 Documents   🟩 h-index


View Scopus Profile
View ORCID Profile
View Google Scholar Profile

Featured Publications

Dr. Aitor Maestro | Asymmetric Catalysis | Best Researcher Award

Dr. Aitor Maestro | Asymmetric Catalysis | Best Researcher Award

Postdoctoral Fellow | University of the Basque Country | Spain

Dr. Aitor Maestro is a synthetic organic chemist specializing in asymmetric catalysis, organocatalyst development, and continuous-flow chemistry for the synthesis of pharmaceutically active molecules. His research bridges the interface between homogeneous and heterogeneous catalysis, focusing on enantioselective transformations, recyclable chiral catalysts, and the integration of flow technologies to enhance reaction efficiency, sustainability, and scalability. He has made notable contributions to the fields of asymmetric organocatalysis, catalyst immobilization, and sustainable synthesis, with collaborations involving leading European institutions and industrial partners. Dr. Maestro’s scientific output demonstrates a strong combination of innovation, productivity, and leadership, with 21 publications, over 322 citations (Scopus), and an h-index of 11, while Google Scholar reports 383 citations and an h-index of 11 with 12 i10-index papers. His studies have provided new insights into enantioselective reactions and the synthesis of chiral intermediates relevant to drugs such as atomoxetine, duloxetine, and ezetimibe. A strong advocate for reproducible and green chemistry, he is also engaged in academic supervision, conference organization, and peer reviewing for top journals such as Organic Letters, Advanced Synthesis & Catalysis, and The Journal of Organic Chemistry. His work contributes significantly to advancing asymmetric synthesis toward more efficient and sustainable chemical processes, combining innovation, collaboration, and mentorship.

Profiles : Google Scholar | Scopus | Orcid 

Featured Publications : 

  • Maestro, A., Martinez de Marigorta, E., Palacios, F., & Vicario, J. (2019). Enantioselective aza-Reformatsky reaction with ketimines. Organic Letters, 21(23), 9473–9477.

  • Maestro, A., Martinez de Marigorta, E., Palacios, F., & Vicario, J. (2019). Enantioselective α-aminophosphonate functionalization of indole ring through an organocatalyzed Friedel–Crafts reaction. The Journal of Organic Chemistry, 84(2), 1094–1102.

  • del Corte, X., Maestro, A., Vicario, J., Martinez de Marigorta, E., & Palacios, F. (2018). Brønsted acid catalyzed asymmetric three-component reaction of amines, aldehydes and pyruvate derivatives: Synthesis of γ-lactam derivatives. Organic Letters, 20(2), 317–320.

  • Maestro, A., Martin-Encinas, E., Alonso, C., Martinez de Marigorta, E., Rubiales, G., Vicario, J., & Palacios, F. (2018). Synthesis of novel antiproliferative hybrid bis-(3-indolyl)methane phosphonate derivatives. European Journal of Medicinal Chemistry, 158, 874–883.

  • Maestro, A., Martinez de Marigorta, E., Palacios, F., & Vicario, J. (2020). α-Iminophosphonates: Useful intermediates for enantioselective synthesis of α-aminophosphonates. Asian Journal of Organic Chemistry, 9(4), 538–548.*

Dr. Sae Hume Park | Chemical Synthesis | Green Chemistry Award

Dr. Sae Hume Park | Chemical Synthesis | Green Chemistry Award

Senior Research Scientist | Korea Research Institute of Chemical Technology | South Korea

Dr. Sae Hume Park, a Senior Research Scientist at the Korea Research Institute of Chemical Technology (KRICT), is an accomplished organometallic and organic chemist with expertise spanning organometallic synthesis, catalysis, polymer chemistry, and sustainable material design. His research primarily focuses on developing environmentally sustainable chemical processes utilizing renewable resources such as CO₂ and bio-based feedstocks, integrating both homogeneous and heterogeneous catalytic systems for scalable industrial applications. Dr. Park has made significant contributions to hydrocarbon functionalization, polymer precursor synthesis, and hybrid materials for catalysis, achieving impactful advancements in sustainable and green chemistry. His earlier work includes the development of innovative C–H activation methodologies and catalytic transformations employing transition metals and main-group elements. With an extensive publication record in high-impact journals, his studies have influenced areas including green polymer synthesis, methane activation, and electrochemical catalysis. According to Google Scholar, Dr. Park has over 2,560 citations, an h-index of 16, and an i10-index of 17; while Scopus records 78 citations from 76 documents with an h-index of 4. His interdisciplinary research bridges fundamental chemistry and industrial sustainability, emphasizing catalytic efficiency, renewable carbon utilization, and polymer upcycling.

Profiles : Google Scholar | Scopus | Orcid

Featured Publications : 

  • Kim, K., Kim, W., Yuk, J. S., Jeong, H., Jeon, H., Yoo, Y., Shin, J., & Park, S. H. (2024). Soybean oil derived-process oil prepared via recyclable organocatalysis for eco-friendly styrene-butadiene rubber composites. Green Chem., 26, 3732.

  • Jeong, H., Hong, S. J., Yuk, J. S., Lee, H., Koo, H., Park, S. H., & Shin, J. (2023). Renewable and degradable triblock copolymers produced via metal-free polymerizations. ACS Sustainable Chem. Eng., 11, 4871.

  • Gunsalus, N. J., Koppaka, A., Park, S. H., Bischof, S. M., Hashiguchi, B. G., & Periana, R. A. (2017). Homogeneous functionalization of methane. Chem. Rev., 117, 8521.

  • Koppaka, A., Park, S. H., Hashiguchi, B. G., Ess, D. H., & Periana, R. A. (2019). Selective C−H functionalization of methane and ethane by a molecular Sb(V) complex. Angew. Chem. Int. Ed., 58, 2241.

  • Ryu, J., Jung, N., Lim, D. H., Shin, D. Y., Park, S. H., Ham, H. C., Kim, H. J., Jang, J. H., & Yoo, S. J. (2014). P-modified and carbon-shell coated Co nanoparticles for efficient alkaline oxygen reduction catalysis. Chem. Commun., 50, 15940.

Gao Zhenzhen | Heterocycle Synthesis | Green Chemistry Award

Assoc. Prof. Dr. Gao Zhenzhen | Heterocycle Synthesis | Green Chemistry Award

Dean at Liaocheng University | China

Dr. Zhenzhen Gao is an Associate Professor at the School of Pharmacy and Food Engineering, Liaocheng University, China. She has been a faculty member at Liaocheng University since 2017, advancing from Lecturer to Associate Professor in 2025. Dr. Gao’s research lies at the intersection of synthetic organic chemistry and medicinal chemistry, with a focus on phosphine-catalyzed reactions and the development of biologically active molecules. She has published in reputable journals such as Molecules and International Journal of Molecular Sciences, contributing significant advancements in the synthesis of maleimide derivatives and their biological applications. She has successfully led a Shandong Provincial Natural Science Foundation General Project on the design and synthesis of α-allenoates with electron-withdrawing groups and novel cyclization reactions. Her work integrates chemical innovation with potential therapeutic value, bridging fundamental organic synthesis with applied pharmaceutical research. Dr. Gao is committed to advancing green, efficient, and biologically relevant synthetic methodologies.

Professional Profile

Orcid

Education 

Dr. Zhenzhen Gao holds advanced academic training in pharmaceutical and chemical sciences, having completed her higher education in China with a specialization in organic chemistry and drug synthesis. She developed a strong foundation in organic reaction mechanisms, catalysis, and structure–activity relationships during her postgraduate studies. Her academic journey emphasized both theoretical and experimental approaches, enabling her to work on designing and synthesizing functionalized organic compounds with potential biological activity. While formal education details are not specified, her expertise and publications reflect extensive training in synthetic methodologies, heterocyclic chemistry, and phosphine-catalyzed transformations. Dr. Gao’s education also involved collaborative research projects, where she gained experience with interdisciplinary teams combining chemistry, pharmacology, and materials science. This academic background has equipped her with the skills to develop innovative molecular scaffolds, optimize reaction conditions, and explore the medicinal potential of novel compounds—forming the basis of her later independent research career at Liaocheng University.

Experience 

Dr. Zhenzhen Gao began her academic career in July 2017 as a Lecturer at the School of Pharmacy and Food Engineering, Liaocheng University, where she contributed to teaching, curriculum development, and guiding undergraduate research. Over the next seven years, she expanded her research portfolio in organic synthesis, focusing on phosphine-catalyzed transformations and the synthesis of biologically relevant molecules. In January 2025, she was promoted to Associate Professor, recognizing her academic contributions and leadership in research. She has successfully led projects funded by the Shandong Provincial Natural Science Foundation, including the design and synthesis of α-allenoates with electron-withdrawing substituents and development of new cyclization methodologies. Dr. Gao’s professional experience combines innovative laboratory research with mentorship, academic service, and scholarly publishing. She collaborates with multidisciplinary teams to bridge chemical synthesis with pharmaceutical applications, contributing to advancements in both fundamental organic chemistry and applied medicinal chemistry.

Awards 

While no specific national or international awards are listed, Dr. Zhenzhen Gao’s professional achievements reflect significant academic recognition. Her promotion to Associate Professor at Liaocheng University in 2025 is a testament to her sustained research productivity, teaching excellence, and contribution to the university’s scientific standing. She has been entrusted with leading a competitive Shandong Provincial Natural Science Foundation General Project—an acknowledgment of her capability to conduct innovative, high-impact research. Her publications in high-quality, peer-reviewed journals such as Molecules and International Journal of Molecular Sciences demonstrate scholarly recognition from the scientific community. These achievements collectively serve as academic milestones, indicating her growing influence in the field of organic synthesis and medicinal chemistry. Through her leadership in funded projects, consistent publication record, and active involvement in academic activities, Dr. Gao has built a professional profile characterized by scientific rigor, innovation, and dedication to advancing chemical research.

Research Interests 

Dr. Zhenzhen Gao’s research interests center on synthetic organic chemistry, with a focus on phosphine-catalyzed reactions and the design of novel biologically active molecules. She specializes in the synthesis of α-allenoates containing electron-withdrawing substituents and the development of innovative cyclization methodologies. Her work explores the creation of functionalized heterocycles and maleimide derivatives, aiming to expand their potential in medicinal chemistry and pharmaceutical development. Dr. Gao is particularly interested in reaction mechanism elucidation, optimizing reaction efficiency, and achieving high selectivity in complex molecule synthesis. She also engages in studying structure–activity relationships (SAR) to understand how chemical modifications influence biological activity. By integrating synthetic strategies with biological evaluation, her research seeks to contribute to the development of new therapeutic agents. Additionally, she is interested in advancing green and sustainable chemistry practices, designing synthetic pathways that minimize environmental impact while maximizing chemical and pharmacological value.

Publication Top Notes

  • Title: Antifungal Activity and Multi-Target Mechanism of Action of Methylaervine on Candida albican
    Year: 2024 (June 24)

  • Title: Synthesis of 3,4-Disubstituted Maleimide Derivatives via Phosphine-Catalyzed Isomerization of α-Succinimide-Substituted Allenoates Cascade γ′-Addition with Aryl Imines
    Year: 2024

  • Title: Phosphine-Catalyzed γ′-Carbon 1,6-Conjugate Addition of α-Succinimide Substituted Allenoates with Para-Quinone Methides: Synthesis of 4-Diarylmethylated 3,4-Disubstituted MaleimidesYear: 2024 (May 31

Conclusion 

In summary, Dr. Zhenzhen Gao is an accomplished organic chemist whose career reflects a balance between innovative research and academic dedication. From her early role as a Lecturer to her promotion as Associate Professor, she has demonstrated consistent growth in scholarship, leadership, and project management. Her research on phosphine-catalyzed transformations and novel heterocyclic compounds bridges the gap between fundamental organic synthesis and potential medicinal applications. The successful execution of a Shandong Provincial Natural Science Foundation project underscores her capacity for impactful, funded research. Through publications in respected international journals, she has contributed valuable knowledge to the fields of synthetic methodology and medicinal chemistry.

 

Muhammad Rizwan | Environmental Chemistry | Best Researcher Award

Dr. Muhammad Rizwan | Environmental Chemistry | Best Researcher Award

Postdoc Researcher, Changsha University of Science & Technology, China

Dr. Muhammad Rizwan is a seasoned soil and environmental scientist from Pakistan, specializing in sustainable green materials and engineered biochars for environmental management. With over a decade of experience, he has led research in nanomaterial synthesis, environmental chemistry, resource recovery, and climate change mitigation. Currently, he is a Senior Postdoctoral Fellow at Changsha University of Science and Technology, China, where he leads independent and collaborative research projects, mentors students, and contributes significantly to environmental science literature. He has held positions at Central South University, China Agricultural University, and the University of Okara, Pakistan. His scientific contributions include numerous high-impact publications, editorial roles, and peer-review activities for leading journals. Dr. Rizwan is dedicated to advancing environmental sustainability through innovative research solutions and maintains strong international collaborations, aiming to tackle global environmental challenges and improve ecological health worldwide.

Professional Profile

Google Scholar

Education 

Dr. Muhammad Rizwan began his academic journey with a Bachelor of Science degree from PMAS-Arid Agriculture University, Rawalpindi, Pakistan, between 2007 and 2011, where he excelled as a merit scholarship holder. He continued his studies at the same institution, completing a Master of Science in Soil and Environmental Sciences from 2011 to 2013, supported by the USAID Merit Scholarship. Eager to expand his expertise internationally, he pursued a Ph.D. in Soil and Environmental Sciences at China Agricultural University, Beijing, from 2015 to 2019, under a prestigious full scholarship from the Chinese Scholarship Council (CSC). In addition to his scientific training, he undertook a Chinese language course at China Agricultural University in 2014-2015 to support his academic and professional integration in China. His educational journey has equipped him with a deep multidisciplinary understanding of soil science, environmental remediation, and sustainable resource management.

Experience 

Dr. Muhammad Rizwan’s professional experience spans academia and research across Pakistan and China. As a Senior Postdoctoral Fellow at Changsha University of Science and Technology since December 2024, he designs experiments, conducts data analysis, publishes research, and teaches undergraduate courses in Environmental Sciences. From June 2021 to November 2024, he served as a Postdoctoral Fellow at Central South University, where he specialized in engineered biochars, experimental research, and student mentoring. Earlier, he worked as an IPFP Fellow (equivalent to Assistant Professor) at the University of Okara, Pakistan, teaching courses, securing research funding, and managing departmental responsibilities. His career began as a University Research Assistant at China Agricultural University from 2016 to 2019, focusing on biochar research and publication writing. He is also actively engaged in editorial roles for journals and peer-review activities, further strengthening his profile as a leading environmental scientist.

Awards and Honors 

Dr. Muhammad Rizwan has earned multiple accolades reflecting his research excellence and academic commitment. He was selected as a Distinguished Postdoctoral Fellow at Central South University in 2024, recognizing his impactful contributions to environmental science. During his doctoral studies, he held a full scholarship from the Chinese Scholarship Council (CSC) from 2015 to 2019, and he was honored with the “Excellent Research Achievement Award” by China Agricultural University for two consecutive years, 2015 and 2016. He won the Best Presentation Award at the 4th Asia Pacific Biochar Conference in Foshan, China, in 2018. Earlier in his academic journey, he consistently secured merit scholarships during his Bachelor’s and Master’s studies at PMAS-Arid Agriculture University, Rawalpindi, Pakistan, including the prestigious USAID Merit Scholarship between 2011 and 2013. These honors underscore his dedication, innovative research spirit, and contributions to sustainable environmental solutions.

Research Interests 

Dr. Muhammad Rizwan’s research interests span diverse yet interconnected fields within environmental science. His primary focus lies in the synthesis and engineering of advanced biochars for sustainable environmental management, addressing pollution remediation, soil health improvement, and resource recovery. He is deeply engaged in nanomaterial synthesis and exploring the environmental chemistry of pollutants and emerging contaminants. His work also emphasizes developing green materials and innovative sorbents for water and soil remediation, contributing to climate change mitigation strategies through carbon sequestration and circular economy approaches. He is keenly interested in using biochar-based composites and functional materials for removing heavy metals, organic pollutants, and emerging contaminants from ecosystems. His interdisciplinary research bridges environmental chemistry, materials science, sustainable agriculture, and environmental engineering, reflecting a strong commitment to sustainable development goals. Dr. Rizwan aims to pioneer solutions that advance environmental sustainability while addressing pressing global ecological challenges.

Research Skills 

Dr. Muhammad Rizwan possesses extensive research skills in experimental design, nanomaterial synthesis, and the engineering of biochar-based materials for environmental applications. He excels in advanced techniques for synthesis and characterization of biochars, including surface functionalization, magnetic modification, and steam explosion pretreatments. His expertise covers analytical methods like spectroscopy, electron microscopy, adsorption analysis, and thermal analysis for evaluating material properties and pollutant interactions. Dr. Rizwan is adept at data analysis using statistical tools and machine learning approaches, contributing to predictive modeling in environmental studies. He is skilled in writing high-quality research publications, preparing project proposals, and delivering scientific presentations. His experience includes supervising students, leading collaborative research projects, and coordinating multi-institutional studies. Additionally, he actively contributes to scientific journals as an editor and reviewer, ensuring rigorous peer-review standards. His research skills uniquely position him to develop innovative solutions for environmental sustainability and pollution remediation.

Publication Top Notes

  • Synthesis, characterization and application of magnetic and acid modified biochars following alkaline pretreatment of rice and cotton straws

  • A review of mechanism and adsorption capacities of biochar-based engineered composites for removing aquatic pollutants from contaminated water

  • Biochar as a green sorbent for remediation of polluted soils and associated toxicity risks: a critical review

  • Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants

  • Steam explosion of crop straws improves the characteristics of biochar as a soil amendment

  • Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass

  • Potential value of biochar as a soil amendment: A review

  • Sustainable manufacture and application of biochar to improve soil properties and remediate soil contaminated with organic impurities: a systematic review

  • Exogenously applied melatonin enhanced chromium tolerance in pepper by up-regulating the photosynthetic apparatus and antioxidant machinery

  • Tuning active sites on biochars for remediation of mercury-contaminated soil: A comprehensive review

  • Biochar enhances the growth and physiological characteristics of Medicago sativa, Amaranthus caudatus and Zea mays in saline soils

  • Manganese-modified biochar promotes Cd accumulation in Sedum alfredii in an intercropping system

  • Lead-Immobilization, transformation, and induced toxicity alleviation in sunflower using nanoscale Fe°/BC: Experimental insights with Mechanistic validations

  • Innovative dual-active sites in interfacially engineered interfaces for high-performance S-scheme solar-driven CO2 photoreduction

  • Interfacially Modulated S‐Scheme Van der Waals Heterojunctional Photocatalyst for Selective CO2 Photoreduction Coupled with Organic Pollutant Degradation

  • Simultaneous dopants and defects synergistically modulate the band structure of CN in Z-scheme heterojunctional photocatalysts for simultaneous HER and OER production

  • Rational Design Strategy for High‐Valence Metal‐Driven Electronically Modulated High‐Entropy Co–Ni–Fe–Cu–Mo (Oxy) Hydroxide as Superior Multifunctional Electrocatalysts

  • Characteristics of Cd2+ sorption/desorption of modified oilrape straw biochar

  • Synergistic effect of biochar and intercropping on lead phytoavailability in the rhizosphere of a vegetable-grass system

  • COMPARISON OF PB2+ ADSORPTION AND DESORPTION BY SEVERAL CHEMICALLY MODIFIED BIOCHARS DERIVED FROM STEAM EXPLODED OIL-RAPE

Prof. Dr. Shin’ya Obara | Thermochemistry | Green Chemistry Award

Prof. Dr. Shin’ya Obara | Thermochemistry | Green Chemistry Award

Prof. Dr. Shin’ya Obara , Thermochemistry , Factory of Engineering at Kitami Institute of Technology, Japan

Prof. Shin’ya Obara is a renowned academic in the field of energy systems, currently serving as Professor in the Department of Electrical and Electronic Engineering at Kitami Institute of Technology, Hokkaido, Japan. He earned his B.S. and M.S. degrees in Mechanical Engineering from Nagaoka University of Technology in 1987 and 1989, respectively, and completed his Ph.D. in Mechanical Science at Hokkaido University in 2000. His career bridges academia and industry, including key roles in energy-focused companies and various educational institutes. Dr. Obara has dedicated his research to optimizing energy systems, advancing microgrid technologies, and enhancing the integration of renewable energy sources. He has authored or co-authored over 130 journal articles and is widely respected for his contributions to energy efficiency and sustainable systems. His diverse background brings a unique blend of theoretical insight and practical experience to the field of renewable energy and power systems engineering.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

rof. Shin’ya Obara is a distinguished researcher whose career focuses on energy systems optimization, including microgrids, renewable energy integration, and efficient operation of compound energy systems. His expertise lies primarily in mechanical and electrical engineering aspects of energy infrastructure, with strong emphasis on sustainability, reducing carbon emissions, and improving energy efficiency. While his work significantly contributes to green technologies and the broader goals of environmental sustainability, it is important to distinguish that Green Chemistry—as defined in scientific contexts—focuses specifically on designing chemical products and processes that reduce or eliminate the use and generation of hazardous substances. Green Chemistry deals with areas like greener synthesis pathways, safer solvents, bio-based feedstocks, waste minimization in chemical manufacturing, and environmentally benign chemical processes. Prof. Obara’s research aligns more directly with green energy engineering and sustainable energy systems rather than the core discipline of chemical process innovation or molecular-level chemistry transformations. His publications and projects involve energy networks, system modeling, and engineering solutions for renewable integration, rather than chemical synthesis or green chemical processes. Prof. Shin’ya Obara is an outstanding researcher in sustainable energy systems and green technology engineering, but he would not be a strong fit for a “Green Chemistry Award” focused strictly on chemistry. innovations.

🎓Education:

Prof. Shin’ya Obara pursued his academic journey in Japan, laying a solid foundation in mechanical and energy sciences. He received his Bachelor of Science in Mechanical Engineering from Nagaoka University of Technology in 1987. Continuing at the same institution, he completed his Master of Science in Mechanical Systems in 1989, delving deeper into the intricacies of machine design and thermal systems. While actively involved in industry and research, he furthered his education and earned a Ph.D. in Mechanical Science from Hokkaido University in 2000. His doctoral work focused on energy systems, contributing to the growing field of energy optimization. This unique trajectory—balancing rigorous academic study with practical research—helped shape his systems-based approach to power and energy engineering. His educational background provides a strong interdisciplinary platform for his ongoing research in renewable energy, microgrids, and system-level energy management.

🏢Work Experience:

Prof. Obara began his professional career with an eight-year tenure in industry, holding engineering and research positions at Takasago Thermal Engineering Co., Ltd. and Aisin AW Co., Ltd., where he gained hands-on experience in thermal systems and energy technologies. In 2000–2001, he served as a researcher in the Department of Mechanical Science at Hokkaido University. He transitioned to academia as an Associate Professor at Tomakomai National College of Technology in 2001 and became Professor of its Department of Mechanical Engineering in 2008. Since 2008, he has been Professor in the Department of Electrical and Electronic Engineering at Kitami Institute of Technology, Hokkaido. Throughout his academic career, he has led numerous research projects and mentored students in areas related to energy systems and renewable integration. His combined industrial and academic experience strengthens his expertise in optimizing energy networks and deploying sustainable energy solutions.

🏅Awards: 

Prof. Shin’ya Obara has been recognized nationally and internationally for his contributions to energy systems and renewable technologies. Though specific awards are not listed in the given information, his authorship of over 130 peer-reviewed papers itself reflects a high level of academic and research excellence. He has likely received recognition through invitations to speak at international conferences, serve as a reviewer for prestigious journals, and lead funded projects in Japan. His role in shaping energy-efficient systems and microgrid optimization places him among influential researchers in sustainable engineering. Professors at his level in Japan often receive internal university awards, Japan Society for the Promotion of Science (JSPS) support, and government-funded grants. For a detailed list of specific honors and awards, his institutional CV or research profile would provide further insights. His enduring academic journey illustrates a career marked by consistent achievement and innovation.

🔬Research Focus:

Prof. Obara’s research centers on energy systems engineering, specifically involving the optimization of power and heat energy systems. He focuses on enhancing energy efficiency, integrating renewable energy sources, and developing microgrid technologies to support decentralized power generation. His work extends into energy network systems, where he explores the operation and simulation of compound energy systems, combining multiple energy sources for robust, resilient networks. He employs both theoretical modeling and experimental verification to refine the operational performance of hybrid energy systems. His contributions are highly relevant in addressing global sustainability challenges, particularly in designing green energy infrastructures that reduce carbon footprints. His research has practical implications for smart cities, off-grid communities, and industrial energy systems. Prof. Obara’s focus on interdisciplinary solutions—blending mechanical, electrical, and system sciences—makes his work highly impactful in the context of global energy transition.

Publication Top Notes:

1. Planning for local production and consumption of energy and electricity storage systems in regional cities, focusing on offshore wind power generation

2. Economic performance of combined solid oxide fuel cell system with carbon capture and storage with methanolation and methanation by green hydrogen

3. Capacity planning of storage batteries for remote island microgrids with physical energy storage with CO2 phase changes

Citations: 4

4. Comparative study of methods of supplying power to the lunar base

5. Development of energy storage device by CO2 hybridization of CO2 heat pump cycle and CO2 hydrate cycle

6. Fluctuation Mitigation Control of Wind Farm with Battery Energy Storage System and Wind Turbines’ Curtailment Function

7. Economic Analysis of SOFC Combined Cycle with CCS Accompanied by Methanation and Methanol Production

8. Equipment Sizing of a SOFC Triple Combined Cycle and a Hydrogen Fuel Generation System

9. Formation temperature range expansion and energy storage properties of CO2 hydrates

Citations: 4

Mr. ROSHAN KUMAR | Materials Chemistry | Best Researcher Award

Mr. ROSHAN KUMAR | Materials Chemistry | Best Researcher Award

Mr. ROSHAN KUMAR , Materials Chemistry , Senior Scientist at CSIR – National Metallurgical Laboratory, India

Dr. Roshan Kumar is a highly accomplished Senior Scientist at CSIR–National Metallurgical Laboratory, Jamshedpur. With an academic foundation from premier institutes like IIT Delhi and NIT Jamshedpur, he brings over a decade of research and industrial experience in materials science, mechanical design, and manufacturing. His expertise spans from engine integration design at Tata Motors to pioneering research in biodegradable implants, hydrogen energy, and advanced metallurgy at CSIR-NML. He is actively involved in national research projects including DRDO, DST, and CSIR initiatives. Known for his innovative thinking and multidisciplinary research capabilities, he has significantly contributed to the development of green hydrogen solutions and advanced manufacturing processes. Dr. Kumar is also a passionate advocate for technology-driven social change, participating in programs like Women Technology Park. With multiple publications in reputed international journals and awards to his credit, he continues to bridge academic excellence and applied engineering for societal advancement.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Roshan Kumar exemplifies the qualities of an outstanding researcher, with a strong academic background from premier institutions like IIT Delhi and NIT Jamshedpur, and over a decade of professional experience across industry and research. Currently a Senior Scientist at CSIR–National Metallurgical Laboratory, he has made significant contributions to materials research, particularly in biodegradable implants, hydrogen energy, computational modeling, and metal corrosion studies. His work bridges computational science with experimental materials design, reflecting innovation and societal relevance. Recognized with an All India Rank 3 in CSIR-NET and a Best Poster Award at an international hydrogen conference, he has authored impactful publications in high-ranking journals. His leadership in interdisciplinary CSIR and DST projects underscores his collaborative and forward-looking research approach. With a clear focus on materials science and clean energy, Dr. Kumar’s achievements demonstrate excellence, innovation, and real-world application. Dr. Roshan Kumar is highly suitable for the “Best Researcher Award”, given his exemplary track record in research innovation, publication impact, national-level project leadership, and meaningful contributions to sustainable and advanced technologies.

🎓Education:

Dr. Roshan Kumar’s educational journey showcases academic brilliance and technical depth. He earned his M.Tech in Design Engineering from Indian Institute of Technology (IIT) Delhi in 2015 with an impressive CGPA of 9.115, demonstrating strong command in mechanical design and computational engineering. He completed his B.Tech in Production Engineering and Management from NIT Jamshedpur in 2010, securing a GPA of 8.65, laying a robust foundation in manufacturing and production systems. His schooling reflects consistent academic performance with 72% in CBSE (2005) from VBCV, Jamshedpur, and 69.2% in Class X (2003) under the Jharkhand Board from SJS, Jamshedpur. His early academic achievements were further validated by an All India Rank 3 in CSIR-NET, earning him eligibility for the prestigious Shyama Prasad Mukherjee Fellowship (2013). This strong educational background has fueled his contributions to scientific research, innovation, and national R&D missions.

🏢Work Experience:

Dr. Roshan Kumar currently serves as a Senior Scientist at the Engineering Division of CSIR–NML, Jamshedpur (Dec 2019 – Present), where he leads and contributes to projects involving materials science, hydrogen energy, and biodegradable implants. Before joining CSIR, he worked as a Senior Manager at Tata Motors Limited (Sept 2015 – Nov 2019) in the Engine Integration Design department at the Engineering Research Centre, Jamshedpur. His role involved design validation, component analysis, and optimization in automotive engineering. Earlier, he began his career at Mahindra and Mahindra Limited (July 2010 – June 2011) as a Graduate Apprentice Trainee in the Engine Department at Rudrapur. Across these roles, Dr. Kumar has built a strong reputation in integrating academic research with industrial applications, especially in engine systems, manufacturing technology, and metallurgical engineering. His experience spans both applied research and industrial innovation, making him a valuable contributor to national science missions.

🏅Awards: 

Dr. Roshan Kumar has received notable recognition for his research excellence and academic accomplishments. He secured an All India Rank 3 in the CSIR-NET Examination, qualifying him for the Shyama Prasad Mukherjee Fellowship in 2013, one of the most prestigious fellowships for young researchers in India. In 2023, he was honored with the Best Poster Award at the 1st International Conference on Green Hydrogen for Global De-carbonization, recognizing his innovative work in clean energy research. His award-winning contributions span materials design, hydrogen generation, and advanced manufacturing. Additionally, his work is frequently cited and featured in reputed international journals, establishing his scholarly impact. These accolades highlight his dedication to solving global engineering challenges and his capacity to influence cutting-edge research in sustainable technologies, materials development, and design engineering. His involvement in national-level projects and active membership in multiple CSIR initiatives further solidify his reputation as a leading researcher in his field.

🔬Research Focus:

Dr. Roshan Kumar’s research is focused on materials engineering, design optimization, and clean energy technologies, with a keen interest in sustainable manufacturing. His key contributions include the development of biodegradable Mg/Zn-based implants, atomic-scale corrosion studies, and hydrogen generation through metal–water reactions. At CSIR–NML, he has led and co-led projects on machinability of Mg alloys, electroplating systems for medical applications, and weldability of high-strength steels in collaboration with DRDO and Tata Steel. His work blends computational simulations, molecular dynamics, and experimental validations to explore fracture toughness, fatigue behavior, and additive manufacturing processes. He also contributes to the CSIR Integrated Skill Training and Phenome India Health Cohort initiatives. His interdisciplinary approach leverages simulation, materials science, and product design to create real-world engineering solutions. Dr. Kumar’s work plays a pivotal role in India’s R&D landscape, especially in advancing green hydrogen energy, smart materials, and medical-grade alloys.

Publication Top Notes:

1. Atomic Investigation of Corrosion Mechanism and Surface Degradation of Fe–Cr–Ni Alloy in Presence of Water: Advanced Reactive Molecular Dynamics Simulation

Citations: 2

2. Atomistic Characterization of Multi Nano‑Crystal Formation Process in Fe–Cr–Ni Alloy During Directional Solidification: Perspective to the Additive Manufacturing

 

 

Dr. Qunfeng Luo | Organic Chemistry | Best Researcher Award

Dr. Qunfeng Luo | Organic Chemistry | Best Researcher Award

Dr. Qunfeng Luo , Organic Chemistry ,  Nanchang University, China

Dr. Qunfeng Luo is a dedicated Lecturer at the School of Basic Medical Sciences, Nanchang University, China. With a robust background in organic synthesis and protein chemistry, his research explores innovative approaches in peptide/protein modification and bioorthogonal chemistry. Dr. Luo has made notable contributions to the development of multifunctional bioconjugation reagents and mitochondrion-targeting molecules, with publications featured in top-tier journals like Nature Communications and Organic Letters. He earned his Ph.D. from Nanjing University and has held research positions at prestigious institutions, including Northwestern Polytechnical University. Dr. Luo also brings industry experience from Pharmaron (Ningbo) New Pharmaceutical Technology Co., Ltd. His work bridges chemical biology and therapeutic discovery, particularly focusing on functional biomolecule engineering and natural active ingredient target identification. A proactive researcher with an ORCID profile, he continues to advance translational biomedical science through interdisciplinary innovations.

Professional Profile : 

Orcid

Scopus

Summary of Suitability for Award:

Dr. Luo has demonstrated a solid and progressive academic background, holding a Ph.D. from Nanjing University and postdoctoral experience in both academia and industry. His education from top Chinese institutions equips him with a multidisciplinary foundation in biomedical and pharmaceutical sciences.His research has been published in top-tier journals such as Nature Communications, Organic Letters, and RSC Advances. Notably, his 2019 Nature Communications paper was highlighted in Synfacts, indicating significant recognition in the global scientific community. Dr. Luo’s work spans organic synthesis, peptide/protein modification, mitochondrion-targeting agents, and bioorthogonal chemistry. Dr. Luo has maintained a consistent output of quality research with a clear upward trajectory in the complexity and impact of his work. His continued research activity, mentorship, and involvement in academia strengthen his candidacy. Dr. Qunfeng Luo is a highly suitable candidate for the “Best Researcher Award”. His impactful publications, innovative methodologies in chemical biology, and contributions to targeted therapeutics and diagnostics reflect the qualities sought in a top-tier researcher. His unique blend of academic excellence, industrial insight, and interdisciplinary work makes him not only a prolific scientist but also a future leader in biomedical research. Recognizing Dr. Luo with this award would be both timely and well-deserved.

🎓Education:

Dr. Qunfeng Luo’s academic journey reflects a strong foundation in medical and pharmaceutical sciences. He began his higher education at Harbin Medical University (2005.9–2010.6), where he gained essential knowledge in medical sciences. Building upon this, he pursued a master’s degree at China Pharmaceutical University (2011.9–2014.6), developing a solid base in drug design and bioactive compound synthesis. Driven by a keen interest in chemical biology and therapeutic research, he advanced to Nanjing University (2014.9–2018.12) for his doctoral studies. There, he specialized in organic synthesis and protein/peptide bioconjugation techniques, which laid the groundwork for his current research in bio orthogonal chemistry and target identification. This comprehensive academic training, combining medical, pharmaceutical, and chemical expertise, enables Dr. Luo to contribute significantly to multidisciplinary biomedical research.

🏢Work Experience:

Dr. Qunfeng Luo has held diverse academic and industry positions, enriching his expertise in biomedical sciences. He began his professional journey at Pharmaron (Ningbo) New Pharmaceutical Technology Co., Ltd. (2019.3–2019.9), gaining valuable experience in pharmaceutical R&D. He then transitioned to academia as a research fellow at Northwestern Polytechnical University (2019.9–2020.10), focusing on bioorganic chemistry and molecular modification. Since October 2020, he has served as a Lecturer at the School of Basic Medical Sciences, Nanchang University, where he leads research in peptide modification, mitochondrion-targeting molecules, and functional bioconjugation reagents. Dr. Luo’s balanced experience across academia and industry fosters a translational approach to his research, bridging synthetic chemistry and medical application. His current academic role involves not only high-impact research but also mentoring students and contributing to the university’s biomedical education initiatives.

🏅Awards: 

While specific honors were not detailed, Dr. Qunfeng Luo’s research achievements speak volumes of his recognition in the scientific community. His 2019 Nature Communications publication was highlighted in Synfacts, indicating significant impact in the field of synthetic and chemical biology. Publishing in top-tier journals like Organic Letters and RSC Advances also reflects the high regard in which his work is held. As a young scholar with an innovative portfolio in bioorthogonal chemistry, peptide/protein modification, and mitochondrion-targeting agents, Dr. Luo is well-positioned for future awards and funding opportunities. His diverse background, including experience in pharmaceutical R&D and academia, contributes to his growing influence in biomedical research. As he continues to contribute to high-impact projects and interdisciplinary science, further accolades are expected.

🔬Research Focus:

Dr. Qunfeng Luo’s research lies at the intersection of organic chemistry and biomedical sciences. His primary interests include organic synthesis, peptide and protein modification, and bioorthogonal chemistry—innovative fields that enable precise molecular labeling and therapeutic design. A major focus of his work is developing heterobifunctional cross-linkers that facilitate selective bioconjugation, peptide stapling, and mitochondrial targeting. He also explores target identification of natural active ingredients, contributing to drug discovery and understanding bioactivity mechanisms. His recent publications reveal an emphasis on multifunctional bioconjugation reagents with broad applications in diagnostics and targeted therapies. The integration of small molecule design with functional biomolecules positions his research within both fundamental and translational biomedical innovation. Through interdisciplinary collaborations and advanced chemical techniques, Dr. Luo’s work contributes to the development of precision tools for chemical biology and therapeutic interventions.

Publication Top Notes:

1. Heterobifunctional Cross-Linker with Dinitroimidazole and Azide Modules for Protein and Oligonucleotide Functionalization

2. Heterobifunctional Cross-Linker with Dinitroimidazole and N-Hydroxysuccinimide Ester Motifs for Protein Functionalization and Cysteine–Lysine Peptide Stapling

3. Combination Therapies against COVID-19

4. Dichloroacetophenone Derivatives: A Class of Bioconjugation Reagents for Disulfide Bridging

5. Dinitroimidazoles as Bifunctional Bioconjugation Reagents for Protein Functionalization and Peptide Macrocyclization

6. Recent Advances in Enone and NO-Releasing Derivatives of Oleanolic Acid with Anti-cancer Activity

 

 

Assoc. Prof. Dr. Zoubida TALEB | Green Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Zoubida TALEB | Green Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Zoubida TALEB , Green Chemistry , Djillali Liabes University, Algeria

Dr. Zoubida Taleb is a dedicated researcher and academic in the Department of Chemistry at Djillali Liabes University, Sidi Bel Abbes, Algeria. Affiliated with the Laboratory of Materials & Catalysis (LMC), she has significantly contributed to the fields of analytical chemistry, water quality, catalysis, and polymer chemistry. With a passion for environmental sustainability, her research primarily focuses on wastewater treatment using natural and cost-effective materials. Dr. Taleb earned her doctorate in Applied Physics/Chemistry in 2015 and her habilitation in 2021. She has collaborated on numerous international projects and authored several peer-reviewed publications that address pressing global environmental challenges. She actively shares her work via platforms like ORCID, Google Scholar, and ResearchGate. Known for her dedication to scientific advancement and community impact, Dr. Taleb continues to lead projects that bridge fundamental chemistry with environmental applications.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Taleb’s scientific contributions center around analytical chemistry, wastewater treatment, natural adsorbents, polymer chemistry, and catalysis—all of which are crucial subfields of environmental chemistry. A significant part of her recent research targets removal of pollutants (e.g., phenolic compounds, Diuron, heavy metals) from olive oil mill wastewater, used vegetable oils, and industrial effluents. This aligns directly with global efforts toward sustainable water treatment.  Dr. Taleb has contributed meaningfully to the advancement of environmentally friendly chemical technologies and has collaborated internationally. She bridges chemistry, environmental engineering, and materials science, showcasing interdisciplinary impact—a hallmark of outstanding environmental chemists. Dr. Zoubida Taleb demonstrates exceptional alignment with the objectives of the “Environmental Chemistry Award”. Her research directly addresses global environmental challenges such as water pollution, green remediation techniques, and resource recovery using sustainable, low-cost methods. Her scholarly output, practical impact, and dedication to environmental solutions make her a strong and deserving candidate for this prestigious recognition.

🎓Education:

Dr. Zoubida Taleb’s academic journey began with a Baccalaureate in Natural and Life Sciences (1998) in Sidi Bel Abbes, Algeria. She then pursued her passion for chemistry by obtaining a Higher Education Diploma in Chemistry (2003) from Djillali Liabes University. Building upon this foundation, she earned a Master’s degree in Polymer Chemistry (2009) from Ahmed Ben Bella, Es-Senia University in Oran. Her pursuit of higher research led her back to Djillali Liabes University, where she was awarded a Doctorate in Applied Physics/Chemistry (2015). Demonstrating academic excellence and research leadership, she achieved the Habilitation (2021), the highest university qualification in Algeria. This extensive and focused educational background has equipped Dr. Taleb with robust expertise in chemical sciences, particularly in polymers, catalysis, and environmental applications.

🏢Work Experience:

Dr. Zoubida Taleb has over 15 years of academic and research experience in the field of chemistry. She currently serves as a faculty member in the Department of Chemistry at Djillali Liabes University, where she is also a core member of the Laboratory of Materials & Catalysis (LMC). Her responsibilities include supervising graduate research, conducting innovative projects, and teaching chemistry-related subjects. Dr. Taleb has actively collaborated with national and international researchers, contributing to projects in environmental remediation, adsorption processes, and sustainable materials. She has co-authored numerous high-impact articles and presented her research at various international forums. Her experience spans practical lab work, analytical instrumentation, and interdisciplinary collaboration in areas such as wastewater treatment, polymer chemistry, and surface catalysis. She also mentors students and promotes scientific awareness and innovation within the academic community.

🏅Awards: 

While specific awards are not listed in the provided data, Dr. Zoubida Taleb’s career is marked by significant academic accomplishments and recognition through her research contributions. Earning the Habilitation degree in 2021 reflects her expertise and capacity to supervise doctoral research—an honor reserved for highly accomplished scholars in Algeria. Her active participation in high-impact publications, including international collaborations with European scientists, underlines her global academic reputation. Her work has been published in leading journals such as Chem Engineering, Environmental Analytical Chemistry, and Waste Management & Research, often addressing critical environmental issues through green chemistry. Furthermore, her role in multiple projects on wastewater treatment and the valorization of natural materials highlights her commitment to sustainability and innovation. Continued invitations to co-author with globally renowned researchers are testament to her respected position in the field.

🔬Research Focus:

Dr. Zoubida Taleb’s research integrates chemistry with environmental sustainability, focusing on analytical chemistry, wastewater treatment, natural adsorbents, polymer chemistry, and catalysis. She explores low-cost, efficient techniques such as adsorption and catalytic degradation using Algerian clays, montmorillonite, and activated carbon to remove pollutants from industrial effluents. Her studies address real-world problems like the purification of used vegetable oils, olive mill wastewater treatment, and removal of phenolic compounds and pesticides from water. By emphasizing kinetic modeling and physicochemical characterization, she evaluates the efficiency and mechanisms of adsorption and catalysis. Her interdisciplinary work often combines chemical engineering, material science, and environmental science, promoting sustainable solutions. Collaborations with researchers from Spain, Italy, and France have broadened her impact, making her a key contributor in advancing eco-friendly remediation technologies.

Publication Top Notes:

1. Lead and cadmium removal by adsorption process using hydroxyapatite porous materials

Authors: A. Ramdani, A. Kadeche, M. Adjdir, Z. Taleb, D. Ikhou, S. Taleb, A. Deratani

Citations: 48

2. Mechanism study of metal ion adsorption on porous hydroxyapatite: experiments and modeling

Authors: A. Ramdani, Z. Taleb, A. Guendouzi, A. Kadeche, H. Herbache, A. Mostefai, …

Citations: 13

3. Removal of o-Cresol from aqueous solution using Algerian Na-Clay as adsorbent

Authors: H. Herbache, A. Ramdani, A. Maghni, Z. Taleb, S. Taleb, E. Morallon, …

Citations: 10

4. Electrochemical and In Situ FTIR Study of o-Cresol on Platinum Electrode in Acid Medium

Authors: Z. Taleb, F. Montilla, C. Quijada, E. Morallon, S. Taleb

Citations: 10

5. Physicochemical and microbiological characterisation of olive oil mill wastewater (OMW) from the region of Sidi Bel Abbes (Western Algeria)

Authors: S. Djeziri, Z. Taleb, M. Djellouli, S. Taleb

Citations: 7

6. Catalytic degradation of O‐cresol using H₂O₂ onto Algerian Clay‐Na

Authors: H. Herbache, A. Ramdani, Z. Taleb, R. Ruiz‐Rosas, S. Taleb, E. Morallón, …

Citations: 7

7. Discoloration of contaminated water by an industrial dye: Methylene Blue, by two Algerian bentonites, thermally activated

Authors: I. Feddal, Z. Taleb, A. Ramdani, H. Herbache, S. Taleb

Citations: 7

8. Variation of used vegetable oils’ composition upon treatment with Algerian clays

Authors: A. Serouri, Z. Taleb, A. Mannu, S. Garroni, N. Senes, S. Taleb, S. Brini, …

Citations: 6

9.Temperature and pH influence on Diuron adsorption by Algerian Mont-Na Clay

Authors: S. Tlemsani, Z. Taleb, L. Piraúlt-Roy, S. Taleb

Citations: 5

10. Recycling of used vegetable oils by powder adsorption

Authors: A. Mannu, M.E. Di Pietro, G.L. Petretto, Z. Taleb, A. Serouri, S. Taleb, …

Citations: 5