Zhexu Xi | Nanomaterials | Best Paper Award

Dr. Zhexu Xi | Nanomaterials | Best Paper Award

Research assistant at University of Oxford, United Kingdom

Zhexu Xi is a doctoral researcher in Inorganic Chemistry at the University of Oxford, focusing on electrochemical sensors, exosomal capture, and nanomaterial interfaces. He earned his M.Sc. in Nanoscience and Functional Nanomaterials from the University of Bristol and holds a B.Sc. in Chemistry from Xiamen University, China. Throughout his academic journey, he has combined chemistry, nanotechnology, and data science, contributing significantly to electrocatalysis, nanostructure design, and machine learning applications in materials science. His work spans fundamental research and applied projects, such as low-fouling immunomagnetic platforms, quantum dot charge transfer studies, and porous pavement materials for smart cities. Zhexu has authored multiple publications in reputed journals and conferences and serves as an editorial board member and guest editor in nanoscience-focused journals. Recognized with numerous national and international awards in chemistry, physics, and mathematical modeling, he demonstrates a strong interdisciplinary skill set, merging experimental work with computational insights.

Professional Profile

Google Scholar

Scopus

Education 

Zhexu Xi is currently pursuing his D.Phil. in Inorganic Chemistry at the University of Oxford (2020–2024), focusing on electrochemical detection systems, exosomal assays, and nanoscale interface engineering. His research involves designing advanced electrochemical receptor interfaces, low-fouling nanobeads, and microfluidic platforms for sensitive biomolecular detection. Prior to Oxford, he completed his M.Sc. in Nanoscience and Functional Nanomaterials at the University of Bristol (2019–2020) with a GPA of 69.9%, covering nanoscience techniques, functional materials, and extended research projects. Zhexu holds a B.Sc. in Chemistry (by research) from Xiamen University (2015–2019), graduating with a GPA of 87.8%. He also participated in a short-term summer exchange program on self-assembled functional materials at the University of Michigan in 2018. Throughout his education, Zhexu balanced coursework, independent research, and leadership roles in academic and extracurricular activities, cultivating a robust interdisciplinary background spanning chemistry, nanotechnology, and data science.

Professional Experience 

Zhexu Xi has diverse research experience across nanomaterials synthesis, electrochemistry, photophysics, and data-driven materials science. At Oxford, his Ph.D. focuses on immunomagnetic platform development, electrochemical assay optimization, and microfluidic devices for biomolecule detection. He previously researched 2D molybdenum chalcogenides for hydrogen evolution, investigating structure-activity correlations and nanostructure design. At Bristol, he worked on hydrothermal synthesis of MoX₂ assemblies and their electrocatalytic properties. Earlier at Xiamen University, Zhexu explored electron/hole transfer dynamics in semiconductor quantum dots and developed porous concrete materials for water seepage control. His projects span from fundamental chemical synthesis to advanced spectroscopy, machine learning modeling for nanomaterials property prediction, and environmental material applications. Beyond laboratory research, Zhexu served as a founder of the Bioinformatics Club, a conference presenter, and a guest editor for nanoscience journals. His work demonstrates strong skills in experimental design, data analysis, computational modeling, and scientific communication across disciplines.

Awards and Honors

Zhexu Xi has earned numerous honors recognizing his interdisciplinary expertise. Nationally, he received the Excellent Prize in the Wanmen-Cup Physics Contest (2018), and multiple prizes in China’s innovation competitions, including the “Challenge Cup” and National College Student Extracurricular Academic Competitions for both scientific research and mathematical modeling. His project on eco-friendly cellulose-based adhesives was ranked among China’s top 100 public welfare projects. In mathematical modeling and programming, Zhexu earned second prizes in the “Science Innovation Cup” and the Shenzhen Cup Summer Camp. He also excelled in diverse fields, winning first prizes in national English translation and encyclopedia contests. At university level, he secured multiple awards, including the Xiamen University competition for energy-saving solutions. His contributions span from experimental chemistry to data science applications, underlining a commitment to both scientific innovation and effective communication. Zhexu’s broad recognition underscores his leadership, problem-solving, and cross-disciplinary research capabilities.

Research Interests 

Zhexu Xi’s research interests center on the intersection of nanoscience, electrochemistry, and advanced materials design. He focuses on developing electrochemical detection systems for biomedical applications, particularly exosomal and biomarker assays using microfluidic and low-fouling platforms. His work delves deeply into nanostructured electrocatalysts, especially 2D transition metal dichalcogenides, exploring structure–activity relationships to enhance hydrogen evolution reactions. Zhexu is also passionate about quantum dots and their charge transfer dynamics, investigating ultrafast photophysical processes for energy applications. Beyond experimental chemistry, he integrates machine learning into materials science for property prediction, high-throughput screening, and nanostructure optimization. His interests extend to sustainable materials, exemplified by studies on porous pavements for environmental engineering. Zhexu bridges disciplines by combining experimental synthesis, sophisticated spectroscopic techniques, electrochemical analysis, and computational modeling, aiming to design intelligent materials and systems for clean energy, diagnostics, and smart infrastructure applications.

Research Skills 

Zhexu Xi possesses a strong skill set combining experimental and computational methods. Experimentally, he is skilled in nanoparticle synthesis, hydrothermal methods, quantum dot fabrication, surface functionalization, and electrochemical techniques (e.g., voltammetry, impedance spectroscopy). He has expertise in characterizing nanomaterials using spectroscopy (UV-Vis, transient absorption), microscopy, and electrochemical analysis to study reaction kinetics and material interfaces. Zhexu is adept at designing low-fouling surfaces for immunoassays and integrating microfluidic systems for precise biomolecule capture and quantification. Computationally, he employs machine learning models for materials property prediction, data mining, and image-text analysis, handling complex datasets with advanced statistical methods. He is experienced in modeling electron transfer processes and correlating structural parameters with functional performance. Zhexu excels in scientific communication through publications, presentations, and editorial roles. His interdisciplinary skills allow him to navigate complex research challenges spanning chemistry, nanotechnology, bioanalytics, and computational materials science.

Publication Top Notes

  • Deep multi-view graph-based network for citywide ride-hailing demand prediction

  • Adaptive dual-view wavenet for urban spatial–temporal event prediction

  • Surgical repair of annulus defect with biomimetic multilamellar nano/microfibrous scaffold in a porcine model

  • Urban hotspot forecasting via automated spatio-temporal information fusion

  • Nanostructures Design: the Role of Cocatalysts for Hydrogen and Oxygen Generation in Photocatalytic Water Splitting

  • Functional Nanomaterials Design in the Workflow of Building Machine-Learning Models

  • Underlying Structure-Activity Correlations of 2D Layered Transition Metal Dichalcogenides-Based Electrocatalysts for Boosted Hydrogen Generation

  • Nanostructures of 2D Transition Metal Dichalcogenides for Hydrogen Generation Under Alkaline Conditions: from Theoretical Models to Practical Electrocatalysts

  • Spatial modelling and microstructural modulation of porous pavement materials for seepage control in smart cities

  • How can Humans Drive the Development of Ethical Artificial Intelligence?

  • Regional compartmentalization in multienzyme-related biomaterials system

  • Interfacial Colloidal Performance and Adhesive Strength of an Environmentally Friendly Cellulose-microcrystal-based Adhesive Substance

  • Study on Transient Spectrum Based on charge transfer of semiconductor quantum dots

  • Analysis and Research on Corrosion Law of Natural Environment of Materials

  • An Edge-Deployable Multi-Modal Nano-Sensor Array Coupled with Deep Learning for Real-Time, Multi-Pollutant Water-Quality Monitoring

  • Revisiting the Marcus Inverted Regime: Modulation Strategies for Photogenerated Ultrafast Carrier Transfer from Semiconducting Quantum Dots to Metal Oxides

  • Environmental Effect of Water-Permeable Pavement Materials in Sponge Cities

  • Tunable structure-activity correlations of molybdenum dichalcogenides (MoX2; X= S, Se, Te) electrocatalysts via hydrothermal methods: insight into optimizing the electrocatalytic performance for hydrogen generation

  • Intelligent digitalization and immersive experience in cross-border e-commerce environment (I): the formation pathway and underlying “mediator” of consumer brand attachment

  • Unlocking Hydrogen Evolution: Deciphering Structure-Activity Links in Two-Dimensional Molybdenum Dichalcogenides for Enhanced Electrochemical Catalysis

Mr. ROSHAN KUMAR | Materials Chemistry | Best Researcher Award

Mr. ROSHAN KUMAR | Materials Chemistry | Best Researcher Award

Mr. ROSHAN KUMAR , Materials Chemistry , Senior Scientist at CSIR – National Metallurgical Laboratory, India

Dr. Roshan Kumar is a highly accomplished Senior Scientist at CSIR–National Metallurgical Laboratory, Jamshedpur. With an academic foundation from premier institutes like IIT Delhi and NIT Jamshedpur, he brings over a decade of research and industrial experience in materials science, mechanical design, and manufacturing. His expertise spans from engine integration design at Tata Motors to pioneering research in biodegradable implants, hydrogen energy, and advanced metallurgy at CSIR-NML. He is actively involved in national research projects including DRDO, DST, and CSIR initiatives. Known for his innovative thinking and multidisciplinary research capabilities, he has significantly contributed to the development of green hydrogen solutions and advanced manufacturing processes. Dr. Kumar is also a passionate advocate for technology-driven social change, participating in programs like Women Technology Park. With multiple publications in reputed international journals and awards to his credit, he continues to bridge academic excellence and applied engineering for societal advancement.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Roshan Kumar exemplifies the qualities of an outstanding researcher, with a strong academic background from premier institutions like IIT Delhi and NIT Jamshedpur, and over a decade of professional experience across industry and research. Currently a Senior Scientist at CSIR–National Metallurgical Laboratory, he has made significant contributions to materials research, particularly in biodegradable implants, hydrogen energy, computational modeling, and metal corrosion studies. His work bridges computational science with experimental materials design, reflecting innovation and societal relevance. Recognized with an All India Rank 3 in CSIR-NET and a Best Poster Award at an international hydrogen conference, he has authored impactful publications in high-ranking journals. His leadership in interdisciplinary CSIR and DST projects underscores his collaborative and forward-looking research approach. With a clear focus on materials science and clean energy, Dr. Kumar’s achievements demonstrate excellence, innovation, and real-world application. Dr. Roshan Kumar is highly suitable for the “Best Researcher Award”, given his exemplary track record in research innovation, publication impact, national-level project leadership, and meaningful contributions to sustainable and advanced technologies.

🎓Education:

Dr. Roshan Kumar’s educational journey showcases academic brilliance and technical depth. He earned his M.Tech in Design Engineering from Indian Institute of Technology (IIT) Delhi in 2015 with an impressive CGPA of 9.115, demonstrating strong command in mechanical design and computational engineering. He completed his B.Tech in Production Engineering and Management from NIT Jamshedpur in 2010, securing a GPA of 8.65, laying a robust foundation in manufacturing and production systems. His schooling reflects consistent academic performance with 72% in CBSE (2005) from VBCV, Jamshedpur, and 69.2% in Class X (2003) under the Jharkhand Board from SJS, Jamshedpur. His early academic achievements were further validated by an All India Rank 3 in CSIR-NET, earning him eligibility for the prestigious Shyama Prasad Mukherjee Fellowship (2013). This strong educational background has fueled his contributions to scientific research, innovation, and national R&D missions.

🏢Work Experience:

Dr. Roshan Kumar currently serves as a Senior Scientist at the Engineering Division of CSIR–NML, Jamshedpur (Dec 2019 – Present), where he leads and contributes to projects involving materials science, hydrogen energy, and biodegradable implants. Before joining CSIR, he worked as a Senior Manager at Tata Motors Limited (Sept 2015 – Nov 2019) in the Engine Integration Design department at the Engineering Research Centre, Jamshedpur. His role involved design validation, component analysis, and optimization in automotive engineering. Earlier, he began his career at Mahindra and Mahindra Limited (July 2010 – June 2011) as a Graduate Apprentice Trainee in the Engine Department at Rudrapur. Across these roles, Dr. Kumar has built a strong reputation in integrating academic research with industrial applications, especially in engine systems, manufacturing technology, and metallurgical engineering. His experience spans both applied research and industrial innovation, making him a valuable contributor to national science missions.

🏅Awards: 

Dr. Roshan Kumar has received notable recognition for his research excellence and academic accomplishments. He secured an All India Rank 3 in the CSIR-NET Examination, qualifying him for the Shyama Prasad Mukherjee Fellowship in 2013, one of the most prestigious fellowships for young researchers in India. In 2023, he was honored with the Best Poster Award at the 1st International Conference on Green Hydrogen for Global De-carbonization, recognizing his innovative work in clean energy research. His award-winning contributions span materials design, hydrogen generation, and advanced manufacturing. Additionally, his work is frequently cited and featured in reputed international journals, establishing his scholarly impact. These accolades highlight his dedication to solving global engineering challenges and his capacity to influence cutting-edge research in sustainable technologies, materials development, and design engineering. His involvement in national-level projects and active membership in multiple CSIR initiatives further solidify his reputation as a leading researcher in his field.

🔬Research Focus:

Dr. Roshan Kumar’s research is focused on materials engineering, design optimization, and clean energy technologies, with a keen interest in sustainable manufacturing. His key contributions include the development of biodegradable Mg/Zn-based implants, atomic-scale corrosion studies, and hydrogen generation through metal–water reactions. At CSIR–NML, he has led and co-led projects on machinability of Mg alloys, electroplating systems for medical applications, and weldability of high-strength steels in collaboration with DRDO and Tata Steel. His work blends computational simulations, molecular dynamics, and experimental validations to explore fracture toughness, fatigue behavior, and additive manufacturing processes. He also contributes to the CSIR Integrated Skill Training and Phenome India Health Cohort initiatives. His interdisciplinary approach leverages simulation, materials science, and product design to create real-world engineering solutions. Dr. Kumar’s work plays a pivotal role in India’s R&D landscape, especially in advancing green hydrogen energy, smart materials, and medical-grade alloys.

Publication Top Notes:

1. Atomic Investigation of Corrosion Mechanism and Surface Degradation of Fe–Cr–Ni Alloy in Presence of Water: Advanced Reactive Molecular Dynamics Simulation

Citations: 2

2. Atomistic Characterization of Multi Nano‑Crystal Formation Process in Fe–Cr–Ni Alloy During Directional Solidification: Perspective to the Additive Manufacturing

 

 

Dr. YOUSAF MUHAMMAD | Nanotechnology | Best Researcher Award

Dr. YOUSAF MUHAMMAD | Nanotechnology | Best Researcher Award

Dr. YOUSAF MUHAMMAD , Nanotechnology , Research Scientist at Shenzhen University , China

Dr. Muhammad Yousaf is a dedicated researcher in Physics and Material Science, with special expertise in energy and environmental sciences. Currently based in Shenzhen, China, he is pursuing a second postdoctoral fellowship at Shenzhen University (2023–present), having completed a prior postdoc at Southeast University, Nanjing (2020–2023). He earned his Ph.D. in Nano Materials and Devices from Hubei University, China, where he focused on semiconducting ferrites for solid oxide fuel cells. With a strong academic foundation from COMSATS Institute, Pakistan, Dr. Yousaf has contributed significantly to the development of advanced materials for clean energy technologies. He has published widely in reputed journals such as Fuel, Ceramics International, and Electrochimica Acta. His collaborative research spans proton conduction, magneto-optical materials, and nanoferrites. A passionate scientist, he aims to drive innovation in sustainable energy materials and contribute to global environmental goals through impactful research.

Professional Profile : 

Google Scholar

 Orcid

Scopus 

Summary of Suitability for Award:

Dr. Yousaf holds a Ph.D. in Nanomaterials and Devices with distinction (89%) and has completed two postdoctoral fellowships in Energy and Environmental Sciences from reputed Chinese institutions—Southeast University and Shenzhen University. He has authored over 16 peer-reviewed research publications in high-impact journals like Fuel, Small Methods, Electrochimica Acta, and Ceramics International, focusing on solid oxide fuel cells (SOFCs), magneto-optical materials, and nanoferrites. His work in proton/electron/oxygen ion-conducting ceramics, rare earth-doped ferrites, and low-temperature SOFCs has advanced next-gen energy technologies. His collaborative and interdisciplinary projects address critical global needs in sustainable energy. Dr. Yousaf has collaborated with distinguished scientists from China, Pakistan, and Sweden (Bin Zhu), showcasing his international research engagement and adaptability. Dr. Muhammad Yousaf is eminently qualified for the “Best Researcher Award”. His academic rigor, innovation in materials science, and impactful publications reflect an exceptional research trajectory. He not only contributes to advancing clean energy technologies but also exemplifies a committed and globally connected researcher. His profile aligns perfectly with the values of excellence, originality, and societal impact that such an award seeks to recognize.

🎓Education:

Dr. Muhammad Yousaf holds two postdoctoral fellowships in Energy and Environmental Sciences—currently at Shenzhen University (2023–ongoing) and previously at Southeast University, Nanjing (2020–2023). He completed his Ph.D. in Nano Materials and Devices (2017–2020) from Hubei University, China, with a thesis on ferrite materials for low-temperature solid oxide fuel cells (SOFCs), achieving an 89% score. He earned his M.S. in Physics from COMSATS Institute of Information Technology, Lahore (2015–2017), with a CGPA of 3.23, focusing on rare earth ion effects on garnet ferrites. His B.S. (Hons) in Physics (2011–2015), also from COMSATS, had a final CGPA of 2.58. His academic journey began with pre-engineering at KIMS College Kot Adu (F.Sc., 78%) and matriculation from Govt. H.S. School, Shadan Lund (84%). Dr. Yousaf’s academic path reflects his growing commitment to materials science for clean energy.

🏢Work Experience:

Dr. Muhammad Yousaf has over five years of postdoctoral research experience in energy materials and environmental sciences. From 2020 to 2023, he worked at Southeast University, Nanjing, in the Energy Storage Joint Research Center, where he explored low-temperature solid oxide fuel cells (LT-SOFCs), electrochemical interfaces, and ferrite composites. In 2023, he began his second postdoctoral fellowship at Shenzhen University, where he continues his innovative research on proton-conducting and magneto-optical nanomaterials for clean energy systems. During his Ph.D. at Hubei University (2017–2020), he extensively studied semiconducting spinel and garnet ferrites. His early research during M.S. and B.S. studies at COMSATS Institute, Pakistan, laid the foundation in nanomaterials and rare earth doping. He has also collaborated internationally on materials for solid-state energy devices. Dr. Yousaf’s expertise spans synthesis, characterization, and performance analysis of advanced materials, enabling him to contribute significantly to emerging clean energy technologies.

🏅Awards: 

Dr. Muhammad Yousaf’s contributions to material science and energy research have earned him recognition in the academic and scientific community. He is the recipient of multiple research fellowships, including two prestigious postdoctoral appointments in China—first at Southeast University, Nanjing, and currently at Shenzhen University. His work has been regularly featured in high-impact journals such as Fuel, Ceramics International, and Small Methods. Dr. Yousaf has co-authored several collaborative projects with renowned researchers such as Prof. Bin Zhu and Prof. Yuzheng Lu. His consistent publication record demonstrates his excellence in low-temperature fuel cell technologies, earning him a reputation for innovation and scientific rigor. He has contributed to several international research networks focused on advanced nanomaterials and clean energy. His growing citation count and leadership in interdisciplinary research projects reflect the high impact of his scientific output.

🔬Research Focus:

Dr. Muhammad Yousaf’s research centers on materials for energy conversion and storage, particularly solid oxide fuel cells (SOFCs), proton-conducting ceramics, and ferrite-based nanomaterials. He develops novel composite and doped structures that enhance oxygen reduction reaction (ORR) activity, proton conductivity, and magneto-optical properties. His Ph.D. focused on spinel and garnet ferrites for low-temperature SOFCs, while his postdoctoral research expands into heterojunctions, interfacial disordering, and mixed ionic-electronic conductors. His interdisciplinary approach combines material synthesis, characterization (XRD, SEM, TEM, EIS), and electrochemical evaluation. Dr. Yousaf is particularly interested in optimizing materials for low-temperature operations, which is critical for the commercial viability of ceramic fuel cells. He also explores rare earth doping, sol-gel processes, and microwave absorber applications. His goal is to create efficient, stable, and environmentally sustainable energy materials through cutting-edge material design and processing innovations.

Publication Top Notes:

1.Title: Structural and electromagnetic evaluations of YIG rare earth doped (Gd, Pr, Ho, Yb) nanoferrites for high frequency applications
Citations: 127

2.Title: ZnO/MgZnO heterostructure membrane with type II band alignment for ceramic fuel cells
Citations: 82

3.Title: Physical, structural, conductive and magneto-optical properties of rare earths (Yb, Gd) doped Ni–Zn spinel nanoferrites for data and energy storage devices
Citations: 80

4.Title: Semiconductor Fe-doped SrTiO3-δ perovskite electrolyte for low-temperature solid oxide fuel cell (LT-SOFC) operating below 520°C
Citations: 73

5.Title: Magnetic characteristics and optical band alignments of rare earth (Sm³⁺, Nd³⁺) doped garnet ferrite nanoparticles (NPs)
Citations: 67

6.Title: Preparations, optical, structural, conductive and magnetic evaluations of RE’s (Pr, Y, Gd, Ho, Yb) doped spinel nanoferrites
Citations: 66

7.Title: Electrochemical properties of Ni₀.₄Zn₀.₆Fe₂O₄ and the heterostructure composites (Ni–Zn ferrite-SDC) for low temperature solid oxide fuel cell (LT-SOFC)
Citations: 62

8.Title: Structural, magnetic, and electrical evaluations of rare earth Gd³⁺ doped in mixed Co–Mn spinel ferrite nanoparticles
Citations: 57

9.Title: Electrochemical Properties of a Co-Doped SrSnO₃−δ-Based Semiconductor as an Electrolyte for Solid Oxide Fuel Cells
Citations: 57

10.Title: Surface‐engineered homostructure for enhancing proton transport1
Citations: 55

11.Title: Effect of Gd and Co contents on the microstructural, magneto-optical and electrical characteristics of cobalt ferrite (CoFe₂O₄) nanoparticles
Citations: 53
12.Title: Semiconductor Nb-Doped SrTiO₃−δ Perovskite Electrolyte for a Ceramic Fuel Cell
Citations: 49

Prof. Dr. Boguslaw BUSZEWSKI | Materials Chemistry | Analytical Chemistry Award

Prof. Dr. Boguslaw BUSZEWSKI | Materials Chemistry | Analytical Chemistry Award

Prof. Dr. Boguslaw BUSZEWSKI ,  Materials Chemistry , Head at Prof. Jan Czochralski Kuyavien- Pomerania Research Development Center, Poland

Prof. Dr. Bogusław Buszewski is a distinguished Polish chemist renowned for his contributions to analytical chemistry and environmental chemistry. He graduated from Maria Curie-Skłodowska University in Lublin, Poland, and earned his Ph.D. in 1986, followed by a Dr Sc degree in 1992. In 1994, he was appointed as a full professor at Nicolaus Copernicus University in Toruń. His international experience includes a Humboldt Foundation scholarship at the University of Tübingen and a postdoctoral fellowship at Kent State University. Prof. Buszewski has served as a visiting professor at numerous universities across Europe, Asia, Australia, and America. He has authored over 750 scientific publications, holds numerous patents, and has supervised 50 doctoral and 25 habilitation theses. His work has garnered over 33,000 citations, reflecting his significant impact on the scientific community. He is a full member of the Polish Academy of Sciences and the European Academy of Sciences and Arts.

Professional Profile : 

Orcid

Summary of Suitability for Award:

Prof. Dr. Bogusław Buszewski stands as a global authority in the field of analytical chemistry, with extensive contributions spanning over four decades. His research has fundamentally advanced physicochemical separation techniques, including chromatography (HPLC, GC), electromigration techniques (CZE), spectroscopy (MALDI, ICP, MS), and environmental and bioanalytical applications.  Prof. Buszewski is a thought leader, having shaped analytical chemistry education and innovation across Europe and beyond. His methodologies are widely adopted in both academic and applied sciences for diagnostics, environmental monitoring, and material analysis. Prof. Dr. Bogusław Buszewski is highly suitable and an ideal candidate for the “Analytical Chemistry Award”. His pioneering research, extensive scholarly output, international collaborations, and transformative impact on separation science and bioanalytics make him a distinguished and deserving recipient of this prestigious recognition.

🎓Education:

Prof. Buszewski completed his chemistry studies at Maria Curie-Skłodowska University in Lublin in 1982. He earned his Ph.D. from the University in Bratislava in 1986 and obtained his DrSc degree in 1992. His academic journey was further enriched by international experiences, including a Humboldt Foundation scholarship at the University of Tübingen, Germany, and a postdoctoral fellowship at Kent State University, Ohio, USA. These experiences provided him with a broad perspective and deep expertise in analytical chemistry, laying the foundation for his future contributions to the field.

🏢Work Experience:

Prof. Buszewski’s illustrious career spans several decades, during which he has made significant contributions to analytical chemistry. Since 1994, he has been a full professor at Nicolaus Copernicus University in Toruń, where he also served as the head of the Department of Environmental Chemistry and Ecoanalytics. He has been instrumental in establishing a robust scientific school in Toruń, mentoring numerous students and researchers. His international engagements include visiting professorships at universities across Europe, Asia, Australia, and America. Prof. Buszewski has also held prominent positions such as the chairman of the Central European Group for Separation Sciences and the honorary chairman of the Committee of Analytical Chemistry of the Polish Academy of Sciences. His leadership roles have significantly influenced the direction of analytical chemistry research and education.

🏅Awards: 

Prof. Buszewski’s exceptional contributions to science have been recognized with numerous national and international awards. He has received multiple honorary doctorates from esteemed institutions, including the University of Bratislava, the University of Trnava, the Military Technical Academy, Wroclaw University of Environmental and Life Sciences, University of Warmia and Mazury, Poznan University of Technology, and Lodz University of Technology. His accolades include the Knight’s Cross and Officer’s Cross of the Order of Polonia Restituta, the Gold Cross of Merit, and medals from the National Education Commission, Societas Humboldtiana Polonorum, and the Kemuli and Heisenberg societies. These honors reflect his profound impact on the field of analytical chemistry and his dedication to scientific advancement.

🔬Research Focus:

Prof. Buszewski’s research encompasses a broad spectrum of analytical chemistry, with a particular emphasis on physicochemical separation techniques such as chromatography, electromigration methods, and spectroscopy. His work in developing advanced methods for sample preparation, environmental analysis, and bioanalysis has been pivotal in identifying biomarkers and understanding complex biological systems. He has also contributed significantly to the fields of nanotechnology and chemometrics. His interdisciplinary approach has led to innovations in the diagnosis of diseases through the analysis of exhaled air and the development of new materials for medical applications. Prof. Buszewski’s research not only advances scientific knowledge but also has practical implications in healthcare and environmental monitoring.

Publication Top Notes:

1. Potential Clinical Application of Analysis of Bisphenols in Pericardial Fluid from Patients with Coronary Artery Disease with the Use of Liquid Chromatography Combined with Fluorescence Detection and Triple Quadrupole Mass Spectrometry

2. In Vitro and In Silico of Cholinesterases Inhibition and In Vitro and In Vivo Anti-Melanoma Activity Investigations of Extracts Obtained from Selected Berberis Species

3. Development and Validation of LC-MS/MS Method for Determination of Cytisine in Human Serum and Saliva

4. Comprehensive Study of Si-Based Compounds in Selected Plants (Pisum sativum L., Medicago sativa L., Triticum aestivum L.)

5. Determination of Some Isoquinoline Alkaloids in Extracts Obtained from Selected Plants of the Ranunculaceae, Papaveraceae and Fumarioideae Families by Liquid Chromatography and In Vitro and In Vivo Investigations of Their Cytotoxic Activity

6. Exogenously Applied Cyclitols and Biosynthesized Silver Nanoparticles Affect the Soluble Carbohydrate Profiles of Wheat (Triticum aestivum L.) Seedling

7. Determination of Selected Isoquinoline Alkaloids from Chelidonium majus, Mahonia aquifolium and Sanguinaria canadensis Extracts by Liquid Chromatography and Their In Vitro and In Vivo Cytotoxic Activity against Human Cancer Cells

8. Functional Beverages in the 21st Century

9. The Association between the Bisphenols Residues in Amniotic Fluid and Fetal Abnormalities in Polish Pregnant Women—Its Potential Clinical Application

10. Analysis of VOCs in Urine Samples Directed towards Bladder Cancer Detection

11. Comparative Study of the Potentially Toxic Elements and Essential Microelements in Honey Depending on the Geographic Origin

12. Oligonucleotides Isolation and Separation—A Review on Adsorbent Selection

13. A New Approach to Imaging and Rapid Microbiome Identification for Prostate Cancer Patients Undergoing Radiotherapy

 

Assist. Prof. Dr. Jonghyun Eun | Polymer Chemistry | Best Researcher Award

Assist. Prof. Dr. Jonghyun Eun | Polymer Chemistry | Best Researcher Award

Assist. Prof. Dr. Jonghyun Eun , Polymer Chemistry , Professor at Kumoh National Institute of Technology, South Korea

Dr. Jong-Hyun Eun is an Assistant Professor in the Department of Materials Design Engineering at Kumoh National Institute of Technology, Republic of Korea. With a strong background in textile engineering and advanced fiber materials, he specializes in carbon fiber technologies, piezoelectric nanofibers, and composite materials. He earned his integrated Master’s and Ph.D. from Yeungnam University under the mentorship of Prof. Joon-Seok Lee. His postdoctoral research journey included positions at Arizona State University and Yeungnam University, where he advanced his expertise in carbon fiber reinforced plastics (CFRPs), graphene-metal composites, and electrospun nanofibers. Dr. Eun has hands-on experience in fabricating and analyzing high-performance composites and energy harvesting materials, making him a rising researcher in the field. He also contributes actively to teaching, mentoring students in textile and fashion materials design. His recent publications highlight innovations in hydrogen storage, nanofiber processing, and sustainable composite development.

Professional Profile : 

Google Scholar

Orcid 

Summary of Suitability for Award:

Dr. Jong-Hyun Eun demonstrates a strong and dynamic research profile with focused expertise in carbon fiber technology, composite materials, piezoelectric nanofibers, and textile engineering—areas that are highly relevant to both academic advancement and industrial applications. His research is deeply interdisciplinary, integrating materials science, nanotechnology, and energy harvesting, aligning well with global trends in sustainable and smart materials. Dr. Jong-Hyun Eun is highly suitable for nomination for the “Best Researcher Award”. He brings together innovative research, technical excellence, and cross-disciplinary impact. His rapid trajectory from graduate studies to international postdoctoral work and faculty appointment, combined with a productive publication record and active teaching, makes him a strong contender. His ongoing contributions in composite materials and energy harvesting nanofibers address current scientific and technological challenges, fulfilling the criteria for excellence in research.

🎓Education:

Dr. Jong-Hyun Eun holds an integrated Master’s and Doctoral degree in Textile Engineering and Technology from Yeungnam University (2015–2021), where he conducted research under Prof. Joon-Seok Lee. His doctoral work focused on the development of polyethylene-based carbon fibers and composite materials. Prior to that, he completed a B.S. in Fiber and New Materials Design Engineering (2009–2015) at the same university, also under Prof. Lee’s guidance. Throughout his academic journey, Dr. Eun built a solid foundation in textile science, polymer engineering, and nanotechnology. His studies covered a range of topics from sulfonation processes under hydrostatic pressure to advanced electrospinning systems. His rigorous academic training has equipped him with both theoretical knowledge and extensive laboratory experience, paving the way for impactful research in fiber engineering and sustainable composite technologies.

🏢Work Experience:

Dr. Jong-Hyun Eun’s professional experience spans academia and cutting-edge research in fiber science and materials engineering. He currently serves as an Assistant Professor at Kumoh National Institute of Technology. Previously, he was a Postdoctoral Researcher at Arizona State University (2021–2023), focusing on material design and composite innovation. Before that, he held a postdoctoral position at Yeungnam University (2021), continuing his work in textile engineering. During his graduate studies, he also taught various courses at Korea Polytechnic, such as high-tech fiber, woven fabric formation, and textile material analysis. His hands-on experience includes fabricating carbon fiber composites through various molding techniques, developing piezoelectric nanofibers via electrospinning, and analyzing graphene-metal composites. Dr. Eun’s diverse research roles and teaching responsibilities have allowed him to bridge material science with real-world applications.

🏅Awards: 

While specific awards are not listed in the profile provided, Dr. Jong-Hyun Eun’s academic and professional achievements reflect a career of high distinction. Earning competitive postdoctoral positions at prestigious institutions like Arizona State University and Yeungnam University speaks to his expertise and scholarly recognition. His continuous collaboration with renowned Professor Joon-Seok Lee and multiple first-author publications in high-impact journals such as Scientific Reports, Materials & Design, and International Journal of Hydrogen Energy highlight his contributions to materials science and textile engineering. His role as a lead contributor in cutting-edge research on carbon fibers and composite materials demonstrates his leadership and innovation. As his career progresses, he is poised to receive further accolades in recognition of his impactful research and teaching in advanced materials engineering.

🔬Research Focus:

Dr. Jong-Hyun Eun’s research is centered on advanced fiber and composite materials, with a strong focus on sustainability and performance. His expertise includes carbon fiber development from polyethylene, toughening mechanisms in carbon fiber reinforced plastics (CFRPs), and mechanical/impact resistance analysis. He is also deeply engaged in developing piezoelectric nanofiber energy harvesting devices using electrospinning techniques, aiming at efficient wearable energy solutions. Additionally, his research extends to graphene-metal composites, exploring their structural and thermal properties. Through multidisciplinary approaches, Dr. Eun investigates reaction mechanisms, interfacial behavior, and processing-structure-property relationships in fiber-reinforced materials. His work is driven by a commitment to innovation in energy materials, lightweight composites, and next-generation textile engineering, making significant contributions to both academia and industry.

Publication Top Notes:

Effect of MWCNT content on the mechanical and piezoelectric properties of PVDF nanofibers
Citations: 83

Effect of low melting temperature polyamide fiber-interlaced carbon fiber braid fabric on the mechanical performance and fracture toughness of CFRP laminates
Citations: 32

Evaluation of carbon fiber and p-aramid composite for industrial helmet using simple cross-ply for protecting human heads
Authors: S. Kim, J. Lee, C. Roh, J. Eun, C. Kang
Citations: 32

Study on polyethylene-based carbon fibers obtained by sulfonation under hydrostatic pressure
Citations: 14

Effect of the viscosity of polyvinyl chloride resin and weaving structures of polyester fabric on the off-axis mechanical properties of PVC coated fabric
Citations: 9

Study on the NCO index and base knitted fabric substrates on the thermal, chemical, and mechanical properties of solvent-less formulations polyurethane artificial leather
Citations: 8

A study on mechanical properties and thermal properties of UHMWPE/MWCNT composite fiber with MWCNT content and draw ratio
Citations: 7

Effect of fabricating temperature on the mechanical properties of spread carbon fiber fabric composites
Citations: 7

Effect of toughened polyamide-coated carbon fiber fabric on the mechanical performance and fracture toughness of CFRP
Citations: 6

Effect of toughened polyamide/carbon fiber interlace braid fabric on the mechanical performance of CFRP laminates
Citations: 2

Dr. Satyen Kumar Das | Chemical Engineering | Best Researcher Award

Dr. Satyen Kumar Das | Chemical Engineering | Best Researcher Award

Dr. Satyen Kumar Das , Chemical Engineering ,  Chief General Manager at Indian Oil Corporation Limited, R&D Centre , India

Dr. Satyen Kumar Das is a distinguished Chemical Engineer and Chief General Manager at Indian Oil R&D Centre, leading the Refining Technology domain. Since joining Indian Oil in 1995, he has contributed nearly 30 years of cutting-edge research, commercialization, and troubleshooting in petroleum refining, sustainability, and circularity. He is recognized for pioneering indigenous technologies such as Ind-Coker, Needle Coke, INDMAX, and INDEcoP2F, significantly contributing to India’s energy innovation and self-reliance. With over 200 patents (144 granted globally) and 94 technical publications, his work bridges research and industry application seamlessly. Dr. Das is known for driving initiatives in crude-to-chemicals, bio-refinery, waste-to-energy, and CO₂ valorization. He has led the successful deployment of several commercial-scale processes and continues to champion green and circular technologies for a sustainable energy future. His leadership and innovation have earned him several prestigious national accolades, making him a key figure in India’s refining research landscape.

Professional Profile : 

Google Scholar 

Scopus

Summary of Suitability for Award:

Dr. Satyen Kumar Das is a seasoned chemical engineering researcher with nearly three decades of experience at the forefront of petroleum refining technology. As Chief General Manager at Indian Oil R&D, he has spearheaded groundbreaking innovations in residue upgradation, crude-to-chemicals, plastic circularity, and CO₂ valorization—making significant contributions toward energy sustainability and circular economy. He has led the commercialization of six major technologies and supported the operation of four commercial plants. With 210 patents filed (144 granted across multiple jurisdictions including the US, Europe, and India) and 94 journal and conference publications, his research has had both academic impact and industrial translation. Dr. Das has been honored by multiple national bodies, including the Ministry of Petroleum & Natural Gas (GoI), DSIR, and AIMA, for innovations like INDMAX, Needle Coke Technology, and IV- IZOMaxCATR. His work bridges fundamental research, applied technology, and commercial deployment, positioning him as a pioneer in refining technology and sustainable process development. Dr. Satyen Kumar Das exemplifies the qualities sought for the “Best Researcher Award”—originality, industrial relevance, academic excellence, and societal impact. His contributions have not only advanced the frontiers of petroleum research but also addressed critical environmental and sustainability challenges. He is an exceptional candidate for this prestigious recognition.

🎓Education:

Dr. Satyen Kumar Das holds a Ph.D. in Chemical Engineering from the Indian Institute of Technology (IIT) Delhi, where he specialized in advanced refining technologies. He earned his M.Tech in Chemical Engineering from IIT Kanpur, where he developed a strong foundation in process design, catalysis, and fuel technology. He began his academic journey with a B.Tech in Chemical Engineering from Calcutta University, where he demonstrated academic brilliance and curiosity for applied research. His academic path through premier institutions helped him cultivate expertise across petroleum refining, catalysis, process engineering, and materials chemistry. The rigorous and interdisciplinary training he received has been instrumental in his successful translation of R&D projects into commercial technologies. His educational background also laid the groundwork for his future role as a technocrat and innovator in India’s petroleum industry. His continuous learning mindset remains central to his leadership at Indian Oil R&D Centre.

🏢Work Experience:

Dr. Das began his professional journey at Indian Oil’s R&D Centre in 1995. Over nearly three decades, he has grown to become Chief General Manager, heading Refining Technology. From 1995 to 2013, he played a pivotal role in developing processes such as INDMAX, INDALIN, DIST-Extra, and MAXLIN. His technical services and troubleshooting expertise in FCC/RFCC/INDMAX made a significant impact on operational efficiency. From 2014 onward, he has been spearheading key initiatives including Ind-Coker, Crude to Chemicals, Needle Coke, and INDEcoP2F (plastic circularity). He has led technology commercialization efforts, driving innovations like MMO catalysts, Octamax, and IV- IZOMaxCATR. Dr. Das has overseen deployment of over 4 commercial technologies and filed over 210 patents, marking his influence on both national and global energy platforms. His forward-looking leadership also covers futuristic domains such as bio-refinery, CO₂ valorization, and advanced carbon materials, ensuring India’s alignment with energy sustainability goals.

🏅Awards: 

Dr. Satyen Kumar Das has been honored with numerous prestigious awards for his innovation in petroleum refining. He received the NPMP Award for INDMAX and Needle Coke technologies 🧪, and the DSIR Award for INDMAX commercialization 🛢️. The AIMA Award recognized his breakthroughs in R&D and AI integration 🤖. His energy-efficient, eco-friendly technologies, including Anode Grade Coker and IV- IZOMaxCATR, won accolades from the Ministry of Petroleum & Natural Gas (MOP&NG) . Notable recognitions include the Innovation Awards (2019-20, 2022-23, 2023-24) for technologies such as Delayed Coker and INDEcoP2F ♻️. In 2025, he was also awarded the JEWEL OF INDIA 🏅 for his outstanding contributions to petroleum science. These honors are a testament to his commitment to technological excellence, sustainability, and Atmanirbhar Bharat in the energy domain. His award-winning innovations have significantly strengthened India’s refining and circular economy capabilities.

🔬Research Focus:

Dr. Das’s research centers on refining technology innovation, petroleum residue upgrading, and sustainable energy solutions. He focuses on developing high-efficiency catalytic processes such as INDMAX and Ind-Coker 🛢️. His work emphasizes crude-to-chemicals conversion, light olefins production, and high-octane fuel blending components like Octamax and AmyleMax 🔄. A pioneer in circular economy research, he spearheads INDEcoP2F for plastic-to-fuel transformation ♻️. He also works on CO₂ valorization, specialty chemical synthesis, and advanced carbon materials 🌱. With a forward-looking vision, Dr. Das has launched multiple initiatives in bio-refinery, waste-to-energy, and indigenous catalyst development 🔋. His research integrates sustainability, process intensification, and commercial viability, shaping India’s roadmap towards energy security and carbon neutrality. Through 210+ patents and 94 publications, he bridges academic research and industrial application, ensuring innovation meets implementation. His focus continues to align with global trends in green refining and circular chemical engineering.

Publication Top Notes:

1. Multi stage selective catalytic cracking process and a system for producing high yield of middle distillate products from heavy hydrocarbon feedstocks

Authors: D Bhattacharyya, AK Das, AV Karthikeyani, SK Das, P Kasliwal, M Santra, …

Citations: 65

2. CO-hydrogenation of syngas to fuel using silica supported Fe–Cu–K catalysts: Effects of active components

Authors: SK Das, S Majhi, P Mohanty, KK Pant

Citations: 42

3. Process for catalytic cracking of petroleum based feed stocks

Authors: S Mandal, S Kumarshah, D Bhattacharyya, VLN Murthy, AK Das, S Singh, …

Citations: 41

4. CO-hydrogenation over silica supported iron based catalysts: Influence of potassium loading

Authors: SK Das, P Mohanty, S Majhi, KK Pant

Citations: 40

5. Upgradation of undesirable olefinic liquid hydrocarbon streams

Authors: AK Das, S Mandal, S Ghosh, D Bhattacharyya, GS Mishra, JK Dixit, …

Citations: 38

6. Stabilized dual zeolite single particle catalyst composition and a process thereof

Authors: MP Kuvettu, SK Ray, G Ravichandran, V Krishnan, SK Das, S Makhija, …

Citations: 31

7. Molecular-level structural insight into clarified oil by nuclear magnetic resonance (NMR) spectroscopy: estimation of hydrocarbon types and average structural parameters

Authors: S Mondal, A Yadav, R Kumar, V Bansal, SK Das, J Christopher, GS Kapur

Citations: 29

8. Process for simultaneous cracking of lighter and heavier hydrocarbon feed and system for the same

Authors: S Subramani, D Bhattacharyya, R Manna, SK Das, T Sarkar, S Rajagopal

Citations: 19

9. Dissecting the cohesiveness among aromatics, saturates and structural features of aromatics towards needle coke generation in DCU from clarified oil by analytical techniques

Authors: S Mondal, A Yadav, V Pandey, V Sugumaran, R Bagai, R Kumar, …

Citations: 13

10. Process for simultaneous cracking of lighter and heavier hydrocarbon feed and system for the same

Authors: S Subramani, D Bhattacharyya, R Manna, SK Das, T Sarkar, S Rajagopal

Citations: 13

11. Process for the production of needle coke

Authors: D Bhattacharyya, SV Kumaran, BVHP Gupta, P Kumar, AK Das, G Saidulu, …

Citations: 8

12. Delayed coker drum and method of operating thereof

Authors: THVD Prasad, PR Pradeep, SK Das, JK Dixit, G Thapa, D Bhattacharyya, …

Citations: 7

Mr. Frédéric Pignon | Chemical Engineering | Best Researcher Award

Mr. Frédéric Pignon | Chemical Engineering | Best Researcher Award

Mr. Frédéric Pignon , Chemical Engineering ,Senior Scientist at CNRS/Laboratoire Rhéologie et Procédés, France

Frédéric Pignon is a Senior Scientist (Directeur de Recherche, DR1) at CNRS, affiliated with the Laboratoire Rhéologie et Procédés (LRP), UMR 5520, Grenoble, France.🇫🇷, he specializes in fluid mechanics and soft matter rheology. With over 25 years of expertise, Pignon has significantly contributed to the understanding of the multiscale structural behavior of anisotropic dispersions under various flow conditions. His pioneering development of in situ experimental setups has enabled novel insights into flow-structure relationships using SAXS, SANS, SALS, and ultrasound techniques. He holds an h-index of 32 📊, with 76 international publications, 2 patents, and numerous invited talks globally . Apart from research, he actively contributes to scientific evaluation committees and review panels including ANR, HCERES, and ESRF. His collaborations span leading institutions in Europe, North America, and Asia, positioning him as a key figure in advanced rheological material research.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Pignon holds a Ph.D. in Fluid Mechanics and Transfer (1997, Grenoble-INP), with prior DEA in the same field. His formal training is strongly aligned with his long-term research focus in rheology and multiscale fluid dynamics. He has published 76 peer-reviewed international journal papers, presented in 97 international conferences (including 8 invited talks), and holds 2 patents. His h-index of 32 demonstrates sustained impact in his field. His research uniquely combines rheometric properties with nanoscale-to-microscale structural characterization using advanced techniques such as SAXS, SALS, and optical methods. These contributions have significantly advanced the understanding of flow-induced behavior in complex fluids and materials. Dr. Frédéric Pignon’s pioneering research, prolific publication record, significant mentoring, leadership in scientific boards, and innovative patent contributions make him exceptionally well-qualified for the “Best Researcher Award”. His work bridges theoretical insight with experimental innovation in fluid mechanics and nanostructured systems, making a deep impact on science and industry alike. He is a model of scientific excellence and leadership.

🎓Education:

Frédéric Pignon pursued higher education in engineering and fluid mechanics in France. In 1993, he earned his D.E.A. (Diplôme d’Études Approfondies) in Fluid Mechanics and Transfer from Grenoble-INP, one of France’s premier engineering institutions 🎓. He deepened his specialization by completing a Ph.D. in Fluid Mechanics and Transfer at the same institution in January 1997, underlining his early interest in the microstructural behavior of complex fluids. His doctoral research laid the foundation for his later pioneering work in multiscale flow characterization. Pignon’s strong academic formation in physics, transport phenomena, and complex systems gave him a robust foundation to innovate in rheometry and structural analysis of soft matter systems. His academic path reflects a consistent focus on multidisciplinary approaches to fluid behavior, bridging physics, materials science, and applied engineering.

🏢Work Experience:

Frédéric Pignon has held leading research positions within the CNRS system for over two decades 🧪. Since October 2013, he serves as Senior Scientist (DR1) at CNRS-LRP, following a 14-year tenure (1999–2013) as Research Scientist (CR1). Earlier, he conducted postdoctoral research at ESRF’s ID28 Beamline (1999) and Laboratoire Rhéologie et Procédés (LRP) (1997–1998) 🔬. His research career is defined by designing cutting-edge experimental cells that integrate rheology with structural probes (SAXS/SANS/optical methods). He supervises Ph.D. students and postdoctoral researchers, participates actively in international collaborations, and leads major research projects across France and Europe. Pignon’s extensive academic and industrial network has facilitated groundbreaking studies on anisotropic particles, biopolymers, and colloids under dynamic conditions. He also contributes to scientific governance through involvement in evaluation panels (ESRF, ANR, HCERES), steering strategic research and innovation.

🏅Awards: 

Frédéric Pignon’s research excellence has been recognized through leadership roles, panel appointments, and competitive research funding . He is a long-standing member of the ESRF Review Committee (Panel C08) (2014–present) and served on France’s ANR CES 09 panel (2018). He also contributed to institutional evaluation through HCERES Committee vague C (2016–2017). As Co-PI of Labex Tec 21 (2013–2021) and scientific coordinator for Carnot PolyNat Institute projects, he has driven interdisciplinary research strategies. Pignon holds two patents, including one on thixotropic hydrogels and another on an ultrasound-enhanced filtration device 🔬. He has secured significant funding from national and regional sources (ANR, SATT, Région Bretagne), supervising several Ph.D. and postdoctoral projects. His work is frequently cited and referenced in the scientific community, and he is a regular reviewer for top-tier journals and national research proposals, having completed 83 international journal reviews and 7 ANR project reviews.

🔬Research Focus:

Frédéric Pignon’s research bridges rheology, soft matter physics, and multiscale characterization. His expertise lies in understanding how anisotropic particles—like cellulose nanocrystals and clay platelets—organize under flow, pressure, or acoustic fields. By developing custom in situ setups integrating rheometers with SAXS, SANS, birefringence, and SALS, he studies how microstructure impacts mechanical properties during dynamic processing. His group investigates orientation, aggregation, concentration polarization, and gelation in suspensions, particularly during cross-flow filtration and ultrasound exposure. He also explores bio-based nanomaterials and the physical behavior of hydrogels, enabling applications in biotechnology and green materials. Collaborating with synchrotron and neutron facilities, he probes structures from nanometer to micrometer scales. Projects like ANR ANISOFILM and Memus (SATT Linksium) showcase his role in advancing filtration, structural control, and nanocomposite design. His research is highly interdisciplinary, combining physics, chemistry, and process engineering.

Publication Top Notes:

1. Multi-scale investigation of the effect of photocurable polyethylene glycol diacrylate (PEGDA) on the self-assembly of cellulose nanocrystals (CNCs)

2. A self-cleaning biocatalytic membrane with adjusted polyphenol deposition for edible oil-water separation

3. A scalable and eco-friendly carbohydrate-based oleogelator for vitamin E controlled delivery

4. Orthotropic organization of a cellulose nanocrystal suspension realized via the combined action of frontal ultrafiltration and ultrasound as revealed by in situ SAXS

5. Viologen-based supramolecular crystal gels: gelation kinetics and sensitivity to temperature

6. Molecular mechanism of casein-chitosan fouling during microfiltration

7. Multiscale investigation of viscoelastic properties of aqueous solutions of sodium alginate and evaluation of their biocompatibility

8. Self-supported MOF/cellulose-nanocrystals materials designed from ultrafiltration

9. Orientation of Cellulose Nanocrystals Controlled in Perpendicular Directions by Combined Shear Flow and Ultrasound Waves Studied by Small-Angle X-ray Scattering

10. Effect of Polymer Length on the Adsorption onto Aluminogermanate Imogolite Nanotubes

Citations: 3​

11. Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS

 

Dr. Abdul Abdul | Nanotechnology | Best Researcher Award

Dr. Abdul Abdul | Nanotechnology | Best Researcher Award

Dr. Abdul Abdul , Nanotechnology , Associate Prof at Quanzhou University of Information Engineering, China

Dr. M. Abdul is an experimental physicist specializing in quantum many-body systems using ultracold atoms and quantum gases. He earned his Ph.D. from the University of Science and Technology of China, focusing on Boson Sampling schemes in optical lattices. Dr. Abdul has worked as an Assistant Professor at Sichuan University and is currently a full-time researcher at the University of Electronic Science and Technology of China. His research spans quantum optics, nonlinear optics, ultracold quantum gases, and high-resolution imaging. Dr. Abdul is highly skilled in developing ultrahigh vacuum systems, homemade lasers, and advanced imaging setups. With a resilient, positive, and hardworking personality, he has contributed to multiple research projects, applied for two patents, and published extensively in top journals. Fluent in English and beginner-level Chinese, Dr. Abdul embodies a cooperative spirit in scientific innovation and collaboration.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. M. Abdul is a dynamic and accomplished experimental physicist with a strong academic and research background in quantum optics, ultracold atomic systems, quantum simulation, and nonlinear optics. His research interests lie at the cutting edge of modern quantum physics, particularly in Boson sampling, high-resolution optical lattices, and superlattice-based quantum simulations. His career reflects a consistent and impactful contribution to both theoretical modeling and experimental implementation in advanced photonics and quantum technologies. Dr. M. Abdul is a highly deserving candidate for the “Best Researcher Award”. His research profile is marked by academic rigor, technical innovation, and interdisciplinary reach. With an impressive record of publications, international collaborations, and pioneering work in quantum systems and optics, he stands out as a leader among early- to mid-career researchers. His contributions not only advance fundamental science but also open new avenues for applications in quantum technologies and material science.

🎓Education:

Dr. M. Abdul pursued his Ph.D. in Physics at the University of Science and Technology of China (2014–2018), focusing on Boson Sampling with ultracold atoms. He completed his M.Phil. in Electronics from Quaid-I-Azam University Islamabad (2009–2011), achieving top national ranking, and earned an M.Sc. in Physics specializing in Electronics from Bahauddin Zakariya University, Multan (2006–2008). His undergraduate B.Sc. degree in Physics and Mathematics was also obtained from Bahauddin Zakariya University (2003–2006). Currently, he is serving as a full-time researcher at the University of Electronic Science and Technology of China (2022–2025). His academic journey reflects a consistent focus on quantum physics, electronic systems, and ultracold atomic research. He has also undertaken specialized training in laser systems, optical lattices, and computational physics tools, equipping him with deep experimental and theoretical proficiencies in modern quantum technologies.

🏢Work Experience:

Dr. M. Abdul has held several prestigious academic and teaching positions. From December 2018 to March 2022, he served as an Assistant Professor at Sichuan University, College of Physics, where he worked on optical lattices and ultracold atoms. Since May 2022, he has been a full-time researcher at the University of Electronic Science and Technology of China. Earlier in his career, he taught Physics and Mathematics at Down High School, Punjab Group of Colleges, and St. Mary College in Rawalpindi, developing a strong foundation in educational leadership and student mentorship. He also contributed to various national-level research projects in Pakistan, including studies on nonlinear atomic dynamics and nano-devices. His diverse professional experience combines experimental physics research, teaching, and development of advanced laboratory setups like vacuum systems, lasers, and imaging systems, establishing him as a multifaceted expert in quantum technologies.

🏅Awards: 

Dr. M. Abdul has achieved significant recognition throughout his academic career. He secured the first rank in his M.Phil. program at Quaid-I-Azam University, Islamabad. During his Ph.D. tenure, he contributed to several funded national and international research projects, such as those supported by the National Higher Education Commission of Pakistan and the National Science Foundation of China (NSFC). He has applied for two patents related to laser and optical technologies. His research presentations at major international conferences, including QCMC 2014 (China) and CHAOS2018, reflect his growing influence in quantum physics and nonlinear dynamics communities. Invitations to submit in top-tier journals such as Applied Physics Reviews and contributions to organizing international conferences on nanoscience further mark his career. His awards and project leadership roles highlight his excellence, innovation, and dedication to advancing the field of quantum optics and ultracold atom systems.

🔬Research Focus:

Dr. M. Abdul’s research primarily centers on quantum simulation, quantum optics, ultracold quantum gases, and many-body quantum systems. His doctoral work explored Boson Sampling schemes using ultracold atoms in optical lattices. He has since expanded his expertise into high-resolution imaging using superlattices and nonlinear optics with a focus on cavity-based laser systems. His work involves developing ultrahigh vacuum systems, laser stabilization circuits, and DMD-based imaging technologies. He is also engaged in first-principles studies of optical, electronic, and thermoelectric properties of novel perovskite materials. Dr. Abdul’s projects aim to realize quantum metamaterials and quantum memory devices, critical for future quantum technologies. His current focus includes creating spatially entangled bosonic systems, manipulating surface plasmon polaritons, and engineering ultracold atoms for Hong-Ou-Mandel interference experiments. His interdisciplinary approach bridges theoretical modeling with advanced experimental setups, contributing to the next-generation quantum simulation platforms.

Publication Top Notes:

1. Synergistic Improvement of OER/HER Electrocatalytic Performance of Cu₂Te via the Introduction of Zr for Water Electrolysis

2. Facile Synthesis of Co₃Te₄–Fe₃C for Efficient Overall Water-Splitting in an Alkaline Medium

3. Manipulation of Surface Plasmon Polariton Fields Excitation at Quantum-Size Slit in a Dielectric and Graphene Interface

4. Exploring the Properties of Zr₂CO₂/GaS van der Waals Heterostructures for Optoelectronic Applications

5. Effects of Thermal Fluctuation When an Optical Cavity Possesses Neutral Atoms and a Two-Mode Laser System

6. Synchronized Attractors and Phase Entrained with Cavity Loss of the Coupled Laser’s Map

 

 

Assoc. Prof. Dr. HAIJIANG HU | Metals | Best Researcher Award

Assoc. Prof. Dr. HAIJIANG HU | Metals | Best Researcher Award

Assoc. Prof. Dr. HAIJIANG HU | Metals | Associate professor at Wuhan University of Science and Technology , China

Dr. Haijiang Hu is an Associate Professor at Wuhan University of Science and Technology, specializing in materials science and engineering. He has made significant contributions to the study of bainitic transformation and microstructure control in advanced high-strength bainitic steel. With a strong academic background, including a master-doctor combined program in materials science and a postdoctoral fellowship at McMaster University, Canada, he has published 129 academic papers, including 73 in SCI journals. Dr. Hu has also authored two books, holds 11 patents, and has been actively involved in 15 consultancy projects. His research has been widely cited, reflecting his impactful contributions to the field. Recognized for his excellence, he has received the First Prize of Hubei Province Science and Technology Progress Award. His work bridges theoretical advancements and industrial applications, influencing the development of high-performance steel for engineering applications.

Professional Profile : 

Google Scholar 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Haijiang Hu is a highly accomplished researcher in materials science and metallurgy, with an exceptional track record in advanced high-strength bainitic steel research. His expertise spans bainitic transformation, microstructure control, and industrial applications of steel processing. With 129 academic papers, 73 SCI-indexed publications, and 11 patents, he has made significant scientific contributions that bridge fundamental research and industrial applications. His research on retained austenite regulation and mechanical stabilization has enhanced the performance of ultra-high-strength steels, benefiting both academia and industry. Dr. Haijiang Hu’s extensive research, high citation impact, innovation in bainitic steel processing, patents, and industrial collaborations make him an ideal candidate for the “Best Researcher Award”. His work significantly advances materials science, offering practical solutions for industrial steel production while deepening our understanding of phase transformation mechanics. Given his global research impact, multiple publications, and prestigious awards, he is a highly deserving nominee for this recognition.

🎓Education:

Dr. Haijiang Hu pursued a master-doctor combined program in Materials Science at Wuhan University of Science and Technology, China. He enrolled in 2012 and successfully completed the program in 2017, gaining in-depth expertise in metallurgy and materials engineering. His doctoral research focused on bainitic transformation and microstructure control, laying the foundation for his future studies. Postdoctoral research took him to McMaster University, Canada (2018–2020), where he investigated the regulation of retained austenite and mechanical stabilization in ultra-high-strength Fe-C-Si-Mn bainitic steel. His academic journey reflects a commitment to innovation in materials science, with a strong emphasis on phase transformation, steel microstructure, and industrial applications. His interdisciplinary education has positioned him as a leader in materials engineering, with extensive research collaborations and contributions to advancing high-strength steels.

🏢Work Experience:

Dr. Haijiang Hu has accumulated extensive experience in both academia and research. Currently an Associate Professor at Wuhan University of Science and Technology, he has been actively engaged in teaching and research, mentoring students and leading multiple projects. His postdoctoral tenure at McMaster University, Canada, further enhanced his expertise in bainitic transformation and microstructure control. He has successfully executed 15 consultancy and industry projects, demonstrating his ability to translate theoretical research into industrial applications. His role as an editorial board member for prestigious journals such as Metals and International Journal of Minerals, Metallurgy and Materials underscores his influence in the field. His professional memberships, including with The Chinese Society for Metals, reflect his active participation in the scientific community. Through international collaborations, particularly with Prof. Hatem Zurob, Dr. Hu continues to contribute to groundbreaking research in advanced high-strength steels.

🏅Awards: 

Dr. Haijiang Hu has been recognized for his groundbreaking contributions to materials science. His most notable accolade is the First Prize of Hubei Province Science and Technology Progress Award, which acknowledges his innovative research in bainitic transformation and microstructure control. His extensive body of work, comprising 129 academic papers and 73 SCI-indexed publications, has earned him a strong reputation in metallurgy and materials engineering. His patents and books further demonstrate his leadership in the field. His achievements extend beyond academia, as he has successfully bridged the gap between research and industrial applications. His role in consultancy and collaborations with top-tier institutions further highlight his impact. Through these honors, Dr. Hu has established himself as a distinguished researcher whose contributions continue to shape the future of advanced high-strength steels.

🔬Research Focus:

Dr. Haijiang Hu’s research focuses on bainitic transformation and microstructure control in advanced high-strength bainitic steel. He investigates the effects of ausforming on bainitic transformation, refining microstructures to optimize steel performance. His work has identified key parameters such as peak value strain and critical deformation temperature, which provide valuable guidance for industrial steel production. His findings contribute to the theoretical understanding of low-temperature bainite transformation and have practical implications for developing medium/high-carbon bainitic steels. His research integrates computational modeling, experimental validation, and industrial-scale applications, ensuring that his work is both scientifically rigorous and practically relevant. His studies in retained austenite regulation and mechanical stabilization mechanisms are instrumental in advancing the performance of ultra-high-strength steels. Through international collaborations and interdisciplinary approaches, Dr. Hu continues to push the boundaries of materials science, making significant contributions to both academia and industry.

Publication Top Notes:

Title: The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels

Authors: H Hu, G Xu, L Wang, Z Xue, Y Zhang, G Liu

Journal: Materials & Design

Citations: 148

Year: 2015

Title: A new approach to quantitative analysis of bainitic transformation in a superbainite steel

Authors: G Xu, F Liu, L Wang, H Hu

Journal: Scripta Materialia

Citations: 105

Year: 2013

Title: New insights to the effects of ausforming on the bainitic transformation

Authors: H Hu, HS Zurob, G Xu, D Embury, GR Purdy

Journal: Materials Science and Engineering: A

Citations: 90

Year: 2015

Title: Refined Bainite Microstructure and Mechanical Properties of a High‐Strength Low‐Carbon Bainitic Steel Treated by Austempering Below and Above MS

Authors: J Tian, G Xu, M Zhou, H Hu

Journal: Steel Research International

Citations: 61

Year: 2018

Title: Bainitic transformation and properties of low carbon carbide-free bainitic steels with Cr addition

Authors: M Zhou, G Xu, J Tian, H Hu, Q Yuan

Journal: Metals

Citations: 56

Year: 2017

Title: The effects of Cr and Al addition on transformation and properties in low-carbon bainitic steels

Authors: J Tian, G Xu, M Zhou, H Hu, X Wan

Journal: Metals

Citations: 50

Year: 2017

Title: Effect of Mo content on microstructure and property of low-carbon bainitic steels

Authors: H Hu, G Xu, M Zhou, Q Yuan

Journal: Metals

Citations: 50

Year: 2016

Title: Effect of ausforming on the stability of retained austenite in a C-Mn-Si bainitic steel

Authors: H Hu, G Xu, L Wang, M Zhou, Z Xue

Journal: Metals and Materials International

Citations: 44

Year: 2015

Title: Effects of Al addition on bainite transformation and properties of high-strength carbide-free bainitic steels

Authors: J Tian, G Xu, M Zhou, H Hu, Z Xue

Journal: Journal of Iron and Steel Research International

Citations: 40

Year: 2019

Title: In situ measured growth rates of bainite plates in an Fe-C-Mn-Si superbainitic steel

Authors: Z Hu, G Xu, H Hu, L Wang, Z Xue

Journal: International Journal of Minerals, Metallurgy, and Materials

Citations: 37

Year: 2014

Dr. Frank Alexis | Materials Chemistry | Best Researcher Award

Dr. Frank Alexis | Materials Chemistry | Best Researcher Award

Dr. Frank Alexis , Universidad San Francisco de Quito , Ecuador

Dr. Frank Alexis is a Full Professor in the Department of Chemical Engineering at Universidad San Francisco de Quito, Ecuador. With a Ph.D. in Materials Science Engineering from Nanyang Technological University, his career spans academia, research, and industry. Renowned for his expertise in nanotechnology, drug delivery, and biomaterials, Dr. Alexis has contributed significantly to science, with 138 publications and over 11,300 citations. As a mentor and innovator, he has founded companies, guided minority students, and influenced global research through his work as an editor and reviewer for prestigious journals.

Professional Profile:

Orcid

Scopus

Summary of Suitability for Award:

Dr. Frank Alexis is an exemplary candidate for the “Best Researcher Awards,” combining academic brilliance, impactful research, and inspirational mentorship. His multidisciplinary innovations, global recognition, and dedication to advancing science make him a highly deserving contender for this honor. Dr. Frank Alexis is an accomplished researcher and educator with exceptional contributions to materials science, bioengineering, and nanotechnology. His diverse expertise spans academia, industry, and editorial roles, demonstrating a well-rounded career in advancing science and mentoring future researchers. Dr.  Frank  Alexis has 138 publications with over 11,315 citations, showcasing the global impact of his work.

🎓Education:

Dr. Frank Alexis holds a Ph.D. in Materials Science Engineering from Nanyang Technological University (Singapore), a Master’s degree in Materials Science and Interfaces from Technological University of Montpellier (France), and a Bachelor’s degree in Chemistry from the same institution. His academic journey reflects a blend of international education, encompassing advanced training in materials science, chemistry, and interdisciplinary applications pivotal for his pioneering contributions to nanotechnology and drug delivery systems.

🏢Work Experience:

Dr. Alexis has held prominent academic positions globally, including Full Professor roles at Universidad San Francisco de Quito and Yachay Tech in Ecuador. He served as Vice Chancellor of Research and Innovation at Yachay Tech and a tenured Associate Professor of Bioengineering at Clemson University. His industry experience spans roles at Stericoat Inc., LEK Consulting, Polymed Inc., and GearJump Technologies. Additionally, he contributed to groundbreaking biomaterials research at MIT and Brigham and Women’s Hospital, shaping the fields of nanomedicine and drug delivery.

🏅Awards: 

Dr. Alexis has received numerous accolades, including recognition as a Top 2% Researcher globally in nanotechnology and chemistry and Best Researcher by CEDIA. His inventive contributions have earned him awards like Best Inventor and Best Academic Invention. A mentor to minority students, he received the PEER & WISE Mentorship Award and recognition from Nature Biotechnology as a Top Translational Junior Faculty. His honors reflect his profound impact on research, mentorship, and innovation.

🔬Research Focus:

Dr. Alexis specializes in nanotechnology, biomaterials, and drug delivery systems, focusing on designing advanced materials for healthcare and environmental applications. His interdisciplinary research spans the development of sensors, biodegradable polymers, and functional nanomaterials. His work integrates chemistry, biology, and engineering to tackle challenges in medical diagnostics, therapeutic delivery, and sustainable technologies.

Publication Top Notes:

  • Colorimetric sensor for copper and lead using silver nanoparticles functionalized with fluoresceinamine isomer 
    • Citations: 1
  • Photochromic sensing of La³⁺ and Lu³⁺ ions using poly(caprolactone) fibers doped with spiropyran dyes
    • Citations: 2
  • Synergistic Antibacterial Properties of Silver Nanoparticles and Its Reducing Agent from Cinnamon Bark Extract
    • Citations: 1
  • Water soluble spiropyran for Hg²⁺ sensing in water
    • Citations: 3
  • Users’ opinion about synthetic, bio- and nano-biopesticides
    • Citations: 3