Prof. Behrooz Zargar | Analytical Chemistry | Best Researcher Award

Prof. Behrooz Zargar | Analytical Chemistry | Best Researcher Award

Prof. Behrooz Zargar | Analytical Chemistry | Full Professor in Analytical Chemistry/Researcher/Lecturer at Shahid Chamran University of Ahvaz, Iran 

Prof. Behrooz Zargar is a distinguished Full Professor of Analytical Chemistry at Shahid Chamran University of Ahvaz, Iran, with over two decades of academic and research excellence. His expertise spans electrochemistry, nano-chemistry, solar cells, and environmental remediation. He has published over 60 high-impact research papers and actively collaborates with organizations such as ISO and the Iranian Safety and Environment Committee. As the Founder and Head of the Central Laboratory at Shahid Chamran University, he has played a pivotal role in advancing analytical techniques. His research has contributed significantly to pesticide analysis, mycotoxin detection, and nanomaterial-based pollutant degradation. His commitment to academia is reflected in his editorial appointments, research collaborations, and mentorship of numerous students. With an impressive citation index of 2143, Prof. Zargar’s groundbreaking work has influenced various industrial and environmental sectors, making him a leading figure in analytical and environmental chemistry.

Professional Profile :         

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Behrooz Zargar, a distinguished Professor of Analytical Chemistry at Shahid Chamran University of Ahvaz, has made remarkable contributions to analytical chemistry, particularly in nanotechnology, electrochemistry, and environmental chemistry. With over 60 publications in high-impact journals (SCI, Scopus indexed), a citation index of 2143, and extensive research in solar cells, solid-phase extraction, and photo-degradation, his scientific impact is substantial. His research collaborations, including work with ISO Organization and national standardization committees, demonstrate his leadership in applied scientific advancements. Additionally, his industry projects on food safety and environmental toxin analysis highlight his contributions to public health and sustainability. With a proven track record of pioneering research, industry collaborations, and leadership in analytical chemistry, Prof. Zargar stands as a highly deserving candidate for the “Best Researcher Award.” His groundbreaking research in nano-chemistry and solar cell technology continues to drive innovation, making him an excellent choice for this prestigious recognition.

🎓Education:

Prof. Behrooz Zargar holds a Ph.D. in Analytical Chemistry (2001) from Shahid Chamran University of Ahvaz. He earned his Master’s degree in Analytical Chemistry (1996) from the same institution, building a strong foundation in instrumental analysis and environmental monitoring. His Bachelor’s degree in Applied Chemistry (1992) from Isfahan University of Technology laid the groundwork for his interest in chemical applications for industrial and environmental solutions. Prior to university education, he completed a Diploma in Experimental Sciences, fostering his analytical skills early on. His academic journey reflects a commitment to precision, innovation, and interdisciplinary research. Over the years, he has integrated electrochemical, spectroscopic, and chromatographic techniques into his research, making significant contributions to chemical science. His education has been instrumental in shaping his expertise in nano-chemistry, separation sciences, and environmental remediation, areas where he continues to make impactful discoveries.

🏢Work Experience:

Prof. Zargar’s academic career spans over two decades at Shahid Chamran University of Ahvaz, where he has held various positions. He served as an Assistant Professor (2002-2009), progressing to Associate Professor (2009-2017), and was promoted to Full Professor in 2017. With a Grade 32 ranking, he has contributed extensively to teaching, research, and institutional leadership. He has collaborated with ISO, developed national safety and environmental standards, and played a key role in nanotechnology advancements. His consultancy work has influenced industries by assessing toxic residues in food, environmental contaminants, and industrial pollutants. As the Founder and Head of the Central Laboratory at Shahid Chamran University, he has enhanced research infrastructure, fostering innovation. His experience extends to mentoring Ph.D. and Master’s students, shaping the next generation of chemists. His expertise in solar cells, electroless plating, corrosion, and electrochemical preconcentration has made him a respected figure in analytical and industrial chemistry.

🏅Awards: 

Prof. Behrooz Zargar’s contributions to analytical chemistry and environmental sciences have earned him numerous accolades. He was recognized for 10 years of excellent service to ISO/TC 17/SC 1/ WG 74 in 2025 for his contributions to steel chemical composition analysis. His work in nanotechnology and environmental monitoring has been acknowledged by national and international scientific committees. As a key member of the Iranian Safety and Environment Committee, he has shaped national policies on chemical safety and environmental sustainability. His editorial appointments in high-impact journals further highlight his scholarly influence. His innovative work in photo-degradation, nano-based solid-phase extraction, and pesticide residue analysis has led to several research grants and industrial collaborations. His role in the development of national analytical standards in Khuzestan, Iran, reflects his commitment to advancing chemical safety regulations. Prof. Zargar’s outstanding research contributions and institutional leadership make him a highly esteemed scientist.

🔬Research Focus:

Prof. Zargar’s research spans analytical, environmental, and industrial chemistry, with a strong emphasis on nanotechnology applications. His work in electrochemical preconcentration and separation techniques has improved trace-level detection of contaminants in food and water. His nano-chemistry expertise has advanced solar cell technology, particularly FeS₂/TiO₂-based solar cells. He has pioneered printed-based voltammetric selective electrodes for precise electrochemical analysis. His work in photo-degradation of cyanide ions using nanomaterials has significant environmental implications. He has developed aerogel-based solid-phase extraction methods for efficient pollutant removal. His industrial research includes toxic residue detection in grains, milk, and bread. His collaboration with ISO and the Iranian Nanotechnology Committee has led to the establishment of new safety and environmental guidelines. His research continues to bridge analytical chemistry with environmental sustainability, contributing to the development of safer chemical practices and advanced material applications.

Publication Top Notes:

A nano curcumin–multi-walled carbon nanotube composite as a fluorescence chemosensor for trace determination of celecoxib in serum samples

An effervescence-assisted dispersive liquid–liquid micro-extraction of captopril based on hydrophobic deep eutectic solvent

Citations: 8

Determination of Tetracycline Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Followed by HPLC–UV System​​

Over-oxidized carbon paste electrode modified with pretreated carbon nanofiber for the simultaneous detection of epinephrine and uric acid in the presence of ascorbic acid​​

Dendrimer-modified magnetic nanoparticles as a sorbent in dispersive micro-solid phase extraction for preconcentration of metribuzin in a water sample​​

Synthesis and dye adsorption studies of the {dibromo(1,1′-(1,2-ethanediyl)bis(3-methyl-imidazole-2-thione)dicopper(i)}n polymer and its conversion to CuO nanospheres for photocatalytic and antibacterial applications​​

Adsorption and removal of ametryn using graphene oxide nano-sheets from farm waste water and optimization using response surface methodology​​

Application of vortex-assisted solid-phase extraction for the simultaneous preconcentration of Cd(ii) and Pb(ii) by nano clinoptilolite modified with 5(p-dimethylaminobenzylidene) rhodanine​​

Metal oxide/TiO₂ nanocomposites as efficient adsorbents for relatively high temperature H₂S removal​​

Novel magnetic hollow zein nanoparticles for preconcentration of chlorpyrifos from water and soil samples prior to analysis via high-performance liquid chromatography (HPLC)

**Synthesis of an ion-imprinted sorbent by surface imprinting of magnetized carbon nanotubes for determination

Dr. Yuntian Xiao | Coordination Chemistry | Best Researcher Award

Dr. Yuntian Xiao | Coordination Chemistry | Best Researcher Award

Dr. Yuntian Xiao , Tianjin University , China

Yuntian Xiao is a Ph.D. candidate at Tianjin University’s School of Chemical Engineering and Technology, specializing in chemical engineering with a focus on crystallization technology. Guided by Professor Qiuxiang Yin, Xiao’s research emphasizes sustainable pesticide delivery, environmental chemistry, and molecular simulation. His academic journey began with a Bachelor’s degree in Chemical Engineering from Tianjin University of Science and Technology, followed by a Master’s degree in Chemical Engineering at Tianjin University. He has contributed significantly to the fields of cocrystal engineering and agrochemical sustainability, earning numerous accolades such as the National Scholarship and the Tianjin University Major Awards. Xiao has published extensively in top journals like Chem. Eng. J. and Green Chem., showcasing innovations in crystallization and molecular assembly. Proficient in advanced lab techniques and computational tools, Xiao actively engages in research that bridges science and industry, aiming to develop eco-friendly solutions in agriculture and beyond.

Professional Profile

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Yuntian Xiao demonstrates exceptional qualifications that align with the criteria for the “Best Researcher Awards.” As a Ph.D. candidate specializing in chemical engineering at Tianjin University, Xiao has made significant contributions to sustainable agriculture and environmental chemistry through cocrystal engineering and molecular simulation. With 15 high-impact publications in prestigious journals such as Chem. Eng. J. and ACS Appl. Mater. Interfaces, Xiao has advanced innovations in agrochemical delivery systems and crystallization processes. His interdisciplinary research addresses global challenges like environmental sustainability and efficient pesticide usage. Based on his impactful research contributions, proven academic excellence, and innovative approaches to addressing critical environmental issues, Yuntian Xiao is a highly suitable candidate for the “Best Researcher Awards.” His dedication to sustainability and interdisciplinary problem-solving exemplifies the qualities expected of a leading researcher, making him a deserving nominee.

🎓Education:

Yuntian Xiao is pursuing a Ph.D. in Chemical Engineering at Tianjin University’s School of Chemical Engineering and Technology, where he specializes in crystallization technology under the guidance of Professor Qiuxiang Yin. His doctoral research focuses on sustainable agrochemical solutions through cocrystal engineering. Xiao earned his Master’s degree in Chemical Engineering from Tianjin University, working at the National Engineering Research Center of Industry Crystallization Technology under Professor Chuang Xie . During his Master’s program, he deepened his understanding of crystallization processes and molecular simulations. He holds a Bachelor’s degree in Chemical Engineering and Technology from Tianjin University of Science and Technology, where he excelled academically, achieving a GPA of 3.92. His comprehensive curriculum covered subjects like Chemical Thermodynamics, Reaction Engineering, and Phase Diagrams, building a solid foundation in chemical engineering principles. Xiao’s academic journey reflects a commitment to excellence and a passion for advancing sustainable chemical engineering solutions.

🏢Work Experience:

Yuntian Xiao has diverse research experience in crystallization technology and sustainable chemical engineering solutions. His doctoral research includes developing cocrystal engineering strategies for agrochemical delivery, focusing on herbicides with sustained release, reduced leaching, and enhanced efficiency. He has employed molecular simulations to understand these processes at a mechanistic level. Xiao has also contributed to interdisciplinary projects, including the melt crystallization of buty nediol, reactive crystallization of sodium bicarbonate, and cooling crystallization of creatine phosphate sodium. His main responsibilities involved optimizing experimental methods, modeling processes, and analyzing factors influencing industrial crystallization outcomes. Proficient in techniques like PXRD, TGA/DSC, SEM, Raman, and HPLC, Xiao also has advanced computational skills, including MATLAB and Materials Studio. His expertise combines experimental techniques with computational modeling, allowing him to bridge fundamental research with industrial applications. Xiao’s contributions highlight his ability to address real-world challenges in chemical engineering effectively.

🏅Awards: 

Yuntian Xiao has received numerous awards recognizing his academic excellence and research achievements. As a Ph.D. student, he earned the Ph.D. Student Major Award (2021–2022) from Tianjin University for his innovative research in chemical engineering. During his Master’s program, he consistently achieved the Master Student Major Awards (2018–2021) and a Minor Award (2019–2020) for exceptional academic performance and contributions to crystallization research. His undergraduate achievements include the National Scholarship (2017–2018), a prestigious honor awarded for outstanding academic performance and extracurricular involvement. Additionally, Xiao received the Student Major Awards (2015–2018) from Tianjin University of Science and Technology and the Merit Student Award (2015–2016) from Hebei University of Technology. These accolades reflect Xiao’s dedication to excellence and his impactful contributions to chemical engineering research, solidifying his reputation as a top-performing researcher and scholar.

🔬Research Focus:

Yuntian Xiao’s research focuses on sustainable chemical engineering solutions, particularly through cocrystal engineering. His work addresses global challenges in agriculture and environmental chemistry by designing eco-friendly agrochemical delivery systems. By developing novel cocrystals, Xiao aims to achieve sustained-release pesticides and herbicides with reduced environmental leaching and enhanced efficacy. His expertise extends to mechanochemistry and molecular simulations, employing advanced computational tools to predict and optimize crystallization mechanisms. Xiao has also explored solid-state chemistry to enhance the lifecycle efficiency of agrochemicals. His interdisciplinary projects include studies on the crystallization of buty nediol, sodium bicarbonate, and creatine phosphate sodium, demonstrating his ability to translate research into industrial applications. Xiao’s research integrates experimental techniques like PXRD, Raman spectroscopy, and HPLC with computational modeling, ensuring a comprehensive understanding of crystallization processes. His innovative work in sustainable chemical engineering highlights his commitment to addressing pressing environmental and agricultural challenges.

Publication Top Notes:

1. Title: Cocrystals of propylthiouracil and nutraceuticals toward sustained-release: Design, structure analysis, and solid-state characterization
Authors: Y Xiao, L Zhou, H Hao, Y Bao, Q Yin, C Xie
Journal: Crystal Growth & Design
Citations: 47
Year: 2021

2. Title: New salts and cocrystals of pymetrozine with improvements on solubility and humidity stability: Experimental and theoretical study
Authors: D Wu, J Li, Y Xiao, X Ji, C Li, B Zhang, B Hou, L Zhou, C Xie, J Gong, …
Journal: Crystal Growth & Design
Citations: 46
Year: 2021

3. Title: Mechanochemical synthesis of cocrystal: From mechanism to application
Authors: Y Xiao, C Wu, X Hu, K Chen, L Qi, P Cui, L Zhou, Q Yin
Journal: Crystal Growth & Design
Citations: 29
Year: 2023

4. Title: Cocrystal engineering strategy for sustained release and leaching reduction of herbicides: a case study of metamitron
Authors: Y Xiao, C Wu, L Zhou, Q Yin, J Yang
Journal: Green Chemistry
Citations: 24
Year: 2022

5. Title: Pursuing Green and Efficient Agriculture from Molecular Assembly: A Review of Solid-State Forms on Agrochemicals
Authors: Y Xiao, C Wu, P Cui, L Zhou, Q Yin
Journal: Journal of Agricultural and Food Chemistry
Citations: 21
Year: 2023

6. Title: Analysis of solid-liquid equilibrium behavior of highly water-soluble beet herbicide metamitron in thirteen pure solvents using experiments and molecular simulations
Authors: Y Xiao, C Wu, C Zhao, L Qi, Y Bao, L Zhou, Q Yin
Journal: Journal of Molecular Liquids
Citations: 18
Year: 2022

7. Title: Structure analysis and insight into hydrogen bond and van der Waals interactions of etoricoxib cocrystals and cocrystal solvate
Authors: Y Wang, L Wang, F Zhang, N Wang, Y Gao, Y Xiao, Z Wang, Y Bao
Journal: Journal of Molecular Structure
Citations: 16
Year: 2022

8. Title: Comparison Study of KBH4 Spherical Agglomerates Prepared in Different Antisolvents: Mechanisms and Properties
Authors: Z Zhang, L Wang, P Zhao, Y Xiao, H Hao, Y Bao
Journal: Industrial & Engineering Chemistry Research
Citations: 13
Year: 2021

9. Title: Intermolecular interactions and solubility behavior of multicomponent crystal forms of 2,4-D: Design, structure analysis, and solid-state characterization
Authors: L Fang, Y Xiao, C Zhang, Z Gao, S Wu, J Gong, S Rohani
Journal: CrystEngComm
Citations: 13
Year: 2021

10. Title: Enhancing adsorption capacity and herbicidal efficacy of 2,4-D through supramolecular self-assembly: insights from cocrystal engineering to solution chemistry
Authors: Y Xiao, C Wu, P Cui, X Luo, L Zhou, Q Yin
Journal: Chemical Engineering Journal
Citations: 12
Year: 2023

 

 

 

 

 

Assist. Prof. Dr. Mohammad Taghi Nazeri | Organic Chemistry | Best Researcher Award

Assist. Prof. Dr. Mohammad Taghi Nazeri | Organic Chemistry | Best Researcher Award

Assist. Prof. Dr. Mohammad Taghi Nazeri , Shahid Beheshti University, Iran

Dr. Mohammad Taghi Nazeri, born in Qazvin, Iran, is a distinguished faculty member at Shahid Beheshti University, Tehran. He earned his Ph.D. under the mentorship of Prof. Ahmad Shaabani, followed by a postdoctoral fellowship in the same research group. With a robust academic portfolio, he focuses on the synthesis of bioactive compounds, multicomponent reactions, and material functionalization. Dr. Nazeri has authored over 40 impactful papers and reviews, showcasing his expertise in organic chemistry. His innovative approaches to green chemistry and sustainable synthesis have garnered recognition in the scientific community, contributing significantly to advancements in pseudopeptidic and heterocyclic chemistry.

Professional Profile:

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Mohammad Taghi Nazeri exemplifies the qualities of an outstanding researcher, making him a strong candidate for the “Best Researcher Awards.” With a focus on sustainable synthesis and green chemistry, Dr. Nazeri has significantly advanced the field of organic chemistry, particularly in isocyanide-based multicomponent reactions and pseudopeptidic compound synthesis. His innovative methodologies emphasize eco-friendly processes, reflecting a commitment to addressing global sustainability challenges.Dr. Nazeri’s exceptional research achievements, innovative methodologies, and contributions to advancing sustainable chemistry establish him as a deserving recipient of the “Best Researcher Awards.” His work not only enriches the academic community but also addresses pressing environmental and societal challenges, making him an exemplary model of scientific excellence and impactful research.

🎓Education:

Dr. Nazeri completed his M.Sc. in organic chemistry at Tehran University, where he cultivated his foundational expertise in chemical sciences. He pursued his Ph.D. at Shahid Beheshti University, specializing in advanced multicomponent reactions and pseudopeptidic compounds under the guidance of Prof. Ahmad Shaabani. His doctoral work revolved around designing efficient, sustainable synthetic pathways for bioactive heterocycles. Building upon this, Dr. Nazeri undertook a postdoctoral fellowship at Shahid Beheshti University, further refining his expertise in green chemistry and material functionalization. His educational journey reflects a commitment to developing innovative solutions for complex synthetic challenges, integrating sustainability and efficiency.

🏢Work Experience:

Dr. Nazeri began his academic career with extensive research in isocyanide-based multicomponent reactions, focusing on the synthesis of heterocyclic compounds and pseudopeptides. After earning his Ph.D., he joined Prof. Ahmad Shaabani’s research group for postdoctoral studies, emphasizing sustainable chemistry. Since 2022, he has been a faculty member at Shahid Beheshti University, where he teaches, mentors students, and leads groundbreaking research projects. His contributions include developing eco-friendly synthetic methodologies and functionalizing materials for applications in green catalysis and CO₂ fixation. With over 40 publications, Dr. Nazeri’s experience showcases his innovative approach to organic chemistry and materials science.

🏅Awards: 

Dr. Nazeri has received widespread recognition for his contributions to organic chemistry. His awards highlight excellence in green chemistry and multicomponent reactions, showcasing his innovative approach to sustainable synthesis. His postdoctoral fellowship, under the esteemed guidance of Prof. Ahmad Shaabani, reflects his exceptional research capabilities. Dr. Nazeri’s work has earned accolades from the scientific community, underscoring his commitment to advancing eco-friendly methodologies. His role as a faculty member at Shahid Beheshti University further attests to his impact in shaping the next generation of researchers in organic chemistry.

🔬Research Focus:

Dr. Nazeri’s research interests include the design and synthesis of bioactive compounds through novel multicomponent reactions, with a particular emphasis on pseudopeptidic and heterocyclic scaffolds. He explores sustainable methods for the functionalization and modification of materials, employing green chemistry principles. His work focuses on isocyanide-based reactions in water, aiming to create efficient synthetic routes for medicinally relevant compounds. Dr. Nazeri also investigates applications in CO₂ fixation and antibacterial nanocomposites, contributing to eco-friendly advancements in materials science. His research bridges organic synthesis, green catalysis, and material functionalization for sustainable development.

Publication Top Notes:

5-Amino-pyrazoles: potent reagents in organic and medicinal synthesis

Authors: A. Shaabani, M.T. Nazeri, R. Afshari

Citations: 78

Year: 2019

Multicomponent reactions as a potent tool for the synthesis of benzodiazepines

Authors: H. Farhid, V. Khodkari, M.T. Nazeri, S. Javanbakht, A. Shaabani

Citations: 67

Year: 2021

Cyclic imines in Ugi and Ugi-type reactions

Authors: M.T. Nazeri, H. Farhid, R. Mohammadian, A. Shaabani

Citations: 57

Year: 2020

Deep eutectic solvent as a highly efficient reaction media for the one-pot synthesis of benzo-fused seven-membered heterocycles

Authors: A. Shaabani, S.E. Hooshmand, M.T. Nazeri, R. Afshari, S. Ghasemi

Citations: 46

Year: 2016

Green one-pot synthesis of multicomponent-crosslinked carboxymethyl cellulose as a safe carrier for the gentamicin oral delivery

Authors: S. Javanbakht, M.T. Nazeri, A. Shaabani, M. Ghorbani

Citations: 40

Year: 2020

5-aminopyrazole-conjugated gelatin hydrogel: A controlled 5-fluorouracil delivery system for rectal administration

Authors: M.T. Nazeri, S. Javanbakht, A. Shaabani, M. Ghorbani

Citations: 38

Year: 2020

An efficient one-pot, regio-and stereoselective synthesis of novel pentacyclic-fused pyrano[3,2,c] chromenone or quinolinone benzosultone derivatives in water

Authors: M. Ghandi, M.T. Nazeri, M. Kubicki

Citations: 35

Year: 2013

Multi‐component reaction‐functionalized chitosan complexed with copper nanoparticles: An efficient catalyst toward A3 coupling and click reactions in water

Authors: A. Shaabani, M. Shadi, R. Mohammadian, S. Javanbakht, M.T. Nazeri

Citations: 34

Year: 2019

Isocyanide-based multicomponent reactions in water: Advanced green tools for the synthesis of heterocyclic compounds

Authors: T. Nasiriani, S. Javanbakht, M.T. Nazeri, H. Farhid, V. Khodkari, A. Shaabani

Citations: 33

Year: 2022

Synthesis of polysubstituted pyrroles via isocyanide-based multicomponent reactions as an efficient synthesis tool

Authors: M.T. Nazeri, A. Shaabani

Citations: 32

Year: 2021

 

 

 

 

Mr. Lei Mou | Analytical Chemistry Award | Young Scientist Award

Mr. Lei Mou | Analytical Chemistry Award | Young Scientist Award

Mr. Lei Mou ,Guangzhou Medical University, China

Lei Mou is a Research Associate at the Terasaki Institute for Biomedical Innovation, Los Angeles, specializing in biosensors, wearable devices, and organ-on-a-chip technology. With a robust background in biomedical engineering and materials science, Lei completed a Ph.D. from the National Center for Nanoscience and Technology (NCNST) under Prof. Xingyu Jiang. His work integrates advanced microfluidic and biosensor platforms aimed at enhancing clinical diagnostics and wearable health monitoring. With extensive research and technical skills, he has contributed to innovative approaches in immunoassay technology, HPV detection, and biosignal computing. Lei’s contributions to nanobiotechnology are also reflected in his numerous patents, high-impact publications, and presentations at international conferences.

Professional Profile:

Google Scholar

Summary of Suitability for Award:

Lei Mou demonstrates strong potential for the “Young Scientist Award,” with impressive accomplishments in biomedical engineering, especially in clinical biosensors, wearable devices, and organs-on-a-chip technology. His academic foundation is rooted in a Ph.D. from the Chinese Academy of Sciences, where he specialized in biomaterials and point-of-care diagnostic platforms, laying a solid groundwork for his current innovative research.

🎓Education:

Lei Mou earned his Ph.D. in Biomedical Engineering from the National Center for Nanoscience and Technology, Chinese Academy of Sciences (2016-2020), where he researched biosensors and microfluidic devices under Prof. Xingyu Jiang’s mentorship. His undergraduate studies in Materials Science and Engineering were completed at the University of Science and Technology Beijing (USTB) in 2016, as part of the Excellent Engineer Training Program. Here, he laid the foundation for his expertise in nanomaterials and engineering design, achieving numerous accolades for academic excellence. Lei’s educational path has emphasized interdisciplinary research, equipping him with a skill set to bridge materials science, biomedical engineering, and clinical applications effectively.

🏢Work Experience:

Lei Mou is currently a Research Associate at the Terasaki Institute for Biomedical Innovation (TIBI), where he focuses on the development of organ-on-a-chip systems and advanced biosensors. Prior to this, he was a Researcher at the Third Affiliated Hospital of Guangzhou Medical University, where he specialized in clinical biosensors and wearable device technology. Lei’s professional experience has enabled him to develop high-sensitivity immunoassay platforms and contribute to significant projects in health-related microfluidic applications. His work bridges clinical settings and advanced engineering, bringing laboratory innovations closer to real-world applications.

🏅Awards:

Lei Mou has earned numerous awards for his academic and research excellence, including the Director’s Scholarship at NCNST and the First Class Scholarship for Master’s Students, recognizing him as a top 3% student. During his undergraduate studies, he received the prestigious 86 Alumni Scholarship, the National Scholarship from China’s Ministry of Education, and the Beijing Outstanding Graduates Award. His achievements reflect his commitment to excellence and innovation in his field, with honors that highlight his performance and contributions to biomedical engineering and materials science.

🔬Research Focus:

Lei Mou’s research focuses on microfluidic immunoassays, wearable biosensors, and organs-on-a-chip technologies. He specializes in integrating nanotechnology with biomedical engineering to develop advanced diagnostic tools for healthcare. His work includes creating chemiluminescence immunoassay platforms that amplify biomarker signals using gold nanoparticles, as well as developing portable devices for detecting high-risk HPV strains. His research has significant implications for personalized medicine and remote diagnostics, aiming to improve accessibility and precision in clinical diagnostics and healthcare monitoring.

Publication Top Notes:

  • Surface chemistry of gold nanoparticles for health-related applications
    • Citations: 277
  • Microfluidics‐based biomaterials and biodevices
    • Citations: 183
  • Materials for microfluidic immunoassays: a review
    • Citations: 154
  • Printable metal-polymer conductors for highly stretchable bio-devices
    • Citations: 130
  • Highly stretchable and biocompatible liquid metal‐elastomer conductors for self‐healing electronics
    • Citations: 109

 

 

 

 

Bienvenu Mbanga | Chemistry | Environmental Chemistry Award

Dr. Bienvenu Mbanga | Chemistry | Environmental Chemistry Award

Doctorate at Nelson Mandela university, South Africa

Bienvenu Mbanga is a dynamic and driven professional with a PhD in Chemistry from the University of Johannesburg. He is recognized for his expertise in nanomaterial development, water analysis, and environmental chemistry. His career spans research, teaching, and mentorship roles, showcasing his commitment to advancing scientific knowledge and fostering collaborations within academia and beyond. His interdisciplinary approach underscores his dedication to addressing environmental challenges through innovative research and practical solutions.

Author Metrics

Scopus Profile

ORCID Profile

Google Scholar Profile

Citations: Since 2019, Bienvenu Mbanga’s work has been cited 222 times in scholarly literature, reflecting the impact and reach of his research within the academic community.

h-index: As of 2019 and continuing into the present, Bienvenu Mbanga has an h-index of 7. This metric indicates that he has published at least 7 papers that have each received at least 7 citations.

i10-index: Bienvenu Mbanga’s i10-index, which counts the number of publications with at least 10 citations, remains at 4 since 2019. This metric gives insight into the impact of his research in terms of highly cited publications.

Education

Bienvenu Mbanga’s educational journey is anchored by degrees from the University of Johannesburg, including a PhD in Chemistry (2021), a Masters (2016), a BSc Honours (2014), and a Bachelors in Science (2013) from the University of South Africa. His academic foundation in chemistry and mathematics has been pivotal in deepening his expertise through specialized research and academic pursuits, shaping his career in environmental science and analytical chemistry.

Research Focus

Bienvenu Mbanga’s research is centered on pioneering solutions in environmental sustainability, focusing on the development of nanomaterials for water treatment, analysis of water quality and environmental pollutants, and the application of advanced analytical techniques to environmental samples. His research underscores a commitment to addressing critical environmental challenges through rigorous scientific inquiry and practical applications in pollution control and resource management.

Professional Journey

Bienvenu Mbanga’s professional journey encompasses roles such as a Postdoctoral Fellow at Nelson Mandela University (since 2022), where he conducts innovative research in agricultural waste and wastewater treatment. His prior experiences include teaching and facilitating chemistry at high schools and contributing to research projects as a Research Assistant and Lecturer at the University of Johannesburg. These roles highlight his versatility and dedication to research, education, and community engagement.

Honors & Awards

Bienvenu Mbanga has garnered recognition for his contributions to science and education, including serving as a judge for prestigious scientific competitions, being selected among the 100 Brightest Minds in Africa, and participating in mentorship programs and international seminars. These accolades underscore his influence and impact in the scientific community, reflecting his leadership and commitment to professional development in science and education.

Publications Noted & Contributions

Bienvenu Mbanga’s scholarly contributions are extensive, encompassing significant research findings published in reputable journals and presented at international conferences. His publications focus on nanomaterial synthesis, water chemistry, and environmental sciences, contributing to advancements in scientific knowledge and addressing environmental challenges through innovative methodologies and practical applications.

Estimation of energy demand and carbon emissions for the road transport sector: A case study of Douala, Cameroon

Authors: FD Bissai, BGF Mbanga, CA Mezoue, S Nguiya

Published in: Hybrid Advances, Volume 6, 100187, 2024

Application of Metallic Oxide Coated Carbon Nanoparticles in Adsorption of heavy metals and Reusability for Latent Fingerprint Detection: A Review

Authors: BG Fouda-Mbanga, OP Onotu, CI Olushuyi, YB Nthwane, B Nyoni, …

Published in: Hybrid Advances, 100248, 2024

A comprehensive review of heavy metals (Pb2+, Cd2+, Ni2+) removal from wastewater using low-cost adsorbents and possible revalorisation of spent adsorbents

Authors: YB Nthwane, BG Fouda-Mbanga, M Thwala, K Pillay

Published in: Environmental Technology, 1-17, 2024

The Potential of Agricultural Waste Chars as Low-Cost Adsorbents for Heavy Metal Removal From Water

Authors: B Nyoni, BG Fouda-Mbanga, BM Hlabano-Moyo, YB Nthwane, B Yalala, …

Published in: Biosorption Processes for Heavy Metal Removal, 244-270, 2024

Analysis Driving Factors of Energy Consumption in the Road Transport Sector of the City in Douala, Cameroon

Authors: FD Bissai, BGF Mbanga, CA Mezoue, S Nguiya

Published in: Preprints, 2023

These publications highlight Bienvenu Mbanga’s research interests and contributions, focusing on topics such as energy demand and carbon emissions in road transport, applications of nanomaterials in heavy metal adsorption, and the use of agricultural waste for environmental remediation. His work demonstrates a commitment to addressing environmental challenges and advancing scientific knowledge in these critical areas.

Research Timeline

Bienvenu Mbanga’s research trajectory illustrates a progressive engagement in scientific inquiry, from early roles as a research assistant focusing on soil and plant analysis to his current position as a postdoctoral fellow specializing in agricultural and wastewater treatment. His career path reflects a commitment to excellence in research and an interdisciplinary approach to tackling pressing environmental issues through collaborative and innovative research projects.

Collaborations and Projects

Bienvenu Mbanga has actively collaborated on projects aimed at developing sustainable solutions in water treatment and pollution control, partnering with academic institutions and industry stakeholders. His projects emphasize the application of nanotechnology and advanced analytical techniques to address environmental challenges, contributing significantly to global efforts in environmental sustainability and resource management.

Impact and Innovation

Bienvenu Mbanga’s research has made a profound impact on environmental science and sustainability by innovating in nanomaterial development and water treatment technologies. His work not only addresses current environmental challenges but also lays the groundwork for future innovations in pollution control and sustainable resource management, contributing to global efforts towards a more sustainable and environmentally conscious future.

Mentorship

Bienvenu Mbanga is dedicated to mentoring the next generation of scientists, actively guiding undergraduate and postgraduate students in research methodologies, academic writing, and professional development. His mentorship extends to participation in educational programs aimed at nurturing young talent and fostering a passion for science and environmental stewardship, reflecting his commitment to shaping future leaders in the fields of chemistry and environmental science.

Aayasha Negi | Chemistry | Women Researcher Award

Dr. Aayasha Negi | Chemistry | Women Researcher Award

 Doctorate at IFTM university, India

Dr. Aayasha Negi is currently an Assistant Professor of Chemistry at IFTM University in Moradabad, Uttar Pradesh, India. She holds a Ph.D. in Chemistry from Hemwati Nandan Bahuguna Garhwal University, Uttarakhand, specializing in Nanosciences. Her research primarily focuses on synthesizing nanoparticles using green methods derived from medicinal plants. Dr. Negi is dedicated to advancing the fields of nanotechnology and environmental engineering through her extensive research and academic contributions.

Author Metrics:

Google Scholar Profile

Dr. Aayasha Negi has established a strong presence in the academic community with numerous publications in reputed journals and contributions to book chapters. Her research papers are indexed in well-known databases such as SCI (Science Citation Index), Scopus, and UGC-CARE, showcasing her scholarly impact and recognition in the field of chemistry and nanotechnology.

  • Citations (Since 2019): Dr. Aayasha Negi has accumulated 44 citations since 2019, indicating the number of times her published works have been referenced by other researchers during this period.
  • h-index (Since 2019): The h-index is 4, which means Dr. Negi has published at least 4 papers that have each been cited at least 4 times.
  • i10-index (Since 2019): The i10-index is 0, suggesting that none of her papers since 2019 have received 10 or more citations.

Education:

Dr. Negi completed her education with distinction, starting with a strong academic foundation in Uttarakhand. She earned a Ph.D. in Chemistry from HNB Garhwal University, Uttarakhand, in 2022. Prior to her doctoral studies, she completed her B.Sc. in Physical Sciences and M.Sc. in Chemistry from SGRR PG College and MKP PG College in Dehradun, respectively.

Research Focus:

Dr. Aayasha Negi’s research focuses on the synthesis and application of nanoparticles, particularly using green chemistry approaches involving medicinal plants. Her work includes the evaluation of nanoparticles for antibacterial, antifungal, and photocatalytic properties, as well as their potential in environmental remediation and biomedical applications. She utilizes advanced characterization techniques such as XRD, UV-Visible spectroscopy, SEM, TEM, and DLS to study nanomaterial properties in depth.

Professional Journey:

Dr. Negi’s professional journey began as an Assistant Professor at IFTM University, Moradabad, where she currently teaches and conducts research. Her career is marked by a commitment to teaching and mentoring students while simultaneously contributing significantly to scientific research. She actively participates in international conferences, presenting her work and collaborating with peers to advance knowledge in nanoscience and chemistry.

Honors & Awards:

Throughout her career, Dr. Aayasha Negi has received recognition for her research contributions. Notably, she has won Best Paper Awards at international conferences focused on green chemistry and material characterization. These accolades underscore her impact and leadership in her field.

Publications Noted & Contributions:

Dr. Negi has authored and co-authored numerous research papers published in esteemed journals such as Springer, Elsevier, and Scientific Reports: Nature. Her contributions span various aspects of nanoscience, including nanoparticle synthesis, biomedical applications, environmental remediation, and materials science. Additionally, she has contributed chapters to prestigious books on green materials and nanobiotechnology.

Citrus medica mediated Ag-doped MgO nanocomposites as green adsorbent and its catalytic performance in the rapid treatment of water contaminants

Authors: S Ringwal, A Negi, AS Bartwal, SC Sati

Journal: Nanotechnology for Environmental Engineering

Pages: 1-8

Year: 2024

Zinc Sulphide Nanoparticles as a Bacteriostatic and Invigorated Catalytic Tool for Multiple Dye Degradation: An Approach Towards Environment Remediation

Authors: A Negi, R Gangwar, DS Negi

Book Chapter: Nano-biotechnology for Waste Water Treatment: Theory and Practices

Pages: 303-314

Year: 2022

Development and characterization of fly ash enriched epoxy coatings for corrosion protection in deep sea water

Authors: M Pandey, S Mehtab, MGH Zaidi, A Negi, P Joshi, M Aziz, M Pandey

Journal: Surface and Coatings Technology

Volume: 485

Pages: 130882

Year: 2024

Plant-mediated Z-scheme ZnO/TiO2-NCs for antibacterial potential and dye degradation: experimental and DFT study

Authors: A Negi, S Ringwal, M Pandey, M Taha Yassin

Journal: Scientific Reports

Volume: 14 (1)

Pages: 7955

Year: 2024

Visible light-induced dye degradation potential of green synthesized nanoparticles: an approach toward polluted water treatment

Authors: A Negi, RK Vishwakarma, DS Negi

Book Chapter: Green Approaches in Medicinal Chemistry for Sustainable Drug Design

Pages: 223-231

Year: 2024

Research Timeline:

Over the years, Dr. Negi’s research has evolved from fundamental studies in nanomaterial synthesis to applied research in environmental and biomedical applications. Her timeline includes significant milestones such as attending and presenting at international conferences, publishing impactful research papers, and securing funding for collaborative projects.

Collaborations and Projects:

Dr. Aayasha Negi actively collaborates with researchers nationally and internationally on interdisciplinary projects. Her collaborations focus on integrating nanotechnology with biotechnology and environmental science to develop sustainable solutions. She participates in projects aimed at advancing the understanding and applications of nanoparticles in diverse fields, from water treatment to biomedical therapeutics.

This structured breakdown provides a comprehensive overview of Dr. Aayasha Negi’s academic journey, research contributions, professional achievements, and collaborative endeavors in the field of chemistry and nanotechnology.