Larissa Magalhães de Almeida Melo | Analytical Chemistry | Women Researcher Award

Dr. Larissa Magalhães de Almeida Melo | Analytical Chemistry | Women Researcher Award

Pos doctor at Federal University of the Jequitinhonha and Mucuri Valleys | Brazil

Larissa Magalhães de Almeida Melo is a Brazilian researcher specializing in analytical and forensic chemistry, with an emphasis on electrochemical detection methods for drugs of abuse. She is currently pursuing her Ph.D. at the Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM) under Prof. Dr. Wallans Torres Pio dos Santos. Her doctoral research focuses on developing portable, field-deployable methods for drug screening. In 2024, she undertook a Sandwich Ph.D. program at Manchester Metropolitan University with Prof. Craig Banks, further advancing her work in colorimetric and electrochemical sensors. With over 160 citations and an H-index of 9, Larissa has contributed significantly to high-impact journals in analytical chemistry. She combines her expertise in electrochemical sensing, device fabrication, and forensic toxicology to innovate rapid and cost-effective screening technologies. Her international collaborations and technical contributions highlight her growing influence in modern forensic science and public health monitoring.

Professional Profile

Google Scholar

Orcid

Education 

Larissa Melo’s academic journey demonstrates a progressive dedication to chemistry and engineering. She is currently a Ph.D. fellow (2021–2025) at UFVJM in Brazil, where her research involves the development of portable methods for forensic drug detection. In 2024, she participated in a Sandwich Ph.D. at Manchester Metropolitan University under Prof. Craig Banks. Prior to her doctorate, she earned a Master’s degree in Analytical Chemistry (2019–2021) from UFVJM, where she developed a screening method for synthetic tryptamines. She also completed a Bachelor’s in Chemical Engineering (2018–2023) and another in Science and Technology (2014–2018) at UFVJM. Her foundational education includes a technical course in Electrical Technology (2010–2013) from the Federal Institute of Espírito Santo. This solid multidisciplinary background has equipped her with strong skills in analytical instrumentation, electrochemistry, materials science, and chemical engineering, all of which support her advanced research in forensic applications.

Professional Experience 

Larissa Melo brings strong academic and research experience, particularly in forensic electrochemistry. Her doctoral work (2021–2025) at UFVJM focuses on creating portable devices for the electrochemical detection of synthetic drugs. In 2024, she joined Manchester Metropolitan University under a Sandwich Ph.D. program, working with Prof. Craig Banks on hybrid sensor systems. During her Master’s (2019–2021), she developed a fast electrochemical method for tryptamine detection. She has co-authored over 20 peer-reviewed publications in top journals, often collaborating with multidisciplinary teams on drug screening innovations using screen-printed electrodes, colorimetric methods, and 3D-printed analytical tools. Larissa has also contributed to critical reviews and sensor fabrication methods. Her experience includes technical work with disposable electrodes, boron-doped diamond sensors, and voltammetry. Additionally, she’s actively involved in developing environmentally friendly, field-portable diagnostic tools. Larissa’s practical and collaborative work underscores her capability in applying chemistry to real-world forensic and public health challenges.

Awards and Honors 

While specific awards are not explicitly listed, Larissa Melo’s research impact and international engagements reflect significant academic recognition. She was competitively selected for a Sandwich Ph.D. fellowship at Manchester Metropolitan University (2024), a testament to her research excellence and international collaboration skills. Her publication record includes articles in top-tier journals such as Electrochimica Acta, Talanta, TrAC, and Sensors and Actuators B: Chemical, often as the first or lead author. She has amassed over 165 citations and holds an H-index of 9, highlighting her work’s influence in analytical and forensic chemistry. Larissa’s interdisciplinary research on electrochemical and colorimetric methods for drug detection showcases her contribution to forensic science innovation. Her rapid rise as a productive early-career researcher, mentorship by globally recognized experts like Prof. Wallans dos Santos and Prof. Craig Banks, and verified academic credentials on the Lattes platform further confirm her growing stature in scientific communities.

Research Interests 

Larissa Melo’s research interests center around analytical chemistry, electrochemical sensing, and forensic science. Her work focuses on the development of rapid, portable, and cost-effective electrochemical and colorimetric detection methods for drugs of abuse. She is particularly interested in screen-printed electrodes, boron-doped diamond sensors, and 3D-printed electrochemical cells to detect substances such as synthetic cathinones, cannabinoids, tryptamines, amphetamines, and hallucinogens. Her interdisciplinary approach combines chemical engineering principles, material science, and electroanalysis to improve point-of-care diagnostics. Larissa also explores hybrid detection platforms combining colorimetric and electrochemical signals, enhancing sensitivity and specificity for field-based forensic analysis. She contributes to critical reviews and technical innovations in clinical toxicology, pharmaceutical analysis, and biosensors. Her goal is to make analytical methods more accessible, environmentally friendly, and applicable in real-time settings, such as customs, crime scenes, and emergency rooms.

Publication Top Notes

  1. Portable analytical methods for detecting synthetic cannabinoid receptor agonists: a critical review

  2. A dual colorimetric-electrochemical platform based on bromocresol green for the selective detection of atropine

  3. Selective screening of synthetic cathinones, amphetamines, piperazines, and phenethylamines using voltammetry

  4. Electrochemistry of the synthetic tryptamine 5-MeO-MiPT at glassy carbon and screen-printed electrodes

  5. Novel colorimetric-electrochemical methods for selective identification and quantification of Scopolamine

  6. Use of a lab-made disposable screen-printed sensor with boron-doped diamond for N-ethylpentylone detection

  7. Combined colorimetric and electrochemical screening method for selective detection of MDMA

  8. Electrochemical methods for determination of acetaminophen in biological matrices: a critical review

  9. Selective screening of NBOHs, NBOMes, and LSD using a 3D-Printed electrochemical double cell

  10. Electrochemical detection of mephedrone using a graphene screen-printed electrode

  11. Electrochemical method for detecting synthetic cannabinoids in e-cigarette and biological samples

  12. Chemically deposited boron-doped diamond screen-printed electrodes for manganese detection

  13. Colorimetric-Electrochemical Combined Method for Detection of Drugs in Blotter Papers

  14. SMART 3D-printed electrochemical cell for on-site and forensic analysis

  15. Oxygen plasma-treated graphite sheet electrodes for methamphetamines

  16. Fast screening of MDEA using carbon screen-printed electrode and voltammetry

  17. Electrochemical detection of 1-benzylpiperazine on carbon screen-printed electrode

  18. Screening method for detection of 1-(3-chlorophenyl)piperazine in forensic samples

  19. Selective screening method for MDPT using carbon nanofiber screen-printed electrodes

  20. Detection of LSD in forensic samples using carbon nanotube screen-printed electrodes

  21. Detection of 2C-B using environmentally friendly screen-printed electrodes

  22. Professional biography of Dorothy Hodgkin – Contributions to Chemistry, Biology, and Biochemistry

Conclusion

Larissa Magalhães de Almeida Melo exemplifies the next generation of analytical chemists committed to real-world impact in forensic science. Her research bridges engineering and chemistry to develop innovative, portable, and sustainable methods for drug detection. With international experience, strong academic output, and cross-disciplinary skills, she is well-positioned for leadership in global forensic chemistry research.

 

Assoc. Prof. Dr. Hexin Zhang | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Hexin Zhang | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Hexin Zhang , Materials Chemistry ,  Harbin Engineering University, China

Dr. Hexin Zhang is an Associate Professor and Doctoral Supervisor at the School of Materials Science and Chemical Engineering, Harbin Engineering University. She holds a Doctorate in Engineering and has developed a robust academic profile in high-temperature materials and additive manufacturing. With over 60 peer-reviewed SCI-indexed publications and five invention patents, Dr. Zhang’s work significantly contributes to the field of advanced alloys and composite materials. She has successfully led numerous prestigious projects funded by the National Natural Science Foundation of China and other provincial and institutional bodies. As a guest editor for Metals and a senior member of the Chinese Society of Composite Materials, she plays an influential role in shaping research directions. Her ongoing projects involve cutting-edge research in nano-TiC reinforced molybdenum-based superalloys. Her leadership extends to military-grade materials research, and she currently spearheads a multi-million-yuan defense technology initiative with wide application potential in marine gas turbines.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Hexin Zhang is an Associate Professor and Doctoral Supervisor at Harbin Engineering University. She holds a Doctorate in Engineering and has extensive expertise in high-temperature composite materials, superalloys, and additive manufacturing—fields of critical importance in advanced materials research.With over 60 SCI-indexed publications, 5 invention patents, and 2 authored monographs, Dr. Zhang has demonstrated consistent and significant contributions to materials science. Her work addresses both fundamental science and industrial application challenges, particularly in marine gas turbines.She serves as Guest Editor for the journal Metals, is a Senior Member of the Chinese Society for Composite Materials, and holds leadership roles in multiple national professional organizations.Dr. Hexin Zhang’s exceptional track record in high-impact research, leadership in national-level projects, patent portfolio, and editorial and professional service make her a standout candidate for the “Best Researcher Award.” Her contributions align well with the award’s objective of honoring researchers who exhibit innovation, leadership, and societal impact through their work.

🎓Education:

Dr. Hexin Zhang pursued her Doctorate in Engineering with a specialization in materials science, focusing on the mechanical behavior and processing of high-temperature alloys. Her academic training emphasized advanced manufacturing techniques including additive manufacturing (AM) and laser-based fabrication technologies. Her graduate work laid the foundation for exploring novel metal matrix composites and developing expertise in microstructural analysis, thermal stability, and mechanical performance enhancement under extreme conditions. She was trained in a multidisciplinary environment, combining theoretical materials science with practical engineering and thermodynamic modeling. As a part of her academic journey, she engaged in collaborative lab work, conference presentations, and published extensively in SCI-indexed journals, honing both technical skills and academic writing. Her formal education and consistent excellence have positioned her as a specialist in nickel-based and molybdenum-based superalloys, enabling her to tackle real-world challenges in aerospace and marine turbine applications.

🏢Work Experience:

Dr. Zhang currently serves as Associate Professor and Doctoral Supervisor at Harbin Engineering University. With extensive experience leading and contributing to key research projects, she has spearheaded over ten major scientific initiatives, including two funded by the National Natural Science Foundation of China and one basic research project targeting the processing of molybdenum-based materials. She has published over 60 high-impact SCI papers, secured 5 national patents, and authored 2 technical monographs. As the principal investigator of a military-focused project supported by the Central Military Commission, she managed a 2-million-yuan segment of a larger 7.5-million-yuan initiative. In addition to her research contributions, she serves as a guest editor for the journal Metals and has held important roles in several academic committees. Her hands-on expertise covers nano-reinforced materials, additive manufacturing, and failure analysis under thermo-mechanical fatigue.

🏅Awards: 

Dr. Hexin Zhang has received multiple accolades for her contributions to materials science and engineering. She has been honored with competitive research grants from the National Natural Science Foundation of China, a testament to her innovative work in the field. She also serves in distinguished capacities including Senior Member of the Chinese Society of Composite Materials and Director of the Ecological Civilization Branch of the China Association of Higher Education. In recognition of her academic leadership and commitment to advancing materials research, she was appointed as a Member of the Materials Gene Engineering Expert Committee of the National Materials and Devices Scientists Think Tank. Additionally, her editorial role for Metals highlights her influence in peer-reviewed publishing. Her work in defense applications of high-temperature materials has further earned her distinction in government and institutional circles.

🔬Research Focus:

Dr. Zhang’s research focuses on the design, processing, and performance of nickel-based and molybdenum-based super alloys, especially for high-temperature and corrosive environments. She specializes in additive manufacturing techniques, particularly laser selective melting and nano-TiC reinforcement, to enhance mechanical strength and thermal resistance. Her investigations include thermo-mechanical fatigue, oxidation resistance, and hot corrosion mechanisms, crucial for the development of next-generation aerospace and marine turbine materials. A highlight of her work is the innovation in laser forming of Mo-based superalloys, solving issues like brittle fracture at room temperature. Her projects, including those funded by the Central Military Commission, involve cutting-edge structural materials aimed at military propulsion systems. Dr. Zhang also integrates computational modeling and experimental validation to understand microstructural evolution and failure modes under extreme conditions.

Publication Top Notes:

1. Impact of Secondary γ’ Precipitate on the High-Temperature Creep Properties of DD6 Alloy

2. Microstructural Evolution and Its Effect on Tensile Properties of 10Cr-2W-3Co Martensitic Steel During Thermal Exposure

3. Microstructure Evolution and Mechanical Properties of Ti-6Al-4V Alloy Fabricated by Directed Energy Deposition Assisted with Dual Ultrasonic Vibration

Citations: 2

4. Effect of Powder Particle Size on the Microscopic Morphology and Mechanical Properties of 316L Stainless Steel Hollow Spheres

5. Study on Hot-Compressive Deformation Behavior and Microstructure Evolution of 12Cr10Co3MoWVNbNB Martensitic Steel

6. Lattice Disorder Driving the Electron Migration from Tetracycline to TiO₂ via Ligand-to-Metal Charge Transfer to Generate Superoxide Radical

Citations: 2

7. Hydrangea-like MnO₂@Sulfur-Doped Porous Carbon Spheres with High Packing Density for High-Performance Supercapacitor

Citations:

8. La Doped-Fe₂(MoO₄)₃ with the Synergistic Effect Between Fe²⁺/Fe³⁺ Cycling and Oxygen Vacancies Enhances the Electrocatalytic Synthesizing NH₃

9. Influence of Aging Heat Treatment on Microstructure and Mechanical Properties of a Novel Polycrystalline Ni₃Al-Based Intermetallic Alloy

Citations:

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | SCIENTIFIC OFFICER/H at NATIONAL CENTER FOR COMPOSITIONAL CHARACTERISATION OF MATERIALS,  India

Shekhar Raparthi is a Scientific Officer / H at the National Centre for Compositional Characterisation of Materials (NCCCM), BARC, Hyderabad. With over three decades of expertise in analytical chemistry, he specializes in trace and ultra-trace characterization of metals, alloys, and high-purity materials. His pioneering work in glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry has significantly advanced compositional analysis. Holding a Ph.D. in Chemistry from JNTU, Hyderabad (2008), he has published extensively in reputed international journals and served as a peer reviewer. Currently leading the ultra-trace analysis section at NCCCM since 2023, he is an esteemed member of India Society for Mass Spectrometry (ISMAS) and Indian Society of Analytical Science (ISAS). His contributions to spectrometric techniques have practical applications in industrial and nuclear material characterization, making him a respected figure in analytical and green chemistry research.

Professional Profile :         

Scopus  

Summary of Suitability for Award:

Dr. Shekhar Raparthi is a highly accomplished researcher specializing in trace and ultra-trace characterization of materials using mass and spectrometric techniques. With over 32 publications in high-impact journals, an h-index of 14, and 631 citations, he has made significant contributions to analytical chemistry. His pioneering research includes the development of infrared spectroscopic methods, glow discharge quadrupole mass spectrometry (GD-QMS), and novel electrolyte cathode discharge atomic emission spectrometric sources. These innovations have advanced material characterization techniques, benefiting the scientific community and industries dealing with high-purity materials, metals, and alloys. Dr. Raparthi’s extensive research contributions, innovative methodologies, and commitment to advancing analytical chemistry make him an ideal candidate for the “Best Researcher Award.” His work has been recognized through numerous international publications, and his role as the head of the ultra-trace analysis section at NCCCM, BARC, further solidifies his impact in the field.

🎓Education:

Shekhar Raparthi pursued his M.Sc. in Chemistry from the University of Hyderabad in 1993, where he developed a strong foundation in analytical chemistry. Following this, he underwent a one-year orientation program at BARC in 1994, gaining specialized training in advanced compositional characterization techniques. His academic journey culminated in a Ph.D. in Chemistry from Jawaharlal Nehru Technological University (JNTU), Hyderabad, in 2008. His doctoral research focused on the development of advanced mass spectrometric methodologies for the ultra-trace analysis of metals and high-purity materials. Over the years, he has continuously expanded his expertise through research, peer-reviewed publications, and participation in international analytical chemistry conferences. His educational background has been instrumental in his ability to innovate in trace and ultra-trace analysis techniques, making significant contributions to the field of analytical chemistry.

🏢Work Experience:

Shekhar Raparthi began his professional career in 1994 as a Scientific Officer/C at NCCCM, BARC, Hyderabad, specializing in the compositional characterization of various materials. Over the past 30 years, he has developed novel analytical methodologies for metals, alloys, and high-purity materials using mass spectrometric and spectroscopic techniques. His expertise includes glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry, contributing to advancements in trace and ultra-trace analysis. His work has been widely recognized, leading to 32 publications in reputed international journals. Since 2023, he has been heading the ultra-trace analysis section at NCCCM, overseeing critical research in compositional characterization. He is also an active peer reviewer for international journals. With extensive experience in spectrometric techniques, Shekhar Raparthi plays a key role in material characterization for nuclear, industrial, and high-tech applications.

🏅Awards: 

Shekhar Raparthi has received several accolades for his significant contributions to analytical chemistry and mass spectrometry. His infrared spectroscopic method for oxygen quantification in TiCl₄ was widely appreciated in the titanium industry, earning him recognition in the field. His research on glow discharge quadrupole mass spectrometry and matrix volatilization methodologies for ultra-trace characterization of high-purity germanium has been published in top international journals, including Analytical Chemistry. His expertise in trace element analysis has made him a valuable asset to BARC and the Indian scientific community. As a distinguished member of ISMAS and ISAS, he actively contributes to the advancement of analytical sciences in India. While he has not listed specific awards, his impactful research, numerous peer-reviewed publications, and leadership in ultra-trace analysis solidify his reputation as a leading scientist in compositional characterization.

🔬Research Focus:

Shekhar Raparthi’s research revolves around trace and ultra-trace characterization of materials using advanced mass spectrometric and spectroscopic techniques. His work plays a crucial role in ensuring the purity and compositional accuracy of metals, alloys, and high-purity materials. He has pioneered glow discharge quadrupole mass spectrometry (GD-QMS) for detecting impurities at ultra-trace levels. Additionally, his development of matrix volatilization methodologies has enhanced the characterization of high-purity germanium, a material critical in semiconductor and radiation detection applications. His innovations in electrolyte cathode discharge atomic emission spectrometry (ECD-AES) have improved the sensitivity and precision of trace element analysis. His research significantly contributes to nuclear, industrial, and advanced material applications, ensuring high accuracy in material compositional studies. As the head of the ultra-trace analysis section at NCCCM, his expertise in **

Publication Top Notes:

In-situ Ti–Ir and ammonium thiocyanate modifiers for improvement of sensitivity of Sc to sub parts per billion levels and its accurate quantification in coal fly ash and red mud by GFAAS

Hydrophobicity induced graphene oxide based dispersive micro solid phase extraction of strontium from seawater and groundwater prior to GFAAS determination

Direct determination of ultra-trace sodium in reactor secondary coolant waters and other waters by electrolyte cathode discharge atomic emission spectrometry

Citation Count: 1

 

Assoc. Prof. Dr. Yue-Jin Liu | Organic Chemistry | Green Chemistry Award

Assoc. Prof. Dr. Yue-Jin Liu | Organic Chemistry | Green Chemistry Award

Assoc. Prof. Dr. Yue-Jin Liu | Organic Chemistry | Hubei University ,China

Dr. Yue-Jin Liu is an Associate Professor at Hubei University, specializing in organic chemistry and catalytic transformations. His research primarily focuses on developing novel methodologies for inert chemical bond activation, particularly carbon-hydrogen (C–H) bond functionalization. Dr. Liu has made significant contributions to the field by designing innovative strategies for multi-component reactions, paving the way for more efficient synthesis of biologically active molecules and functional organic compounds. His recent work on ruthenium-catalyzed remote C–H functionalization of naphthalenes has been widely recognized. Dr. Liu has published in leading journals such as Chemical Science, contributing valuable insights to the scientific community. Despite his intensive academic engagements, he continues to explore new synthetic strategies that promote sustainable and green chemistry approaches. Dr. Liu’s dedication to advancing organic synthesis has established him as an emerging expert in the field, with an ever-growing impact on modern synthetic methodologies.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Yue-Jin Liu’s research focuses on developing novel organic synthesis methods with an emphasis on C–H bond activation, a key aspect of green chemistry. His work on ruthenium-catalyzed three-component reactions enables efficient, modular, and atom-economical synthesis of multifunctional naphthalenes. This aligns with green chemistry principles by minimizing waste, reducing the need for hazardous reagents, and enhancing reaction efficiency. His catalyst-driven methodologies promote sustainable chemical transformations, making his research highly relevant to the Green Chemistry Award category. Dr. Yue-Jin Liu’s contributions to sustainable organic synthesis through C–H activation strategies make him a strong contender for the “Green Chemistry Award”. His work reduces environmental impact by utilizing direct functionalization approaches, avoiding toxic reagents, and increasing efficiency in organic synthesis. These advancements have significant implications for eco-friendly chemical manufacturing, supporting global sustainability goals.

🎓Education:

Dr. Yue-Jin Liu pursued his higher education in organic chemistry, focusing on advanced synthesis and catalysis. He obtained his Bachelor’s, Master’s, and Ph.D. degrees from prestigious institutions where he specialized in carbon-hydrogen bond activation and synthetic methodologies. His doctoral research laid the foundation for his career, emphasizing transition-metal-catalyzed organic transformations. During his academic journey, Dr. Liu worked under the guidance of renowned chemists, gaining expertise in molecular design, reaction mechanisms, and green synthetic approaches. Throughout his education, he engaged in multiple research projects that contributed to the development of new catalytic systems. His commitment to innovation and excellence in organic synthesis has led him to a successful career in academia, where he continues to mentor students and advance research in C–H activation. His strong academic background serves as the backbone of his contributions to the field of organic and medicinal chemistry.

🏢Work Experience:

Dr. Yue-Jin Liu currently serves as an Associate Professor at Hubei University, where he focuses on organic synthesis and catalysis. With years of experience in developing new methodologies for carbon-hydrogen bond activation, he has contributed significantly to green chemistry and efficient molecular synthesis. His expertise extends to transition-metal catalysis, multi-component reactions, and synthetic applications in biologically active molecules. Dr. Liu has led several research projects, including the ruthenium-catalyzed three-component tandem remote C–H functionalization of naphthalenes, which has enhanced the efficiency of modular synthesis. Beyond academia, he actively collaborates with researchers worldwide, contributing to high-impact publications in Chemical Science. His commitment to teaching and mentoring young researchers has shaped the next generation of scientists in organic chemistry. Dr. Liu’s extensive experience in synthetic methodologies continues to drive forward the boundaries of modern organic transformations.

🏅Awards: 

Dr. Yue-Jin Liu’s groundbreaking work in organic synthesis and catalysis has earned him recognition in the scientific community. His research on C–H activation strategies has been cited extensively, reflecting his contributions to green chemistry and innovative molecular synthesis. In 2025, he was nominated for the Green Synthesis Award for his pioneering work on ruthenium-catalyzed multi-component reactions. His publications in top-tier journals like Chemical Science have solidified his reputation as an emerging leader in organic chemistry. Despite his focus on fundamental research, Dr. Liu’s methodologies have practical applications in pharmaceutical synthesis and materials chemistry, earning him academic accolades. He continues to strive for excellence, pushing the boundaries of modern synthetic techniques and contributing to sustainable chemical transformations. His commitment to innovation and environmental responsibility has positioned him as a rising figure in green and sustainable chemistry.

🔬Research Focus:

Dr. Yue-Jin Liu’s research is dedicated to developing novel strategies for carbon-hydrogen (C–H) bond activation, aiming to create efficient, sustainable, and selective organic transformations. His work emphasizes multi-component reactions (MCRs), enabling the synthesis of complex molecular frameworks with high atom economy. A significant part of his research involves ruthenium-catalyzed tandem remote C–H functionalization, which facilitates the modular and concise synthesis of multifunctional naphthalenes. His studies contribute to green chemistry, reducing the need for harsh reagents and wasteful synthetic steps. Dr. Liu also explores transition-metal catalysis and ligand-controlled selectivity, expanding the scope of synthetic methodologies for biologically active compounds. His innovative approaches have potential applications in drug discovery, materials science, and fine chemical production. By integrating computational chemistry and experimental design, he continuously seeks to enhance reaction efficiency, selectivity, and sustainability in modern organic synthesis.

Publication Top Notes:

Cobalt(II)-Catalyzed Selective C2–H Heck Reaction of Native (N–H) Indoles Enabled by Salicylaldehyde Ligand

Salicylaldehyde-Enabled Co(II)-Catalyzed Oxidative C–H Alkenylation of Indoles with Olefins

Ruthenium-Catalyzed Three-Component Tandem Remote C–H Functionalization of Naphthalenes: Modular and Concise Synthesis of Multifunctional Naphthalenes

Mild C−H Alkoxylation of Aromatic Amides Catalyzed by Salicylaldehyde‐Co(II) Complexes

Cobalt/Salicylaldehyde-Enabled C–H Alkoxylation of Benzamides with Secondary Alcohols under Solvothermal Conditions

Salicylaldehyde-Cobalt(II)-Catalyzed C–H Alkoxylation of Indoles with Secondary Alcohols

Selective Synthesis of Sulfonamides and Sulfenamides from Sodium Sulfinates and Amines

Rapid Modular Synthesis of Indole Ethers via Dehydrogenative Cross-Coupling Reaction of Indoles and Alcohols

Remote C5-Selective Functionalization of Naphthalene Enabled by P–Ru–C Bond-Directed δ-Activation

Ru(II)-Catalyzed P(III)-Assisted C8-Alkylation of Naphthphosphines

Ruthenium-Catalyzed Meta-Difluoromethylation of Arene Phosphines Enabled by 1,3-Dione

Salicylaldehyde-Promoted Cobalt-Catalyzed C–H/N–H Annulation of Indolyl Amides with Alkynes: Direct Synthesis of a 5-HT3 Receptor Antagonist Analogue

 

Prof. Dr. Alexander Zakharov | Computational Chemistry | Best Researcher Award

Prof. Dr. Alexander Zakharov | Computational Chemistry | Best Researcher Award

Prof. Dr. Alexander Zakharov , Institute of Problems of Mechanical Science, RAS , Russia

Dr. Alexandre V. Zakharov is a distinguished Russian physicist specializing in molecular physics, hydrodynamics, and lubrication science. He is the Head of the Hydrodynamics of Liquid Crystals Laboratory at the St. Petersburg Institute for Machine Sciences, Russian Academy of Sciences. With a research career spanning over four decades, he has contributed extensively to theoretical and applied physics. His expertise has led him to numerous international collaborations, including positions as a visiting professor in Japan, Canada, Italy, and Sweden. He has authored numerous scientific publications and played a pivotal role in advancing the understanding of liquid crystal hydrodynamics and lubrication phenomena. His contributions have been recognized worldwide, and he remains an influential figure in molecular and mathematical physics.

Professional Profile:

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Alexandre V. Zakharov is a highly accomplished physicist with a distinguished career spanning over four decades in molecular physics, liquid crystal hydrodynamics, tribology, and nanodevice engineering. His groundbreaking contributions to fluid dynamics, lubrication science, and computational modeling have significantly influenced both theoretical and applied physics. His Habilitation Doctorate in Molecular Physics  and Ph.D. in Theoretical and Mathematical Physics (1983) demonstrate his deep academic expertise. Dr. Zakharov’s exceptional research contributions, international collaborations, leadership roles, and impact on multiple scientific domains make him a highly suitable nominee for the Best Researcher Award. His expertise in fluid dynamics, computational modeling, and nanophysics has significantly advanced scientific knowledge and practical applications. Given his outstanding achievements, he is a strong candidate for this prestigious honour.

🎓Education:

Dr. Alexandre V. Zakharov holds a Habilitation Doctorate in Molecular Physics, awarded in 1992 by the Higher Attestation Commission of the USSR. He earned his Ph.D. in Theoretical and Mathematical Physics from Byelorussian State University in 1983, under the guidance of Profs. L.A. Rott and E.T. Brook-Levinson. His doctoral research laid the foundation for his future contributions to molecular and mathematical physics. He completed his Master’s degree in Mathematical Physics at Leningrad State University in 1974 after studying there from 1969 to 1974. His strong mathematical background provided him with a rigorous framework to explore fluid dynamics, liquid crystal physics, and tribology. Throughout his academic career, he has integrated theoretical models with experimental data, shaping the development of nanophysics and lubrication science. His education has played a crucial role in his contributions to physics, particularly in hydrodynamics, photonics, and computational modeling.

🏢Work Experience:

Dr. Zakharov has over four decades of experience in molecular physics and hydrodynamics. Since 2009, he has served as Head of the Hydrodynamics of Liquid Crystals Laboratory at the St. Petersburg Institute for Machine Sciences, Russian Academy of Sciences. Before this, he was a Leading Researcher (1995-2009) and Senior Researcher (1986-1995) in the Microwear and Lubrication Laboratory at the same institute. His career also includes roles as a Senior Researcher at the Medical Institute in Minsk (1985-1986) and a Junior Researcher at the Heat and Mass Transfer Institute of the BSSR Academy of Sciences (1974-1984). He has also held numerous international visiting professorships in Japan, Canada, Italy, Turkey, and Sweden. His global experience has significantly contributed to advancements in lubrication science, tribology, and liquid crystal hydrodynamics, reinforcing his position as a leading figure in theoretical and applied physics.

🏅Awards: 

Dr. Zakharov has received numerous accolades for his contributions to physics. He was awarded multiple research grants by the Japan Society for the Promotion of Science (JSPS) and the COE “Photonics Nanodevice Integration Engineering” for his collaborative work at Tokyo Institute of Technology. The Cariplo Foundation and NATO grants supported his research at the University of Pavia, Italy. He also held a Senior Research Fellowship at KU Leuven, Belgium (2002-2004) and a two-year Visiting Professorship at Brandon University, Canada. His pioneering work on liquid crystal hydrodynamics, lubrication science, and photonics has earned him recognition in the global scientific community. His involvement in international collaborations has strengthened research ties across continents, making significant contributions to computational physics, tribology, and nanoscale engineering. These honors underscore his impact on advancing molecular physics and interdisciplinary research in fluid dynamics and materials science.

🔬Research Focus:

Dr. Zakharov’s research spans multiple interdisciplinary domains, including hydrodynamics of liquid crystals, tribology, nanodevice engineering, and mathematical physics. His work in molecular physics and lubrication science has advanced the understanding of fluid dynamics at the nanoscale. He specializes in microwear phenomena, studying the effects of lubrication and friction at microscopic levels to improve mechanical efficiency. His expertise in photonics and nanodevice integration contributes to the development of next-generation materials and optical devices. He has also conducted groundbreaking research in viscoelastic properties of complex fluids, providing theoretical and computational models for practical applications in material science. His mathematical modeling has been instrumental in describing nonlinear effects in liquid crystals, bridging theoretical predictions with experimental findings. His research continues to influence nanotechnology, physics, and mechanical engineering, driving innovations in computational simulations, material properties, and tribological applications.

Publication Top Notes:

Laser-driven nematic flow in microfluidic devices

Authors: Izabela Śliwa, Pavel V. Maslennikov, Dmitrii P. Shcherbinin, and Alex V. Zakharov

Journal: Physical Review E

Publication Date: December 24, 2024

DOI: 10.1103/PhysRevE.110.064702

Citations: As of now, there are no citations listed for this publication.

Anchoring transitions in thin liquid crystal films as seen from a mean-force potentials approach

Authors: Not specified in the available sources.

Journal: Physical Review E

Publication Date: December 17, 2024

DOI: 10.1103/PhysRevE.110.064701

Citations: As of now, there are no citations listed for this publication.

Paired correlations of dipolar liquid crystals: A mean-force-potentials approach

Authors: Not specified in the available sources.

Journal: Physical Review E

Publication Date: November 7, 2024

DOI: 10.1103/PhysRevE.110.054702

Citations: As of now, there are no citations listed for this publication.

MD simulations of diffusion of cyanobiphenyl molecules adsorbed on the graphene surface coated with alkane and alcohol molecules

Authors: Not specified in the available sources.

Journal: Journal of Physical Organic Chemistry

Publication Date: September 2024

DOI: 10.1002/poc.4640

Citations: As of now, there are no citations listed for this publication.

Features of director reorientation in a thin nematic film under the influence of crossed electric and magnetic fields

Authors: Not specified in the available sources.

Journal: Physical Review E

Publication Date: April 26, 2024

DOI: 10.1103/PhysRevE.109.044704

Citations: As of now, there are no citations listed for this publication.

Water/organic liquid interface properties with amine, carboxyl, thiol, and methyl terminal groups as seen from MD simulations

Authors: Not specified in the available sources.

Journal: Journal of Computational Chemistry

Publication Date: December 5, 2023

DOI: 10.1002/jcc.27205

Citations: As of now, there are no citations listed for this publication.

Electrically Driven Kink-Like Distortion Waves in Liquid Crystals

Authors: Not specified in the available sources.

Journal: Liquid Crystals and their Application

Publication Date: September 29, 2023

DOI: 10.18083/LCAppl.2023.3.46

Citations: As of now, there are no citations listed for this publication.

Electrically driven kinklike distorting waves in microsized liquid crystals

Authors: Not specified in the available sources.

Journal: Physical Review E

Publication Date: September 27, 2023

DOI: 10.1103/PhysRevE.108.034703

Citations: As of now, there are no citations listed for this publication.

Photo-Induced Relief in Rheology of Liquid Crystals

Authors: Not specified in the available sources.

Journal: Symmetry

Publication Date: March 14, 2023

DOI: 10.3390/sym15030722

Citations: As of now, there are no citations listed for this publication.

Vortex Dynamics in a Hybrid Aligned Nematic Microvolume with an Orientational Defect

Authors: Not specified in the available sources.

Journal: Symmetry

Publication Date: January 23, 2023

DOI: 10.3390/sym15020324

Citations: As of now, there are no citations listed for this publication.

 

Dr. franck camerel | Materials Chemistry | Best Researcher Award

Dr. franck camerel | Materials Chemistry | Best Researcher Award

Dr. franck camerel , Institut des Sciences Chimiques de Rennes ,University of Rennes 1 , France

Franck Camerel is a distinguished chemist specializing in materials chemistry, currently serving as a CNRS Director (DR2) at the Institut des Sciences Chimiques de Rennes, France. With expertise in molecular organic and inorganic chemistry, his research spans composite materials, polymers, colloids, and functional gelating molecules. He has contributed significantly to the synthesis of liquid crystalline molecules for optoelectronic and biomedical applications. His work has been published in high-impact journals, including Nature, Angewandte Chemie, and JACS, reflecting his influence in the field. With an H-index of 33 and over 3,694 citations, he has mentored numerous Ph.D. students and secured prestigious grants. In addition to research, he serves as an Associate Editor for Molecules and plays a key role in Ph.D. mediation at ISCR. His interdisciplinary research is at the forefront of photothermal materials, metallomesogens, and stimuli-responsive molecules.

Professional Profile:

Scopus 

Summary of Suitability for Award:

Dr. Camerel Franck is a highly accomplished chemist specializing in material chemistry, liquid crystals, optoelectronics, and photothermal applications. His research contributions have significantly advanced molecular organic and inorganic chemistry, leading to innovations in drug delivery, photothermal therapy, and data storage. As a CNRS Director (DR2) at the Institut des Sciences Chimiques de Rennes, he has demonstrated leadership in pioneering research and mentoring future scientists.Given his groundbreaking research, significant scientific contributions, and leadership in materials chemistry, Dr. Camerel Franck is a highly deserving candidate for the “Best Researcher Award.” His innovations in photothermal therapy, optoelectronic materials, and molecular self-assembly have made substantial impacts in both fundamental science and applied research. His recognition by international research bodies and extensive publication record further establish his excellence in the field.

🎓Education:

Franck Camerel obtained his Ph.D. in Materials Chemistry (2001) from the University of Nantes, France, under the supervision of Dr. Patrick Batail. His doctoral research focused on the design and synthesis of advanced materials chemistry with unique optoelectronic properties. He later pursued a postdoctoral fellowship (2001–2003) at the prestigious Max-Planck Institute of Potsdam, Germany, under Dr. Markus Antonietti, where he gained expertise in soft matter, polymer chemistry, and nanomaterials. In 2012, he completed his Habilitation à Diriger des Recherches (HDR) at the University of Rennes, a qualification that enabled him to independently supervise doctoral research. His education and training have provided a solid foundation in molecular chemistry, leading to innovative research in liquid crystals, metallomesogens, organogelators, and photothermal materials. His work has significantly contributed to the development of functional nanomaterials for optoelectronic and biomedical applications, earning him recognition in the scientific community.

🏢Work Experience:

Franck Camerel is currently a CNRS Director (DR2) at the Institut des Sciences Chimiques de Rennes, France, where he leads research in functional molecular materials, liquid crystals, and photothermal nanomaterials. Before this role, he worked as a CNRS Researcher (CR) at the University of Rennes 1 and the University of Strasbourg, where he contributed to the synthesis and characterization of innovative materials for optoelectronic, biomedical, and data storage applications. His postdoctoral fellowship (2001–2003) at the Max-Planck Institute of Potsdam, Germany, under Dr. Markus Antonietti, strengthened his expertise in polymer chemistry, self-assembling nanomaterials, and photothermal materials. Over the years, he has supervised multiple Ph.D. students and postdoctoral researchers, helping shape the next generation of scientists. In addition to research, he is actively involved in scientific publishing, serving as an Associate Editor for Molecules (MDPI), Materials Chemistry Section, and manager of the Ph.D. mediation unit at ISCR.

🏅Awards: 

Franck Camerel has received several prestigious awards and research grants. In 2010, he was awarded the Région Bretagne (Stratégie et Attractivité Durable) Grant, recognizing his contributions to sustainable research. In 2011, he secured funding from Rennes Métropole as part of the Emerging Senior Researcher project. His innovative research led to funding from the Agence Nationale de la Recherche (ANR) 2020 PRC, CE24 (3D-ODS), supporting cutting-edge studies in molecular self-assembly and optoelectronic applications. Additionally, his contributions to cancer research have been recognized with grants from the Ligue contre le Cancer in 2018 and 2022, funding his work on photothermal therapy and drug delivery systems. These awards reflect his pioneering research in material chemistry, emphasizing his impact on scientific advancements in functional materials, biomedical applications, and nanotechnology.

🔬Research Focus:

Franck Camerel’s research spans molecular chemistry, functional materials, and nanotechnology, focusing on the synthesis of liquid crystalline molecules with chelating fragments that organize metals into unique molecular architectures. He has pioneered the development of metallomesogens and metallogelators, materials with exceptional optical and electronic properties for data storage, anticounterfeiting, and optoelectronic applications. His work also explores stimuli-responsive organogelators, which react to light, heat, and electric fields, offering potential in smart materials. A major aspect of his research is the synthesis of water-soluble metal complexes with strong near-IR absorption, enabling photothermal therapy and photocontrolled drug delivery. His studies extend to photothermoresponsive polymers, which utilize metal cross-linkers to create adaptable materials. His multidisciplinary research integrates organic, inorganic, and polymer chemistry, leading to breakthroughs in functional materials with applications in biomedicine, electronics, and nanotechnology.

Publication Top Notes:

Multiphoton-And SHG-Active Pyrimidine-Based Liquid Crystalline Thin Films Toward 3D Optical Data Storage

Authors: P. Nicolas, Prescillia; C. Minon, Célia; S. Abdallah, Stéphania; S. van Cleuvenbergen, Stijn; F. Camerel, Franck

Journal: Advanced Optical Materials

Year: 2025

Citations: 0

Porous N-Doped Carbon-encapsulated Iron as Novel Catalyst Architecture for the Electrocatalytic Hydrogenation of Benzaldehyde

Authors: F. Pota, Filippo; M.A. Costa de Oliveira, Maida Aysla; C. Schröder, Christian; F. Barrière, Frédéric; P.E. Colavita, Paula E.

Journal: ChemSusChem

Year: 2025

Citations: 0

Smart design of highly luminescent octupolar mesogenic tetra styryl-alkynyl bipyrimidine-based chromophores presenting non-linear optical properties

Authors: D. Vardar, Deniz; S. Abdallah, Stéphania; R. Mhanna, Rana; F. Camerel, Franck; H. Akdaş Kılıç, Huriye

Journal: Dyes and Pigments

Year: 2024

Citations: 0

Self-assembly properties of zinc(ii) complexes with azo ligands grafted with dodecyl chains: towards supramolecular materials driven by coordination and hydrophobic effect

Authors: K. Gak Simić, Kristina; I.S. Đorđević, Ivana S.; A.D. Mašulović, Aleksandra D.; F. Camerel, Franck; N.P. Trišović, Nemanja P.

Journal: CrystEngComm

Year: 2024

Citations: 0

Calixarene-coated gold nanorods as robust photothermal agents

Authors: V. Lepeintre, Victor; F. Camerel, Franck; C. Lagrost, Corinne; G. Bruylants, Gilles; I. Jabin, Ivan

Journal: Nanoscale

Year: 2024

Citations: 0

Investigation of the photothermal properties of a large series of metal-bis(dithiolene) complexes: Impact of the molecular structure and ranking using the photothermal index IPT

Authors: J.B. Pluta, Jean Baptiste; N. Bellec, Nathalie; F. Camerel, Franck

Journal: Dyes and Pigments

Year: 2024

Citations: 1

Non-Linear Optical Activity of Chiral Bipyrimidine-Based Thin Films

Authors: P. Nicolas, Prescillia; S. Abdallah, Stéphania; A.R. Dok, Ahmet R.; H. Akdaş Kılıç, Huriye; F. Camerel, Franck

Journal: Chemistry – An Asian Journal

Year: 2024

Citations: 3

Investigation and control of metallogel formation for the deposition of supramolecular nanotubes of single-chain magnets

Authors: F.V. Houard, Félix V.; A. Olivier, Andrea; G. Cucinotta, Giuseppe; M. Mannini, M.; K. Bernot, Kevin

Journal: Journal of Materials Chemistry C

Year: 2024

Citations: 2

New Multifunctional Bipyrimidine-Based Chromophores for NLO-Active Thin-Film Preparation

Authors: U. Bora, Umut; S. Abdallah, Stéphania; R. Mhanna, Rana; F. Camerel, Franck; H. Akdaş Kılıç, Huriye

Journal: Chemistry – A European Journal

Year: 2024

Citations: 1

Improved Bipolar Properties of Ester-Functionalized Discotic Diimine–Dithiolene Complexes

Authors: F. Camerel, Franck; O. Jeannin, Olivier; C. Lagrost, Corinne

Journal: ChemPhysChem

Year: 2024

Citations: 0

 

 

 

Prof. Tarek Yousef | Inorganic Chemistry | Best Researcher Award

Prof. Tarek Yousef | Inorganic Chemistry | Best Researcher Award

Prof. Tarek Yousef , Imam Mohammad Ibn Saud Islamic University , Saudi Arabia

Dr. Tarek Ahmed Ibrahim Yousef is a distinguished Professor in the Department of Chemistry, Science College at Al Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia he holds Egyptian nationality. With extensive expertise in inorganic chemistry, forensic toxicology, and drug analysis, he has contributed significantly to academia and forensic research. His career spans over two decades, including roles as an expert in toxicology and narcotic drugs at the Medicolegal Administration in Egypt. Dr. Yousef has been actively engaged in teaching, research, and scientific collaborations, holding key academic positions and participating in prestigious conferences worldwide. His dedication to scientific advancement and education has made him a respected figure in the field of chemistry and forensic sciences.

Professional Profile:

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Tarek Ahmed Ibrahim Yousef is a highly suitable candidate for the “Best Researcher Award” due to his extensive contributions to forensic toxicology, inorganic chemistry, and analytical sciences. His research has significantly advanced methodologies for toxic metal analysis, drug detection, and forensic investigations. With a distinguished academic career, numerous high-impact publications, and multiple awards recognizing his excellence, he has made a lasting impact on the scientific community. Dr. Yousef’s remarkable achievements, innovative research, and commitment to forensic and analytical sciences make him an outstanding nominee for the “Best Researcher Award.”

🎓Education:

Dr. Yousef earned his B.Sc. in Chemistry from Mansoura University in 1999 with an honors grade. He pursued postgraduate studies in inorganic chemistry, obtaining a Master’s degree in 2005 with a thesis on physicochemical studies of hydrazones and their metal complexes. In 2010, he completed his Ph.D. on thiosemicarbazides derivatives of toxic transition metals, focusing on their analytical and biological applications. His academic training includes specialized courses in computational chemistry, statistical analysis, and forensic toxicology. He has continually expanded his expertise through training in laboratory management, chemical analysis, and advanced instrumental techniques, contributing to his diverse skill set in inorganic chemistry and forensic sciences.

🏢Work Experience:

Dr. Yousef began his academic career as a demonstrator at Mansoura University (2001-2005) during his postgraduate studies. From 2004 to 2015, he served as an expert in toxicology and narcotic drug analysis at the Egyptian Medicolegal Administration. Concurrently, he held teaching positions at the Higher Institute of Engineering and Technology (2010-2015). In 2015, he joined IMSIU as an Assistant Professor and was promoted to Associate Professor in 2021. His expertise in forensic toxicology, analytical chemistry, and inorganic chemistry has been instrumental in mentoring students and advancing forensic research. As of February 2025, he has been appointed as a full Professor at IMSIU.

🏅Awards: 

 Recognized for his significant contributions to forensic toxicology and inorganic chemistry.  Awarded multiple research grants for advancing analytical methodologies in forensic sciences.  Honored by IMSIU for excellence in teaching and mentoring students.  Received national recognition from Egyptian forensic authorities for his role in toxicological investigations.  Participated in international collaborative research projects on toxic metal analysis.  Acknowledged for his contributions to forensic education through workshops and training programs.  Recognized by the Ministry of Justice, Egypt, for expertise in narcotic drug analysis.  Keynote speaker at several international conferences in forensic and analytical chemistry.

🔬Research Focus:

 Inorganic Chemistry: Synthesis and characterization of metal complexes.  Forensic Toxicology: Analysis of drugs, poisons, and toxic metals in biological samples.  Analytical Chemistry: Development of novel spectroscopic and chromatographic techniques.  Computational Chemistry: Molecular modeling for drug-metal interactions.  Environmental Chemistry: Heavy metal contamination and remediation strategies.  Nanomaterials: Applications of nanoparticles in analytical and forensic sciences.  Laboratory Management: Standardization and accreditation of forensic laboratories.  Drug Analysis: New methodologies for detecting and quantifying narcotics and pharmaceuticals.

Publication Top Notes:

Novel organoselenides as efficient corrosion inhibitors for N80 steel in a 3.5 wt% sodium chloride solution

Authors: S.M. Shaaban, Saad M.; K. Shalabi, Kamal; T.A. Yousef, Tarek A.; A.M. Abu-Dief, Ahmed M.; A.S. Al-Janabi, Ahmed S.

Year: 2025

Citations: 0

Dichromate Contaminated Water Treatment using Novel Crystal Violet Azo Dye-Sulphonated Poly(Glycidyl methacrylate) Nano-Composite Adsorbent

Authors: T.M. Tame, Tamer M.; R.E. Khalifa, Randa E.; M.M. Abou-Krisha, Mortaga M.; M.E. Salem, Mostafa E.; M.S. Mohy-Eldin, Mohamed S.

Year: 2025

Citations: 0

Spectroscopic and biological studies of Pd(II) complexes of 5-(p-Tolyl)-1,3,4-Oxadiazole-2-Thiol

Authors: K.T. Abdullah, Khalid Tuama; A.S. Al-Janabi, Ahmed S.; N.J. Hussien, Nasry Jassim; M.I. Attia, Mohamed I.; K.O. Alduaij, Khalid O.

Year: 2025

Citations: 0

Novel Fe(III), Cu(II), and Zn(II) Chelates of Organoselenium-Based Schiff Base: Design, Synthesis, Characterization, DFT, Anticancer, Antimicrobial, and Antioxidant Investigations

Authors: S.M. Shaaban, Saad M.; A.M. Abu-Dief, Ahmed M.; M.A. Alaasar, Mohamed A.; K.O. Alduaij, Khalid O.; T.A. Yousef, Tarek A.

Year: 2025

Citations: 2

Enhanced electrical and thermal properties of (Cu, N) doped nano TiO2 incorporated polyaniline matrix synthesized using in situ chemical polymerization approach

Authors: E.M. Masoud, Emad Mohamed; M.Y. Khairy, M. Y.; T.Z. Abolibda, Tariq Z.; M.E. Zaki, Magdi E.A.; T.A. Yousef, Tarek A.

Year: 2024

Citations: 0

Promising organoselenium corrosion inhibitors for C1018-steel in hydrochloric acid environments

Authors: S.M. Shaaban, Saad M.; K. Shalabi, Kamal; T.A. Yousef, Tarek A.; A.M. Abu-Dief, Ahmed M.; A.S. Al-Janabi, Ahmed S.

Year: 2024

Citations: 7

Synthesis, Structural Characterization, Anticancer, Antimicrobial, Antioxidant, and Computational Assessments of Zinc(II), Iron(II), and Copper(II) Chelates Derived From Selenated Schiff Base

Authors: S.M. Shaaban, Saad M.; K.T. Abdullah, Khalid Tuama; K. Shalabi, Kamal; A.S. Al-Janabi, Ahmed S.; A.M. Abu-Dief, Ahmed M.

Year: 2024

Citations: 7

Unveiling the anti-inflammatory potential of organoselenium Schiff bases: computational and in vitro studies

Authors: S.M. Shaaban, Saad M.; T.A. Yousef, Tarek A.; H.A. Althikrallah, Hanan A.; R.A. Alnajjar, Radwan A.; A.A. Al-Karmalawy, Ahmed A.

Year: 2024

Citations: 0

Optimized removal process and tailored adsorption mechanism of crystal violet and methylene blue dyes by activated carbon derived from mixed orange peel and watermelon rind using microwave-induced ZnCl2 activation

Authors: N.A.M. Hanafi, Nurul Afiqah Mohd; A.S. Abdulhameed, Ahmed Saud; A.H. Jawad, Ali H.; K.O. Alduaij, Khalid O.; N.S. Alsaiari, Norah Salem

Year: 2024

Citations: 48

Investigation of structural, spectral, theoretical, and antimicrobial properties of Iron(III) complexes with thiosemicarbazide ligands

Authors: T.A. Yousef, Tarek A.; G.M. Abu El-Reash, Gaber M.; O.A. El-Gammal, Ola Ahmed; S.F. Ahmed, Sara F.

Year: 2024

Citations: 1

Ms. Sakshi Saini | Material Chemistry Award | Best Researcher Award

Ms. Sakshi Saini | Material Chemistry Award | Best Researcher Award 

Ms. Sakshi Saini, Gurukula Kangri (DTB) University, Haridwar, India

Sakshi Saini is an aspiring chemist with a passion for practical laboratory experience and a strong foundation in analytical chemistry. With a Bachelor’s degree in Chemistry, Physics, and Math from H.N.B. Garhwal University and a Master’s in Industrial Chemistry from Gurukul Kangri University, she is currently pursuing her Doctorate in Nanochemistry of Biopolymer. During her internship at Wipro Enterprises, she honed her skills in inventory management, laboratory equipment calibration, and chemical testing. Sakshi is dedicated to advancing her career in chemistry and is eager to contribute to team goals while further developing her technical and interpersonal skills.

Professional Profile:

Google Scholar  

Summary of Suitability for Award:

Sakshi Saini, currently pursuing her Doctorate in Nanochemistry of Biopolymers at Gurukul Kangri University, is an exemplary candidate for the “Best Researcher Awards.” Her academic record is distinguished, with a strong foundation in chemistry, evidenced by her Bachelor’s and Master’s degrees, both achieving commendable scores of 88% and 85%, respectively.

🎓Education:

Sakshi Saini completed her High School (Science) at National Inter College, Dhanauri, with a score of 72% (2014-2015). She pursued her Intermediate (Science) at the same institution, achieving 85% (2016-2017). Her academic journey continued with a Bachelor of Science in Chemistry, Physics, and Math from H.N.B. Garhwal University, where she excelled with an 88% (2017-2020). She further advanced her studies by obtaining a Master’s degree in Industrial Chemistry from Gurukul Kangri University, securing an impressive 85% (2020-2022). Currently, she is enrolled in a Doctor’s program focused on Nanochemistry of Biopolymer at Gurukul Kangri University, which commenced in September 2023. Sakshi’s educational background showcases her commitment to the field of chemistry and her continuous pursuit of knowledge.

🏢Work Experience:

Sakshi Saini gained practical experience as an Analyst Intern at Wipro Enterprises Pvt. Ltd. from January 2022 to January 2023. During her internship, she was responsible for inventory control of reagents, chemicals, and supplies, ensuring proper labeling and management through a computerized system. Sakshi demonstrated her technical abilities by calibrating and safely operating laboratory equipment, which included conducting standard tests on organic and inorganic compounds. She was also involved in testing raw and packing materials, contributing to the quality assurance processes within the organization. This hands-on experience allowed her to apply her academic knowledge in a professional setting, enhancing her analytical skills and understanding of chemical analysis. Sakshi’s internship solidified her career aspirations in the field of chemistry, where she aims to utilize her skills effectively in future roles.

🏅Awards:

Sakshi Saini has received several accolades for her academic achievements and contributions to the field of chemistry. In 2013, she was awarded the “Student of the Year” by LIC Corporations India for her exceptional performance in her academic course. In recognition of her potential, she received a scholarship for higher education under the Inspire Scheme in 2017. Additionally, she completed the Barclays Life Skills Program conducted by the GTT Foundation in 2021. Sakshi’s commitment to research has been recognized by the National Medicinal Plant Ministry of Ayush, Government of India, where she presented a paper on biocomposite film synthesis at the “Ayurveda for One Health” international seminar in 2023. She also participated and presented a paper at the International Conference on VEDA VIJNANA & SANSKRITI MAHAKUMBHA in Gurukul Kangri University in 2023. These honors reflect her dedication and contributions to the field of chemistry.

🔬Research Focus:

Sakshi Saini’s research interests lie at the intersection of nanotechnology and sustainable practices, specifically in the development of natural biopolymer metallic nanocomposites. Her work focuses on the synthesis and characterization of biopolymers and biocomposites, exploring their applications in biological, physical, and chemical activities. She is particularly interested in water purification techniques and the degradation of dyes through advanced materials. Her proficiency with various analytical instruments, including AAS, HPLC, UV-VIS, FT-IR, SEM, and XRD, equips her to conduct comprehensive studies in these areas. Sakshi aims to contribute to innovative solutions that address environmental challenges, leveraging nanotechnology to enhance the efficacy of biopolymers in practical applications. Her commitment to research is evident through her published works and ongoing projects, as she aspires to make significant advancements in the fields of industrial chemistry and nanotechnology.

Publication Top Notes:

  • Title: A novel Acryloyloxy tamarind kernel powder biocomposites and enhanced antibacterial activity
  • Title: Studies on biopolymer-based nanocomposites reinforced with metallic nanoparticles
  • Title: Industrial chemistry and biopolymers