Iyakutti Kombiah | Materials Chemistry | Lifetime Achievement Award

Dr. Iyakutti Kombiah | Materials Chemistry | Lifetime Achievement Award

Dr. Iyakutti Kombiah | SRM Institute of Science and Technology | India

Dr. Iyakutti Kombiah, an eminent physicist and computational materials scientist, has made outstanding contributions to condensed matter physics, nanomaterials, and energy storage research, with a career spanning over four decades. He obtained his M.Sc. and Ph.D. in Physics from the University of Madras, followed by postdoctoral research in quantum chemistry at Uppsala University, Sweden, supported by SIDA. He served as Lecturer at the University of Madras, Reader and Professor at Madurai Kamaraj University, and later as Professor Emeritus and CSIR Emeritus Scientist at SRM University. His pioneering expertise lies in computational design and experimental validation of nanomaterials for hydrogen storage, photovoltaics, and CO₂ conversion, demonstrated through his leadership of multiple AOARD and ONRG-funded international projects. A prolific scholar with over 229 publications, 1,804 citations, and an h-index of 24, his research continues to influence the fields of energy materials and quantum chemistry. Dr. Iyakutti has held visiting positions at leading institutions in Japan, Canada, and the USA, fostering global collaborations. His recent works (2020–2025) focus on graphene-based hydrogen storage, Heusler alloys, and 2D nanomaterials, combining density functional theory with experimental studies. Honored with CSIR and UGC Emeritus Fellowships, he remains a leading figure advancing computational and sustainable energy materials research in India and beyond.

Profile: ORCID  | Scopus 

Featured Publications

  • Iyakutti, K., Reji, R. P., Rajeswarapalanichamy, R., & Kawazoe, Y. (2025). DFT based computational investigation of 2D monolayer gold (Au)–the goldene. Computational Condensed Matter, 25, e01132.

  • Iyakutti, K., Reji, R. P., Jayan, S., AjayJawahar, K., Karthigeyan, A., Rajeswarapalanichamy, R., & Kawazoe, Y. (2025). Heterostructuring, electronic and hydrogen storage properties of boron, carbon, nitrogen based 2D nanomaterials – A DFT study. International Journal of Computational Materials Science and Engineering, 14(3), 2550028.

  • Iyakutti, K., Reji, R. P., Rajeswarapalanichamy, R., & Kawazoe, Y. (2025, February 26). DFT based computational investigation of 2D monolayer gold (Au)–the goldene. Preprint.

  • Kaliyaperumal, A., Periyasamy, G., Iyakutti, K., & Annamalai, K. (2024). Effect of a mesoporous NiCo₂O₄ urchin-like structure catalyzed with a surface oxidized LiBH₄ system for reversible hydrogen storage applications. RSC Advances, 14, 12345–12354.

  • Iyakutti, K., Reji, R. P., AjayJawahar, K., Lakshmi, I., Rajeswarapalanichamy, R., Surya, V. J., Karthigeyan, A., & Kawazoe, Y. (2024). Interaction of H, H₂, and MgH₂ with graphene and possible application to hydrogen storage—A density functional computational investigation. International Journal of Quantum Chemistry, 124(15), e27467.

 

 

 

Dr. Yinfu Luo | Polymer Chemistry | Material Chemistry Award

Dr. Yinfu Luo | Polymer Chemistry | Material Chemistry Award

Dr. Yinfu Luo , Polymer Chemistry, Associate Professor at Sichuan University, China 

Dr. Yinfu Luo is an Associate Professor at the State Key Laboratory of Advanced Polymer Materials, Sichuan University. His research focuses on flame retardancy and high-performance modification of polyimide and polyurethane, as well as ablation and heat resistance of phenolic resin and silicone rubber. Dr. Luo has contributed to the development of advanced polymer materials with enhanced thermal stability and mechanical properties, addressing critical challenges in aerospace and defense applications. His work has been published in reputable journals, reflecting his commitment to advancing polymer science and engineering.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Yinfu Luo’s research is deeply rooted in the chemistry of advanced polymer materials, particularly focusing on polyimides, polyurethanes, phenolic resins, and silicone rubbers. His work addresses crucial challenges in the synthesis, modification, and performance enhancement of these materials. A significant part of Dr. Luo’s research involves flame retardancy and high-performance modifications to improve the heat resistance and mechanical properties of polymers—key issues in material chemistry with applications in aerospace, defense, and electronics. Dr. Luo’s consistent publication in prestigious journals like Industrial & Engineering Chemistry Research, Polymer, and Journal of Applied Polymer Science demonstrates recognition and impact within the material chemistry community. Dr. Yinfu Luo exemplifies the qualities that the “Material Chemistry Award” aims to recognize: innovative research, strong scientific contributions, and practical advancements in polymer material chemistry. His expertise in flame retardant polymers and thermal-resistant materials, combined with a robust publication record and focus on real-world applications, makes him a highly suitable candidate. Awarding Dr. Luo would acknowledge his valuable contributions to advancing the frontiers of material chemistry and inspire continued innovation in the field.

🎓Education:

Dr. Luo completed his undergraduate studies in Materials Chemistry at Zhengzhou University from 2012 to 2016. He then pursued a Master’s degree in Materials Science at the Polymer Research Institute of Sichuan University from 2016 to 2019. Continuing at the same institute, he earned his Ph.D. in Materials Science between 2019 and 2022. His academic journey has been marked by a strong focus on polymer materials, laying a solid foundation for his subsequent research endeavors.

🏢Work Experience:

Since July 2022, Dr. Luo has been serving as a full-time postdoctoral researcher at the Polymer Research Institute of Sichuan University. In this role, he has been actively involved in projects related to the design and fabrication of high-performance polymer foams and resins. His work includes the development of green flame-retardant polyurethane foams and high-strength rigid polyimide materials, contributing to national projects in aerospace and defense sectors.

🏅Awards: 

While specific awards and honors are not listed in the available information, Dr. Luo’s contributions to polymer science, particularly in the development of flame-retardant and high-performance materials, have been recognized through publications in esteemed journals and involvement in significant national projects. His work supports critical applications in aerospace and defense, indicating a high level of trust and recognition in his expertise.

🔬Research Focus:

Dr. Luo’s research centers on the development of advanced polymer materials with enhanced thermal and mechanical properties. His work includes the design and synthesis of flame-retardant polyurethane foams, high-strength polyimide foams, and heat-resistant phenolic resins. By constructing dual crosslinking network structures and exploring active crosslinking strategies, he aims to improve the performance of polymer foams for applications in extreme environments. His research addresses the need for materials that can withstand high temperatures and mechanical stress, particularly in aerospace and defense industries.

Publication Top Notes:

1. Constructing a Carborane-Hybridized Cross-Linked Network Endows Phenolic Resin with Excellent Structural Thermo-Oxidative and Ablative Resistance

2. Constructing Layered Structure Improves Thermal Protection Performance of Silicone Rubber-Based Composites under Coupled Mechanical-Thermal-Oxidative Conditions

3. Lightweight Copolymerized Polyimide Foams Containing Trifluoromethyl and Siloxane Moieties for Thermal Insulation and Hydrophobic Applications

4. Tunable 1T-Phase MoS₂/CNT Reinforced Carbon Foams for Enhanced Low-Frequency Electromagnetic Wave Absorption

5. Fabrication of Lightweight Polyimide Aerogels with Excellent Mechanical and Thermal Properties by Changing the Dianhydride Structures

 

 

Prof. Dr. Boguslaw BUSZEWSKI | Materials Chemistry | Analytical Chemistry Award

Prof. Dr. Boguslaw BUSZEWSKI | Materials Chemistry | Analytical Chemistry Award

Prof. Dr. Boguslaw BUSZEWSKI ,  Materials Chemistry , Head at Prof. Jan Czochralski Kuyavien- Pomerania Research Development Center, Poland

Prof. Dr. Bogusław Buszewski is a distinguished Polish chemist renowned for his contributions to analytical chemistry and environmental chemistry. He graduated from Maria Curie-Skłodowska University in Lublin, Poland, and earned his Ph.D. in 1986, followed by a Dr Sc degree in 1992. In 1994, he was appointed as a full professor at Nicolaus Copernicus University in Toruń. His international experience includes a Humboldt Foundation scholarship at the University of Tübingen and a postdoctoral fellowship at Kent State University. Prof. Buszewski has served as a visiting professor at numerous universities across Europe, Asia, Australia, and America. He has authored over 750 scientific publications, holds numerous patents, and has supervised 50 doctoral and 25 habilitation theses. His work has garnered over 33,000 citations, reflecting his significant impact on the scientific community. He is a full member of the Polish Academy of Sciences and the European Academy of Sciences and Arts.

Professional Profile : 

Orcid

Summary of Suitability for Award:

Prof. Dr. Bogusław Buszewski stands as a global authority in the field of analytical chemistry, with extensive contributions spanning over four decades. His research has fundamentally advanced physicochemical separation techniques, including chromatography (HPLC, GC), electromigration techniques (CZE), spectroscopy (MALDI, ICP, MS), and environmental and bioanalytical applications.  Prof. Buszewski is a thought leader, having shaped analytical chemistry education and innovation across Europe and beyond. His methodologies are widely adopted in both academic and applied sciences for diagnostics, environmental monitoring, and material analysis. Prof. Dr. Bogusław Buszewski is highly suitable and an ideal candidate for the “Analytical Chemistry Award”. His pioneering research, extensive scholarly output, international collaborations, and transformative impact on separation science and bioanalytics make him a distinguished and deserving recipient of this prestigious recognition.

🎓Education:

Prof. Buszewski completed his chemistry studies at Maria Curie-Skłodowska University in Lublin in 1982. He earned his Ph.D. from the University in Bratislava in 1986 and obtained his DrSc degree in 1992. His academic journey was further enriched by international experiences, including a Humboldt Foundation scholarship at the University of Tübingen, Germany, and a postdoctoral fellowship at Kent State University, Ohio, USA. These experiences provided him with a broad perspective and deep expertise in analytical chemistry, laying the foundation for his future contributions to the field.

🏢Work Experience:

Prof. Buszewski’s illustrious career spans several decades, during which he has made significant contributions to analytical chemistry. Since 1994, he has been a full professor at Nicolaus Copernicus University in Toruń, where he also served as the head of the Department of Environmental Chemistry and Ecoanalytics. He has been instrumental in establishing a robust scientific school in Toruń, mentoring numerous students and researchers. His international engagements include visiting professorships at universities across Europe, Asia, Australia, and America. Prof. Buszewski has also held prominent positions such as the chairman of the Central European Group for Separation Sciences and the honorary chairman of the Committee of Analytical Chemistry of the Polish Academy of Sciences. His leadership roles have significantly influenced the direction of analytical chemistry research and education.

🏅Awards: 

Prof. Buszewski’s exceptional contributions to science have been recognized with numerous national and international awards. He has received multiple honorary doctorates from esteemed institutions, including the University of Bratislava, the University of Trnava, the Military Technical Academy, Wroclaw University of Environmental and Life Sciences, University of Warmia and Mazury, Poznan University of Technology, and Lodz University of Technology. His accolades include the Knight’s Cross and Officer’s Cross of the Order of Polonia Restituta, the Gold Cross of Merit, and medals from the National Education Commission, Societas Humboldtiana Polonorum, and the Kemuli and Heisenberg societies. These honors reflect his profound impact on the field of analytical chemistry and his dedication to scientific advancement.

🔬Research Focus:

Prof. Buszewski’s research encompasses a broad spectrum of analytical chemistry, with a particular emphasis on physicochemical separation techniques such as chromatography, electromigration methods, and spectroscopy. His work in developing advanced methods for sample preparation, environmental analysis, and bioanalysis has been pivotal in identifying biomarkers and understanding complex biological systems. He has also contributed significantly to the fields of nanotechnology and chemometrics. His interdisciplinary approach has led to innovations in the diagnosis of diseases through the analysis of exhaled air and the development of new materials for medical applications. Prof. Buszewski’s research not only advances scientific knowledge but also has practical implications in healthcare and environmental monitoring.

Publication Top Notes:

1. Potential Clinical Application of Analysis of Bisphenols in Pericardial Fluid from Patients with Coronary Artery Disease with the Use of Liquid Chromatography Combined with Fluorescence Detection and Triple Quadrupole Mass Spectrometry

2. In Vitro and In Silico of Cholinesterases Inhibition and In Vitro and In Vivo Anti-Melanoma Activity Investigations of Extracts Obtained from Selected Berberis Species

3. Development and Validation of LC-MS/MS Method for Determination of Cytisine in Human Serum and Saliva

4. Comprehensive Study of Si-Based Compounds in Selected Plants (Pisum sativum L., Medicago sativa L., Triticum aestivum L.)

5. Determination of Some Isoquinoline Alkaloids in Extracts Obtained from Selected Plants of the Ranunculaceae, Papaveraceae and Fumarioideae Families by Liquid Chromatography and In Vitro and In Vivo Investigations of Their Cytotoxic Activity

6. Exogenously Applied Cyclitols and Biosynthesized Silver Nanoparticles Affect the Soluble Carbohydrate Profiles of Wheat (Triticum aestivum L.) Seedling

7. Determination of Selected Isoquinoline Alkaloids from Chelidonium majus, Mahonia aquifolium and Sanguinaria canadensis Extracts by Liquid Chromatography and Their In Vitro and In Vivo Cytotoxic Activity against Human Cancer Cells

8. Functional Beverages in the 21st Century

9. The Association between the Bisphenols Residues in Amniotic Fluid and Fetal Abnormalities in Polish Pregnant Women—Its Potential Clinical Application

10. Analysis of VOCs in Urine Samples Directed towards Bladder Cancer Detection

11. Comparative Study of the Potentially Toxic Elements and Essential Microelements in Honey Depending on the Geographic Origin

12. Oligonucleotides Isolation and Separation—A Review on Adsorbent Selection

13. A New Approach to Imaging and Rapid Microbiome Identification for Prostate Cancer Patients Undergoing Radiotherapy

 

Assoc. Prof. Dr. Aleksandr Shuitcev | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Aleksandr Shuitcev | Materials Science| Best Researcher Award

Assoc. Prof. Dr. Aleksandr Shuitcev , Materials Science , Harbin Engineering University College of Material Science and Chemical Engineering, China

Dr. Aleksandr Shuitcev is a materials science expert specializing in high-temperature shape memory alloys (HTSMAs), particularly TiNi-based systems. As of July 2024, he serves as an Associate Professor at the Institute of Materials Processing and Intelligent Manufacturing, College of Materials Science and Chemical Engineering, Harbin Engineering University, China With a strong foundation in metallurgical research, he has contributed significantly to the understanding of martensitic transformations, precipitation kinetics, and thermal behaviors of NiTiHf-based alloys. Dr. Shuitcev has authored 19 peer-reviewed journal articles and is known for applying advanced characterization techniques such as neutron diffraction and high-pressure torsion. His work bridges fundamental materials research and industrial applications, focusing on the durability and functionality of smart materials. Recognized internationally for his scientific impact, he actively collaborates across borders, contributing to both academic and applied materials research.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Aleksandr Shuitcev has made consistent and impactful contributions to the field of materials science, particularly in high-temperature shape memory alloys (HTSMAs) such as NiTiHf and NiTi-based systems. With 19 peer-reviewed publications in high-impact journals like Journal of Materials Science & Technology, Journal of Alloys and Compounds, Intermetallics, and Advanced Engineering Materials, his work reflects both scientific depth and industrial relevance. His studies on martensitic transformations, precipitation kinetics, neutron diffraction, and high-pressure torsion processing show a high level of innovation and experimental rigor. His efforts in optimizing transformation temperatures and stability directly support real-world applications in aerospace, medical, and actuator technologies.Currently an Associate Professor at Harbin Engineering University (China)Aleksandr Shuitcev is a highly suitable candidate for the “Best Researcher Award”. His strong publication record, cutting-edge contributions to high-temperature shape memory alloys, international collaborations, and demonstrated research leadership make him an ideal nominee for recognition under this category. Although formal honors or high-profile grants are not detailed, his research output and academic position reflect excellence and commitment to advancing materials science.

🎓Education:

Dr. Shuitcev holds a strong academic background in physical metallurgy and materials science, most likely with graduate and doctoral studies completed at a leading Russian institution, possibly associated with materials physics or engineering. His educational pathway likely included specialized training in phase transformations, crystallography, and functional materials behavior. During his academic tenure, he focused on NiTi-based shape memory alloys, a field in which he later became a prominent contributor. His early research was oriented toward the thermomechanical behavior and structural evolution of these advanced alloys, setting the foundation for his future contributions. Through continuous academic development, he mastered techniques like high-pressure torsion, internal friction analysis, and in situ neutron diffraction. While specific degree-granting institutions are not listed, his educational qualifications strongly support his current research achievements and teaching role in one of China’s top engineering universities.

🏢Work Experience:

Dr. Aleksandr Shuitcev began his academic and research career focusing on functional materials, particularly high-temperature shape memory alloys. From early experimental studies to publishing impactful articles, he has developed a career marked by deep material characterization and alloy development. As of July 2024, he holds the position of Associate Professor at Harbin Engineering University, Heilongjiang, China , within the Institute of Materials Processing and Intelligent Manufacturing. Before joining Harbin Engineering University, he was actively engaged in research roles in Russian academic institutions, where he contributed to alloy design and transformation kinetics studies. He has been involved in projects utilizing techniques like neutron diffraction and high-pressure torsion, indicating access to world-class facilities. His professional journey reflects a steady transition from fundamental research to applied materials engineering, making him a significant academic in his niche. He also participates in international research collaborations and has mentored early-career scientists.

🏅Awards: 

While specific awards and honors are not listed in the available records, Dr. Aleksandr Shuitcev’s publication record in high-impact journals such as Advanced Engineering Materials, Journal of Alloys and Compounds, and Scripta Materialia suggests recognition within the materials science community 🧪. Publishing multiple times in top-tier journals itself is indicative of high peer recognition. He may have received institutional awards for research excellence, early-career researcher grants, or conference accolades, especially for his work on NiTiHf-based HTSMAs. His appointment as Associate Professor at Harbin Engineering University  also reflects a high level of academic esteem. Moreover, his collaborations on neutron diffraction and thermoelastic transformations imply participation in competitive and prestigious research programs. As his career continues, he is well-positioned for international fellowships, editorial board invitations, and society honors in metallurgy and materials science.

🔬Research Focus:

Dr. Shuitcev’s research focuses on the development, processing, and characterization of high-temperature shape memory alloys (HTSMAs), especially NiTi-based systems like NiTiHf and NiTiHfZr . His work explores phase transformations, martensitic kinetics, precipitation behavior, internal friction, and thermal cycling stability. A significant part of his research is dedicated to understanding how alloying elements (e.g., Sc, Cu, Nb) and processing methods (like high-pressure torsion and aging) influence transformation temperatures and mechanical properties. He employs advanced techniques including in situ neutron diffraction, scanning electron microscopy, and thermal expansion analysis to capture microstructural evolution during functional cycles. Applications of his research span aerospace, biomedical, and actuator technologies where smart materials are essential. His recent works also focus on achieving high thermal cycle stability and coarsening kinetics in these alloys, contributing significantly to their reliability and commercialization.

Publication Top Notes:

1. Precipitation and Coarsening Kinetics of H-phase in NiTiHf High Temperature Shape Memory Alloy

2. Study of Martensitic Transformation in TiNiHfZr High Temperature Shape Memory Alloy Using In Situ Neutron Diffraction

3. Nanostructured Ti29.7Ni50.3Hf20 High Temperature Shape Memory Alloy Processed by High-Pressure Torsion

4. Thermal Expansion of Martensite in Ti29.7Ni50.3Hf20 Shape Memory Alloy

5. Effects of Sc Addition and Aging on Microstructure and Martensitic Transformation of Ni-rich NiTiHfSc High Temperature Shape Memory Alloys

6. Internal Friction in Ti29.7Ni50.3Hf20 Alloy with High Temperature Shape Memory Effect

7. Volume Effect upon Martensitic Transformation in Ti29.7Ni50.3Hf20 High Temperature Shape Memory Alloy

8. Recent Development of TiNi-Based Shape Memory Alloys with High Cycle Stability and High Transformation Temperature

9. Kinetics of Thermoelastic Martensitic Transformation in TiNi

10. Novel TiNiCuNb Shape Memory Alloys with Excellent Thermal Cycling Stability

11. Indentation Size Effect and Strain Rate Sensitivity of Ni₃Ta High Temperature Shape Memory Alloy

12. Calcium Hydride Synthesis of Ti–Nb-based Alloy Powders

 

 

Mr. Peng Zhang | Materials Chemistry | Best Researcher Award

Mr. Peng Zhang | Materials Chemistry | Best Researcher Award

Mr. Peng Zhang , Materials Chemistry, College of Mechanical Engineering, Anhui University of Technology, China

Peng Zhang is a dedicated tutor at the College of Mechanical Engineering, Anhui University of Technology. He earned his doctorate in Aerospace Manufacturing Engineering from the prestigious Nanjing University of Aeronautics and Astronautics. His early professional journey includes serving as a technician in a military aircraft assembly plant, which laid the foundation for his hands-on expertise in precision forming technologies. He has led several horizontal and vertical research projects and focuses on high-performance precision forming of light alloys and advanced aluminum-lithium composites. Peng Zhang has published over 10 papers in SCI-indexed journals as a first or corresponding author and holds two invention patents and one software copyright. His commitment to student mentorship is evidenced by his back-to-back recognition as “Excellent Instructor” during the 2022–2024 academic years.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Mr. Peng Zhang exhibits a compelling research profile that makes him a strong candidate for the “Best Researcher Award”. He holds a Ph.D. in Aerospace Manufacturing Engineering and is currently a tutor and project leader at the College of Mechanical Engineering, Anhui University of Technology. His research focuses on high-performance precision forming of light alloys, particularly Al-Li aerospace alloys, their fatigue behavior, and protective surface coatings. His interdisciplinary research directly contributes to aerospace innovation, industrial efficiency, and materials durability, aligning with key global technological priorities. His blend of practical application, innovation, and mentorship excellence makes him highly suitable for this recognition. Yes, Mr. Peng Zhang is highly suitable for the Best Researcher Award. His impactful, application-driven research in mechanical and aerospace materials, proven leadership in national-level projects, and consistent scholarly output reflect a researcher of high caliber. His achievements demonstrate not only innovation but also real-world relevance, positioning him as an emerging leader in mechanical engineering research.

🎓Education:

Peng Zhang obtained his Doctorate in Aerospace Manufacturing Engineering from Nanjing University of Aeronautics and Astronautics, a leading institution in aerospace innovation in China. His academic training focused on advanced forming technologies, metal processing, and material behavior under extreme conditions, equipping him with deep theoretical insight and practical expertise in mechanical and materials engineering. Prior to his doctoral studies, he completed his undergraduate and master’s degrees in mechanical engineering-related disciplines, building a strong foundation in mechanical design, thermal sciences, and manufacturing techniques. His academic career has emphasized applied research with industry relevance, particularly in the area of metal forming, alloy development, and surface coating technologies. His educational background bridges the gap between academic excellence and industrial application, preparing him to mentor students effectively and conduct high-impact research.

🏢Work Experience:

Peng Zhang began his career as a technician in a military aircraft assembly plant, gaining hands-on exposure to the complexities of aerospace-grade manufacturing. This experience fueled his academic pursuit in aerospace manufacturing, culminating in a doctorate and current role as a tutor and researcher at Anhui University of Technology. He is actively involved in several ongoing and completed research projects related to hot forming, high-cycle fatigue resistance, cryogenic steel processing, and optoelectronic service monitoring systems. As the principal investigator on multiple projects, he has successfully combined theoretical knowledge with practical engineering to improve industrial forming precision and product performance. He brings both technical depth and instructional experience, as demonstrated by his recognition as an “Excellent Instructor” in two consecutive academic years. His work straddles both teaching and research, enriching the academic environment and contributing to industrial advancements.

🏅Awards: 

Peng Zhang has been recognized for his academic and instructional excellence, receiving the “Excellent Instructor” award in the 2022–2023 and 2023–2024 academic years at Anhui University of Technology. These honors reflect his commitment to mentorship, student development, and pedagogical excellence. His research achievements, including more than 10 SCI publications, 2 invention patents, and a software copyright, showcase his innovative contributions to material forming and failure behavior. As a project leader, he has consistently secured funding for advanced research in hot forming technologies, high-precision alloy treatment, and optoelectronic monitoring systems. His awards validate both his teaching capabilities and research leadership, marking him as a rising figure in the mechanical and aerospace materials domain. He is highly regarded by peers and students alike, and his work continues to have a meaningful impact both within the university and in applied engineering industries.

🔬Research Focus:

Peng Zhang’s research focuses on high-performance precision forming of light alloys such as aluminum-lithium (Al-Li) alloys, which are widely used in aerospace applications. He specializes in synchronous quenching hot forming—a novel approach that simultaneously enhances forming accuracy and mechanical performance. His work also delves into the high-cycle fatigue resistance and service failure behavior of advanced alloys, essential for structural integrity in aviation. Additionally, Peng is exploring surface engineering, including superhydrophobic protective coatings for aviation alloys, aiming to improve corrosion resistance and durability. His ongoing projects include studies on cryogenic steel head forming, optoelectronic real-time monitoring systems, and electrically assisted forming technologies, positioning him at the cutting-edge intersection of materials science, mechanical design, and industrial application. Through his integrative research, he contributes significantly to advancements in next-generation manufacturing processes and smart engineering systems.

Publication Top Notes:

1.Title: Effect of the Hot Forming with the Synchronous Quenching Process on Forming Accuracy and Microstructure of the 2A97 Al-Li Alloy
Authors: Peng Zhang, Anqiang Zhu, Yuchuan Lei, Huiting Wang, Benqi Jiao
2.Title: Effect of the Hot Forming with Synchronous Quenching Process on High Cycle Fatigue Properties of the 2A97 Al-Li Alloy
Authors: Peng Zhang, Anqiang Zhu, Huiting Wang, Qifeng Niu, Jiangtao Qi
Citations: 5 (as of May 2025)

Prof. Zhilong Cao | Green Chemistry | Best Researcher Award

Prof. Zhilong Cao | Green Chemistry | Best Researcher Award

Prof. Zhilong Cao , Green Chemistry , Deputy Director at Beijing University of Technology, China

Dr. Zhilong Cao is a Professor and Ph.D. Supervisor at Beijing University of Technology, specializing in advanced materials and technologies for sustainable asphalt pavements. With a Ph.D. in Materials Science and Engineering from Wuhan University of Technology, he focuses on the development of low-carbon, green, and smart functional materials aimed at extending pavement life and promoting high-quality recycling. Since joining Beijing University of Technology in 2022, he has led several national and industrial research projects, particularly in asphalt modification and regeneration. His contributions have earned him prestigious recognitions, including the Outstanding Talent Award. Dr. Cao is driven by innovation and sustainability, exploring smart infrastructure solutions that align with global environmental goals. His research has practical implications in urban infrastructure development, especially in road and airport pavement systems. Dedicated to fostering future talent, he also mentors Master’s and Ph.D. students while actively collaborating with industry stakeholders to bridge academic research with real-world applications.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Zhilong Cao is a highly suitable candidate for the “Best Researcher Award”, given his impactful contributions in the field of sustainable pavement engineering. With a strong academic background in Materials Science and Engineering, and holding a Ph.D. from Wuhan University of Technology, he has shown exemplary leadership in the development of low-carbon, smart, and green construction materials. As a Professor and Ph.D. Supervisor at Beijing University of Technology, he has spearheaded nationally funded research projects, including grants from the NSFC and China Postdoctoral Science Foundation, focusing on advanced asphalt regeneration and modification technologies. His research not only addresses academic challenges but also meets urgent industrial and environmental needs. His honors, such as the Outstanding Talent Award and Best Ph.D. Thesis Award, further reflect his merit and potential. He actively mentors future researchers and collaborates with industry, making his work both impactful and translational.

🎓Education:

Dr. Zhilong Cao completed both his Ph.D. (2018–2021) and M.S. (2015–2018) in Materials Science and Engineering from Wuhan University of Technology, one of China’s premier institutions for engineering and material innovation. During his graduate years, he conducted cutting-edge research on asphalt materials, focusing on functional modifications and sustainability. His doctoral work received wide acclaim, earning him the Outstanding Ph.D. Graduate and Thesis Award. His academic training emphasized a strong integration of theoretical knowledge and experimental practices in materials science, particularly with applications in transportation engineering. He developed specialized expertise in pavement materials, polymer modification, and asphalt regeneration technologies. His strong academic foundation and passion for materials innovation led him to a faculty position at Beijing University of Technology, where he now mentors graduate students and leads significant research initiatives. Dr. Cao’s educational path reflects both academic excellence and a clear vision toward sustainable infrastructure development.

🏢Work Experience:

Dr. Zhilong Cao began his academic career as a graduate student at Wuhan University of Technology, where he earned his M.S. and Ph.D. in Materials Science and Engineering. Following the completion of his doctorate in 2021, he joined Beijing University of Technology in January 2022 as a Professor and Ph.D. Supervisor in the Department of Road and Rail Engineering. In this role, he leads research projects on green pavement materials and mentors Master’s and Doctoral students. His academic responsibilities include developing new course materials, overseeing lab-based research, and fostering collaborations with industry to apply advanced materials in real-world contexts. He has secured multiple prestigious research grants, including from the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. Dr. Cao’s professional experience demonstrates a strong trajectory from promising researcher to established academic leader, with a focus on sustainable infrastructure technologies and innovative material development.

🏅Awards: 

Dr. Zhilong Cao has received several prestigious awards in recognition of his outstanding contributions to research and academic excellence. In 2023, he was honored with the Outstanding Talent Award by Beijing University of Technology for his innovative work in the field of sustainable pavement engineering. During his Ph.D. at Wuhan University of Technology, he earned the Outstanding Ph.D. Graduate Award and the Thesis Award in 2021, reflecting the significance and impact of his doctoral research. These accolades underscore Dr. Cao’s commitment to excellence in both academic research and practical innovation. His ability to bridge theoretical insights with applied engineering solutions has made him a recognized name in his field. These honors not only mark his personal achievements but also highlight his leadership potential in driving forward environmentally friendly and high-performance pavement technologies. Dr. Cao continues to strive for innovation and sustainability in the infrastructure materials sector.

🔬Research Focus:

Dr. Zhilong Cao’s research is centered on sustainable and intelligent solutions for modern pavement infrastructure. His work explores low-carbon construction and maintenance materials, particularly for asphalt pavements, aiming to reduce environmental impact while improving performance. A key area of interest is the regeneration and recycling of SBS-modified asphalt, especially for aging road surfaces and airport runways. He also investigates green and smart functional materials that respond to environmental stimuli, enhancing pavement durability and functionality. Dr. Cao’s research extends to polyurethane-modified asphalts and innovative crosslinking networks for performance recovery in aged pavements. His interdisciplinary approach bridges materials science with transportation engineering, aligning his work with global sustainability goals. Through national projects and industry collaborations, he contributes to next-generation infrastructure technologies that emphasize longevity, efficiency, and eco-friendliness. His research has both academic and practical implications, improving the resilience and sustainability of urban transportation systems.

Publication Top Notes:

1. Investigation on Active Rejuvenation Mechanism of Aged SBS Modified Bitumen: Insights from Experiments and Molecular Dynamics

2. Laboratory Evaluation of Ultraviolet Aging Performance of Regenerated SBS Modified Bitumen Based on Active Flexible Rejuvenators with Different Molecular Structures

3. Creep Recovery Behavior of Fresh, Aged, and Rejuvenated SBS-Modified Asphalt under High Shear Stresses

4. Effect of Organic Coal Gangue Powder with Terminal Active Isocyanate Groups on the Performance of Asphalt and Its Mixture

5. VOCs Inhibited Asphalt Mixtures for Green Pavement: Emission Reduction Behavior, Environmental Health Impact and Road Performance

6. Environmentally Friendly End-Capped Polyurethane for Enhancing Asphalt-Granite Adhesion

 

 

Dr. Frank Alexis | Materials Chemistry | Best Researcher Award

Dr. Frank Alexis | Materials Chemistry | Best Researcher Award

Dr. Frank Alexis , Universidad San Francisco de Quito , Ecuador

Dr. Frank Alexis is a Full Professor in the Department of Chemical Engineering at Universidad San Francisco de Quito, Ecuador. With a Ph.D. in Materials Science Engineering from Nanyang Technological University, his career spans academia, research, and industry. Renowned for his expertise in nanotechnology, drug delivery, and biomaterials, Dr. Alexis has contributed significantly to science, with 138 publications and over 11,300 citations. As a mentor and innovator, he has founded companies, guided minority students, and influenced global research through his work as an editor and reviewer for prestigious journals.

Professional Profile:

Orcid

Scopus

Summary of Suitability for Award:

Dr. Frank Alexis is an exemplary candidate for the “Best Researcher Awards,” combining academic brilliance, impactful research, and inspirational mentorship. His multidisciplinary innovations, global recognition, and dedication to advancing science make him a highly deserving contender for this honor. Dr. Frank Alexis is an accomplished researcher and educator with exceptional contributions to materials science, bioengineering, and nanotechnology. His diverse expertise spans academia, industry, and editorial roles, demonstrating a well-rounded career in advancing science and mentoring future researchers. Dr.  Frank  Alexis has 138 publications with over 11,315 citations, showcasing the global impact of his work.

🎓Education:

Dr. Frank Alexis holds a Ph.D. in Materials Science Engineering from Nanyang Technological University (Singapore), a Master’s degree in Materials Science and Interfaces from Technological University of Montpellier (France), and a Bachelor’s degree in Chemistry from the same institution. His academic journey reflects a blend of international education, encompassing advanced training in materials science, chemistry, and interdisciplinary applications pivotal for his pioneering contributions to nanotechnology and drug delivery systems.

🏢Work Experience:

Dr. Alexis has held prominent academic positions globally, including Full Professor roles at Universidad San Francisco de Quito and Yachay Tech in Ecuador. He served as Vice Chancellor of Research and Innovation at Yachay Tech and a tenured Associate Professor of Bioengineering at Clemson University. His industry experience spans roles at Stericoat Inc., LEK Consulting, Polymed Inc., and GearJump Technologies. Additionally, he contributed to groundbreaking biomaterials research at MIT and Brigham and Women’s Hospital, shaping the fields of nanomedicine and drug delivery.

🏅Awards: 

Dr. Alexis has received numerous accolades, including recognition as a Top 2% Researcher globally in nanotechnology and chemistry and Best Researcher by CEDIA. His inventive contributions have earned him awards like Best Inventor and Best Academic Invention. A mentor to minority students, he received the PEER & WISE Mentorship Award and recognition from Nature Biotechnology as a Top Translational Junior Faculty. His honors reflect his profound impact on research, mentorship, and innovation.

🔬Research Focus:

Dr. Alexis specializes in nanotechnology, biomaterials, and drug delivery systems, focusing on designing advanced materials for healthcare and environmental applications. His interdisciplinary research spans the development of sensors, biodegradable polymers, and functional nanomaterials. His work integrates chemistry, biology, and engineering to tackle challenges in medical diagnostics, therapeutic delivery, and sustainable technologies.

Publication Top Notes:

  • Colorimetric sensor for copper and lead using silver nanoparticles functionalized with fluoresceinamine isomer 
    • Citations: 1
  • Photochromic sensing of La³⁺ and Lu³⁺ ions using poly(caprolactone) fibers doped with spiropyran dyes
    • Citations: 2
  • Synergistic Antibacterial Properties of Silver Nanoparticles and Its Reducing Agent from Cinnamon Bark Extract
    • Citations: 1
  • Water soluble spiropyran for Hg²⁺ sensing in water
    • Citations: 3
  • Users’ opinion about synthetic, bio- and nano-biopesticides
    • Citations: 3

 

 

 

 

 

 

Chikara Tsutsumi | Biodegradable polymer | Best Researcher Award

Prof. Chikara Tsutsumi | Biodegradable polymer | Best Researcher Award

Professor at National Institute of Technology, Niihama College, Japan

Dr. Chikara Tsutsumi is a Professor at the Department of Applied Chemistry and Biotechnology in the National Institute of Technology, Niihama College (NIT, Niihama College) since 2020. He obtained his Doctor of Engineering degree in polymer chemistry from Hiroshima University in 2004. His research primarily focuses on biodegradable polymers, with particular emphasis on developing controlled-release materials and UV protection solutions. Dr. Tsutsumi is actively engaged in professional societies such as The Society of Polymer Science, Japan, and The Chemical Society of Japan, underscoring his commitment to advancing the field of polymer science.

Author Metrics

ORCID Profile

Scopus Profile

Dr. Tsutsumi’s scholarly work is well-regarded, as evidenced by his citation index of 481 and publication of 32 articles in prominent journals indexed in SCI, Scopus, and other databases. These metrics highlight his significant contributions to the scientific community and underscore his expertise in polymer chemistry and biotechnology.

  • Citations: 583 citations across 456 documents
  • Documents: 35 documents indexed
  • h-index: 15

These metrics reflect Dr. Tsutsumi’s scholarly impact in the field of polymer chemistry and biotechnology. His research contributions are noted across a significant number of documents, contributing to a notable citation count and an h-index that signifies his influence within the academic community.

Education

Dr. Chikara Tsutsumi earned his Doctor of Engineering degree in polymer chemistry from Hiroshima University, Japan, in 2004. His academic background laid the foundation for his subsequent research career focused on biodegradable polymers and their applications in sustainable materials science.

Research Focus

Dr. Tsutsumi’s research is primarily centered around polymer chemistry and organic chemistry, with a specific focus on biodegradable polymers. He is dedicated to exploring practical applications of these materials, including the development of controlled-release technologies and UV protection materials utilizing biodegradable polymers’ unique properties.

Professional Journey

With a career spanning over two decades, Dr. Tsutsumi has made significant strides in advancing the field of polymer science. His journey includes pivotal roles at the National Institute of Technology, Niihama College, where he was promoted to Professor in 2020, reflecting his academic and professional growth in the field.

Honors & Awards

Dr. Tsutsumi has been recognized for his exemplary research contributions with accolades such as the Best Researcher Award, highlighting his impact and leadership in polymer chemistry and biotechnology.

Publications Noted & Contributions

Dr. Tsutsumi has authored numerous publications and holds several patents related to biodegradable polymers, including sustained-release agents and biodegradable polymer films. His research contributions extend to the development of controlled-release materials and UV protection solutions, addressing critical needs in sustainable materials science.

Trial Fabrication of NADH-Dependent Enzymatic Ethanol Biofuel Cell Providing H2 Gas as well as Electricity

  • Journal: Bulletin of the Chemical Society of Japan, 2023, 96(4), pp. 331–338
  • Authors: Yano, J., Suzuki, K., Hashimoto, C., Hayase, N., Kitani, A., and Chikara Tsutsumi
  • Citations: 2
  • Summary: This article likely explores the development and performance of an enzymatic ethanol biofuel cell capable of generating both electricity and hydrogen gas, illustrating Dr. Tsutsumi’s research into sustainable energy technologies.

An environmentally adaptable stereocomplex derived from lactide copolymers with improved UV shielding characteristics based on morphological changes

  • Journal: Reactive and Functional Polymers, 2022, 173, 105148
  • Authors: Chikara Tsutsumi, Susumu Nakayama, Yasuhiro Matsubara, Yuushou Nakayama, Takeshi Shiono
  • Citations: 1
  • Summary: This article discusses a stereocomplex derived from lactide copolymers that exhibits enhanced UV shielding properties due to morphological changes. It highlights Dr. Tsutsumi’s work in polymer chemistry and materials science.

Ethanol Biofuel Cell Utilizing Photo-Excited Flavin-Mediated Oxidation of β-Nicotinamide Adenine Dinucleotide Hydrate (NADH) at the Anode and Reduction of H+ Ions at the Cathode

  • Journal: Journal of Electronic Materials, 2020, 49(8), pp. 4637–4641
  • Authors: Yano, J., Suzuki, K., Chikara Tsutsumi, Hayase, N., Kitani, A., and others
  • Citations: 3
  • Summary: This article explores an ethanol biofuel cell utilizing photo-excited flavin-mediated oxidation of NADH at the anode and reduction of H+ ions at the cathode. It showcases Dr. Tsutsumi’s research in bioelectrochemistry and energy conversion technologies.

Synthesis, properties and biodegradation of periodic copolyesters composed of hydroxy acids, ethylene glycol, and terephthalic acid

  • Journal: Polymer Degradation and Stability, 2020, 174, 109095
  • Authors: Nakayama, Y., Yagumo, W., Tanaka, R., Yamano, N., Nakayama, A., and Chikara Tsutsumi
  • Citations: 19
  • Summary: This article investigates the synthesis, properties, and biodegradation characteristics of periodic copolyesters incorporating hydroxy acids, ethylene glycol, and terephthalic acid. It underscores Dr. Tsutsumi’s expertise in sustainable polymer materials.

Impregnation of poly(L-lactide-ran-δ-valerolactone) with essential bark oil using supercritical carbon dioxide

  • Journal: Scientific Reports, 2019, 9(1), 16326
  • Authors: Chikara Tsutsumi, Souta Manabe, Susumu Nakayama, Yuushou Nakayama, Takeshi Shiono
  • Citations: 3
  • Summary: This article discusses the impregnation of poly(L-lactide-ran-δ-valerolactone) with essential bark oil using supercritical carbon dioxide, showcasing applications of biodegradable polymers in functional materials.

Research Timeline

Throughout his career, Dr. Tsutsumi has been actively involved in ongoing research projects focusing on biodegradable polymers and their practical applications. His timeline includes collaborations and projects aimed at advancing controlled-release technologies and exploring novel synthesis methods for biodegradable polymers, such as microwave-assisted synthesis.

Collaborations and Projects

Dr. Tsutsumi collaborates extensively on projects aimed at developing and implementing biodegradable polymers in various applications. These collaborations span research on controlled-release materials, UV protection solutions, and innovative synthesis methods, emphasizing his interdisciplinary approach and commitment to sustainable materials development.

Haoqi Yang | Bionic Aerogel | Best Researcher Award

Prof Dr. Haoqi Yang | Bionic Aerogel | Best Researcher Award

Professor at Yangzhou University, China

Dr. Haoqi Yang is a young distinguished professor at the College of Electrical and Energy Power Engineering at Yangzhou University. He has made significant contributions in the field of bionic engineering, focusing on the design of aerogels and hydrogels for energy conversion and storage systems, as well as developing techniques for a sustainable circular economy.

Author Metrics

ORCID Profile

Dr. Yang has a citation index with a sum of times cited at 1169 and an H-index of 18, as recorded on Web of Science. This reflects the significant impact and recognition his research has garnered in the scientific community.

Education

Dr. Yang graduated from the Key Laboratory of Bionic Engineering (Ministry of Education) of Jilin University in 2021. Following this, he engaged in postdoctoral research at the Institute of Process Engineering of the Chinese Academy of Sciences from 2021 to 2023.

Research Focus

Dr. Yang’s primary research interests lie in the design of bionic aerogels and hydrogels for energy conversion and storage systems. He is also focused on developing resource utilization techniques that contribute to a sustainable circular economy.

Professional Journey

After completing his postdoctoral research, Dr. Yang joined Yangzhou University in the College of Electrical and Energy Power Engineering as a young distinguished professor. Additionally, he serves as a member of the International Society of Bionic Engineering.

Honors & Awards

Dr. Yang has been recognized for his innovative research and contributions to the field of bionic engineering. His work in designing efficient energy storage systems and promoting sustainable practices has earned him a notable position in his academic and professional journey.

Publications Noted & Contributions

Dr. Yang has published extensively in high-impact journals such as Industrial Crops and Products, Colloids and Surfaces A, and the Journal of Energy Storage. Some of his notable publications include works on wood-derived hierarchically porous carbon monoliths for supercapacitors and bionic Fe-N-C catalysts for efficient oxygen reduction.

Improving the Capacitive Performance of Wood-Derived Carbon Monolith by Anchoring Heteroatom-Doped Carbon Nanotubes in the Vessels via In Situ Chemical Vapor Deposition

  • Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
  • Publication Date: 2024-08
  • DOI: 10.1016/j.colsurfa.2024.134263
  • Contributors: Bing Yan, Qian Zhang, Guangjie Yang, Chenweijia He, Junxi Chen, Ping Li, Zhenlu Liu, Haoqi Yang, Dai Chen, Shuijian He

Bionic Fe-N-C Catalyst with Abundant Exposed Fe-Nx Sites and Enhanced Mass Transfer Properties for Efficient Oxygen Reduction

  • Journal: Journal of Colloid and Interface Science
  • Publication Date: 2024-02
  • DOI: 10.1016/j.jcis.2023.10.098
  • ISSN: 0021-9797
  • Contributors: Guolong Lu, Xin Men, Ruoqi Tang, Wang Zhida, Hao Cui, Tongxi Zheng, Mi Wang, Haoqi Yang, Zhenning Liu

Bio-Inspired Micro-Reactor Mimicking Multi-Ridged Mitochondrial Intimae for Efficient Oxygen Reduction

  • Journal: Applied Surface Science
  • Publication Date: 2023-02
  • DOI: 10.1016/j.apsusc.2022.155469
  • ISSN: 0169-4332
  • Contributors: Xin Men, Ruoqi Tang, Haoqi Yang, Mi Wang, Hang Sun, Song Liang, Zhenning Liu, Guolong Lu

Synergistic Generation of Radicals by Formic Acid/H2O2/g-C3N4 Nanosheets for Ultra-Efficient Oxidative Photodegradation of Rhodamine B

  • Journal: Langmuir
  • Publication Date: 2022
  • DOI: 10.1021/acs.langmuir.1c03201
  • EID: 2-s2.0-85125765577
  • ISSN: 1520-5827, 0743-7463
  • Contributors: B. Wang, Z. Wang, C. Bai, H. Yang, H. Sun, G. Lu, S. Liang, Z. Liu

Bimetallic Salts Template-Assisted Strategy Towards the Preparation of Hierarchical Porous Polyimide-Derived Carbon Electrode for Supercapacitor

  • Journal: Diamond and Related Materials
  • Publication Date: 2022-10
  • DOI: 10.1016/j.diamond.2022.109283
  • ISSN: 0925-9635
  • Contributors: Huiling Li, Yi-Lin Liu, Haotian Jin, Lihua Cao, Haoqi Yang, Shaohua Jiang, Shuijian He, Shanshan Li, Kunming Liu, Gaigai Duan

Research Timeline

Dr. Yang’s research journey began with his doctoral studies at Jilin University, followed by postdoctoral research at the Chinese Academy of Sciences. His current research projects include a subproject of the National Key R&D Program (2022YFC3902704-01), which he has been working on since joining Yangzhou University.

Collaborations and Projects

Dr. Yang has collaborated with various researchers and institutions to advance his research. His projects include developing bionic materials for energy applications and exploring innovative methods for resource utilization. His collaborative efforts have resulted in several patents and high-impact journal publications.