Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki , Environmental Chemistry , Jan Evangelista Purkyne University , Czech Republic

Dr. Karim Al Souki is a postdoctoral researcher and assistant professor at the Faculty of Environment, Jan Evangelista Purkyne University (UJEP), Czechia. With a Ph.D. in Earth and Universe Sciences from Lille 1 University, France, his academic journey reflects a strong foundation in plant biology and environmental sciences. Dr. Al Souki’s research spans phytoremediation, bioremediation, biochar utilization, and climate change mitigation through sustainable phytotechnology. He is a key contributor to international projects funded by NATO, Erasmus+, and Interreg, focusing on ecosystem restoration, water management, and environmental biotechnology. As an educator, he has taught courses across Europe on subjects such as environmental biotechnology, phytotechnology, and bio-economy. Dr. Al Souki’s interdisciplinary approach blends ecological theory with applied environmental solutions, making significant contributions to marginal land restoration and water pollution mitigation. His work promotes sustainability, ecological awareness, and environmental resilience through innovation and education.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

With a Ph.D. in Earth and Universe Sciences from Lille 1 University (France), and two Master’s degrees in Phyto-ecology and Plant Biology from Lebanese University, Dr. Karim Al Souki demonstrates a solid and multidisciplinary academic foundation. Dr. Karim Al Souki  leads and contributes to cutting-edge projects on phytoremediation, biochar technology, and environmental biotechnology—directly addressing climate change, pollution mitigation, and sustainable soil management. His research covers analytical techniques (FTIR, TGA, stable isotopes, DNA extraction), linking practical fieldwork with lab-based precision, ensuring both academic rigor and societal relevance. His role as project supervisor in initiatives like IDEAL and NATO-SPS illustrates leadership in shaping future environmental policies and technologies. Dr. Karim Al Souki is an ideal candidate for the “Best Researcher Award”, given his consistent, interdisciplinary contributions to environmental sciences. His research directly supports global sustainability goals through practical, innovative, and scalable solutions. Furthermore, his educational outreach, cross-border collaborations, and commitment to solving real-world ecological problems distinguish him as a researcher of international repute. This award would recognize and further empower his impactful scientific journey.

🎓Education:

Dr. Al Souki pursued his academic studies in biology and environmental sciences. He earned his Bachelor’s degree in General Biology (2008–2010), followed by a Master 1 in Plant Biology and Environment (2010–2011), and a Master 2 in Phyto-ecology, Resources, and Security Applications (2011–2012), all from Lebanese University, Lebanon. He then completed his Ph.D. in Earth and Universe Sciences at LGCgE, ISA-Lille, Lille 1 University of Sciences and Technologies, France (2014–2017). His academic foundation combines ecological sciences, environmental applications, and molecular understanding of plant-soil interactions. This educational pathway equipped him with the necessary tools to integrate ecological theory with practical environmental solutions. His training in Europe and the Middle East enabled him to adopt a multidisciplinary perspective and work in cross-cultural academic and research environments. His education has laid the groundwork for his specialization in environmental biotechnology, phytoremediation, and biochar applications.

🏢Work Experience:

Since October 2018, Dr. Karim Al Souki has been serving as a Post-doctoral researcher and Assistant Professor at UJEP, Czechia, where he teaches and conducts advanced research in environmental sciences. His prior experience includes teaching roles at ESME Sudria (France) and private institutions in Lille, where he lectured in phytoecology, molecular biology, and environmental science. He has supervised and contributed to numerous EU- and NATO-funded projects related to phytotechnology, biochar, soil-plant interactions, and wastewater treatment. His pedagogical contributions span multiple European universities and platforms, such as Erasmus, COIL, and ISA-Lille. He has taught subjects including Bioremediation, Bio-economy, Environmental Biotechnology, and Climate Change. Dr. Al Souki’s interdisciplinary teaching and research experience enable him to link theoretical knowledge with field-based applications, fostering student engagement and scientific problem-solving skills relevant to contemporary ecological challenges.

🏅Awards: 

Dr. Karim Al Souki has been recognized for his impactful research and cross-border educational initiatives. He is the Principal Investigator or Supervisor on several prestigious projects funded by international agencies such as NATO Science for Peace and Security Programme, Interreg (IDEAL project), and Erasmus+, highlighting his leadership in environmental science and sustainability education. He received the UJEP Internal Grant Agency funding multiple times (2021–2023), supporting his innovative work on biochar and Miscanthus x giganteus in soil restoration. He was awarded the Usti nad Labem region grant for young researchers for his study on quinoa in polluted soils. His consistent success in securing competitive research grants attests to the scientific merit and societal relevance of his projects. These accolades recognize his commitment to ecosystem services, educational outreach, and environmental restoration, and affirm his role as a rising figure in applied environmental sciences and international academic collaboration.

🔬Research Focus:

Dr. Al Souki’s research centers on phytotechnology, bioremediation, biochar characterization, and ecosystem service enhancement in marginal and contaminated soils. He specializes in using Miscanthus x giganteus and quinoa to rehabilitate former military lands and toxic-element-polluted environments. His research integrates stable isotope analysis, DNA-based microbial community profiling, and plant physiological assessments to explore rhizospheric interactions, nutrient cycling, and carbon sequestration. His work on biochar, especially its physico-chemical and ecotoxicological properties, supports sustainable agricultural and water reuse practices. His active projects include NATO-funded studies on climate change mitigation and EU-supported educational modules for water sustainability in the Elbe/Labe basin. His interdisciplinary approach links environmental microbiology, plant ecophysiology, and green chemistry, targeting real-world environmental problems with practical, nature-based solutions. His goal is to bridge science and education to improve soil health, water quality, and resilience against climate change.

Publication Top Notes:

1. An overview of potentially toxic element pollution in soil around lead–zinc mining areas

2. A comprehensive evaluation of the environmental and health risks associated with the potential utilization of chars produced from tires, electro-waste plastics and biomass

3. Characterizations of ash derived from the crops’ waste biomass for soil improvement and assisted phytoremediation

4. A 6-year review status on soil pollution in coal mining areas from Europe

5. Extracted rapeseed meal biochar combined with digestate as a soil amendment: Effect on lettuce (Lactuca sativa L.) biomass yield and concentration of bioavailable element fraction in the soil

6. Miscanthus x giganteus stress tolerance and phytoremediation capacities in highly diesel contaminated soils

7. The influence of diesel contaminated soil on Miscanthus x giganteus biomass thermal utilization and pyrolysis products composition

8. Evaluation of Miscanthus × giganteus Tolerance to Trace Element Stress: Field Experiment with Soils Possessing Gradient Cd, Pb, and Zn Concentrations

9. Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate

10. Utilization of Biochar for Eliminating Residual Pharmaceuticals from Wastewater Used in Agricultural Irrigation: Application to Ryegrass

 

 

 

 

Mr. Frédéric Pignon | Chemical Engineering | Best Researcher Award

Mr. Frédéric Pignon | Chemical Engineering | Best Researcher Award

Mr. Frédéric Pignon , Chemical Engineering ,Senior Scientist at CNRS/Laboratoire Rhéologie et Procédés, France

Frédéric Pignon is a Senior Scientist (Directeur de Recherche, DR1) at CNRS, affiliated with the Laboratoire Rhéologie et Procédés (LRP), UMR 5520, Grenoble, France.🇫🇷, he specializes in fluid mechanics and soft matter rheology. With over 25 years of expertise, Pignon has significantly contributed to the understanding of the multiscale structural behavior of anisotropic dispersions under various flow conditions. His pioneering development of in situ experimental setups has enabled novel insights into flow-structure relationships using SAXS, SANS, SALS, and ultrasound techniques. He holds an h-index of 32 📊, with 76 international publications, 2 patents, and numerous invited talks globally . Apart from research, he actively contributes to scientific evaluation committees and review panels including ANR, HCERES, and ESRF. His collaborations span leading institutions in Europe, North America, and Asia, positioning him as a key figure in advanced rheological material research.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Pignon holds a Ph.D. in Fluid Mechanics and Transfer (1997, Grenoble-INP), with prior DEA in the same field. His formal training is strongly aligned with his long-term research focus in rheology and multiscale fluid dynamics. He has published 76 peer-reviewed international journal papers, presented in 97 international conferences (including 8 invited talks), and holds 2 patents. His h-index of 32 demonstrates sustained impact in his field. His research uniquely combines rheometric properties with nanoscale-to-microscale structural characterization using advanced techniques such as SAXS, SALS, and optical methods. These contributions have significantly advanced the understanding of flow-induced behavior in complex fluids and materials. Dr. Frédéric Pignon’s pioneering research, prolific publication record, significant mentoring, leadership in scientific boards, and innovative patent contributions make him exceptionally well-qualified for the “Best Researcher Award”. His work bridges theoretical insight with experimental innovation in fluid mechanics and nanostructured systems, making a deep impact on science and industry alike. He is a model of scientific excellence and leadership.

🎓Education:

Frédéric Pignon pursued higher education in engineering and fluid mechanics in France. In 1993, he earned his D.E.A. (Diplôme d’Études Approfondies) in Fluid Mechanics and Transfer from Grenoble-INP, one of France’s premier engineering institutions 🎓. He deepened his specialization by completing a Ph.D. in Fluid Mechanics and Transfer at the same institution in January 1997, underlining his early interest in the microstructural behavior of complex fluids. His doctoral research laid the foundation for his later pioneering work in multiscale flow characterization. Pignon’s strong academic formation in physics, transport phenomena, and complex systems gave him a robust foundation to innovate in rheometry and structural analysis of soft matter systems. His academic path reflects a consistent focus on multidisciplinary approaches to fluid behavior, bridging physics, materials science, and applied engineering.

🏢Work Experience:

Frédéric Pignon has held leading research positions within the CNRS system for over two decades 🧪. Since October 2013, he serves as Senior Scientist (DR1) at CNRS-LRP, following a 14-year tenure (1999–2013) as Research Scientist (CR1). Earlier, he conducted postdoctoral research at ESRF’s ID28 Beamline (1999) and Laboratoire Rhéologie et Procédés (LRP) (1997–1998) 🔬. His research career is defined by designing cutting-edge experimental cells that integrate rheology with structural probes (SAXS/SANS/optical methods). He supervises Ph.D. students and postdoctoral researchers, participates actively in international collaborations, and leads major research projects across France and Europe. Pignon’s extensive academic and industrial network has facilitated groundbreaking studies on anisotropic particles, biopolymers, and colloids under dynamic conditions. He also contributes to scientific governance through involvement in evaluation panels (ESRF, ANR, HCERES), steering strategic research and innovation.

🏅Awards: 

Frédéric Pignon’s research excellence has been recognized through leadership roles, panel appointments, and competitive research funding . He is a long-standing member of the ESRF Review Committee (Panel C08) (2014–present) and served on France’s ANR CES 09 panel (2018). He also contributed to institutional evaluation through HCERES Committee vague C (2016–2017). As Co-PI of Labex Tec 21 (2013–2021) and scientific coordinator for Carnot PolyNat Institute projects, he has driven interdisciplinary research strategies. Pignon holds two patents, including one on thixotropic hydrogels and another on an ultrasound-enhanced filtration device 🔬. He has secured significant funding from national and regional sources (ANR, SATT, Région Bretagne), supervising several Ph.D. and postdoctoral projects. His work is frequently cited and referenced in the scientific community, and he is a regular reviewer for top-tier journals and national research proposals, having completed 83 international journal reviews and 7 ANR project reviews.

🔬Research Focus:

Frédéric Pignon’s research bridges rheology, soft matter physics, and multiscale characterization. His expertise lies in understanding how anisotropic particles—like cellulose nanocrystals and clay platelets—organize under flow, pressure, or acoustic fields. By developing custom in situ setups integrating rheometers with SAXS, SANS, birefringence, and SALS, he studies how microstructure impacts mechanical properties during dynamic processing. His group investigates orientation, aggregation, concentration polarization, and gelation in suspensions, particularly during cross-flow filtration and ultrasound exposure. He also explores bio-based nanomaterials and the physical behavior of hydrogels, enabling applications in biotechnology and green materials. Collaborating with synchrotron and neutron facilities, he probes structures from nanometer to micrometer scales. Projects like ANR ANISOFILM and Memus (SATT Linksium) showcase his role in advancing filtration, structural control, and nanocomposite design. His research is highly interdisciplinary, combining physics, chemistry, and process engineering.

Publication Top Notes:

1. Multi-scale investigation of the effect of photocurable polyethylene glycol diacrylate (PEGDA) on the self-assembly of cellulose nanocrystals (CNCs)

2. A self-cleaning biocatalytic membrane with adjusted polyphenol deposition for edible oil-water separation

3. A scalable and eco-friendly carbohydrate-based oleogelator for vitamin E controlled delivery

4. Orthotropic organization of a cellulose nanocrystal suspension realized via the combined action of frontal ultrafiltration and ultrasound as revealed by in situ SAXS

5. Viologen-based supramolecular crystal gels: gelation kinetics and sensitivity to temperature

6. Molecular mechanism of casein-chitosan fouling during microfiltration

7. Multiscale investigation of viscoelastic properties of aqueous solutions of sodium alginate and evaluation of their biocompatibility

8. Self-supported MOF/cellulose-nanocrystals materials designed from ultrafiltration

9. Orientation of Cellulose Nanocrystals Controlled in Perpendicular Directions by Combined Shear Flow and Ultrasound Waves Studied by Small-Angle X-ray Scattering

10. Effect of Polymer Length on the Adsorption onto Aluminogermanate Imogolite Nanotubes

Citations: 3​

11. Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS

 

Mr. Anil kumar Gautam | Green Synthesis Award | Material Chemistry Award

Mr. Anil kumar Gautam | Green Synthesis Award | Material Chemistry Award

Mr. Anil kumar Gautam | Babasaheb Bhimrao Ambedkar University lucknow  |India

Dr. Anil K. Gautam, born in 1987, is a dynamic researcher specializing in nanochemistry, currently pursuing a Ph.D. at Babasaheb Bhimrao Ambedkar University, Lucknow. With a strong foundation in synthetic organic chemistry, he has pioneered innovative methodologies for green synthesis of nanoparticles. His research focuses on the anticancer and antibacterial properties of various nanocomposites derived from natural extracts. A committed lifelong learner, Dr. Gautam actively participates in national and international conferences, presenting his groundbreaking findings. Fluent in English and Hindi, he balances his professional endeavors with personal commitments, living in Lucknow with his family. His dedication to sustainable practices and innovative research reflects a deep commitment to advancing the field of chemistry.

Professional Profile:

Orcid 

Summary of Suitability for Award:

Mr. Anil kumar Gautam is highly suitable for the Material Chemistry Award due to their innovative approach to sustainable nanomaterial synthesis, strong technical expertise, and impactful research contributions. Their focus on environmentally friendly practices and their active engagement in the scientific community align well with the award’s objectives.

🎓Education:

Dr. Anil K. Gautam holds a Ph.D. in Chemistry from Babasaheb Bhimrao Ambedkar University, Lucknow, where he is focused on the “Green Synthesis of Nanomaterials and Evaluation of its Cytotoxicity.” His academic journey began with a Master’s in Chemistry from Dr. Shakuntala Misra National Rehabilitation University, Lucknow, where he honed his expertise in organic synthesis. Prior to that, he earned a Bachelor of Science degree from Christian P.G. College, Lucknow, solidifying his foundational knowledge in scientific principles. Dr. Gautam’s educational background reflects a strong commitment to understanding and innovating within the field of chemistry, particularly in nanotechnology. His ongoing research continues to contribute significantly to his academic institution and the broader scientific community.

🏢Work Experience:

Dr. Anil K. Gautam has extensive research experience during his Ph.D. at Babasaheb Bhimrao Ambedkar University, focusing on the development of new synthetic methodologies in nanochemistry. He has led several innovative projects, including the green synthesis of CeO2/CeCu/CuO nanocomposites and their evaluation for anticancer and antibacterial properties. Dr. Gautam’s experience encompasses the preparation of plant extracts and the characterization of synthesized nanomaterials through advanced techniques such as XRD, FTIR, SEM, and HPLC. He has also contributed to multiple oral presentations at prestigious conferences, showcasing his research findings on various nanomaterials. His collaborative approach and rigorous analytical skills have positioned him as a valuable asset in research settings, driving forward the exploration of sustainable chemistry and its applications.

🏅Awards:

Dr. Anil K. Gautam’s contributions to the field of chemistry have been recognized through various accolades throughout his academic career. His innovative research on green synthesis of nanomaterials has garnered him invitations to present at international conferences, emphasizing his status as an emerging expert in nanochemistry. Although specific awards have not been detailed, his work’s impact is evident in his published research and participation in prominent scientific forums. His commitment to sustainable practices in chemistry and the successful application of his research findings further highlight his dedication to advancing the field. Dr. Gautam’s continuous engagement in academia and research reflects a strong potential for future recognition as he continues to contribute meaningfully to scientific knowledge and practice.

🔬Research Focus:

Dr. Anil K. Gautam’s research focus lies in nanochemistry, particularly the green synthesis of nanoparticles and nanocomposites using natural extracts. His pioneering work involves developing eco-friendly methodologies to synthesize various metal oxides and their composites, emphasizing their potential applications in anticancer and antibacterial therapies. His studies on the structural properties of nanoparticles, coupled with their functional evaluations, contribute significantly to the understanding of nanomaterials in biomedical applications. Additionally, Dr. Gautam explores the synthesis of heterojunction nanocomposites for photocatalytic degradation of organic pollutants, aiming to enhance environmental sustainability. Through rigorous experimental design and literature analysis, he seeks to stay at the forefront of advancements in nanotechnology, bridging the gap between sustainable practices and innovative research in chemistry. His dedication to addressing complex challenges through his research positions him as a key contributor to the evolving landscape of nanoscience.

Publication Top Notes:

Green Synthesis of Pistia stratiotes Ag/AgCl Nanomaterials and Their Anti-Bacterial Activity

 

 

 

Khalid Khan | Organic Chemistry | Best Researcher Award

Assoc Prof Dr. Khalid Khan | Organic Chemistry | Best Researcher Award

Associate Professor at Islamia College University, Peshawar, Pakistan

Dr. Khalid Khan is an accomplished chemist with extensive expertise in organic chemistry and medicinal research. He obtained his PhD from Huazhong University of Science and Technology in China, focusing on the design and synthesis of novel dendro-calix[4]arenes. Currently, he serves as an Associate Professor at Islamia College University in Peshawar, Pakistan, where he leads various research projects and supervises graduate and undergraduate students. His work has significantly contributed to the field of drug discovery, particularly in computational and medicinal chemistry.

Author Metrics

Scopus Profile

Dr. Khan has published over 25 research articles in reputable journals, showcasing his research impact and contribution to the field of chemistry. His work has garnered numerous citations, reflecting the relevance and influence of his research on both national and international platforms. His publication metrics highlight his active engagement in advancing scientific knowledge, particularly in the areas of antiviral drug development and nanotechnology.

  • Citations: 414 citations across 379 documents
  • Documents: 21 published works
  • h-index: 9

Education

Dr. Khan completed his PhD in Chemistry from Huazhong University of Science and Technology, China (2008-2013), where he conducted groundbreaking research on nonionic amphiphilic dendro-calix[4]arenes. He holds a Master’s degree in Chemistry from the University of Peshawar (2002-2004), where he graduated with first-class honors, and a Bachelor’s degree in Biological Science from Government College Peshawar (2000-2002).

Research Focus

Dr. Khan’s research primarily revolves around organic chemistry, with a special focus on the synthesis and characterization of bioactive compounds. He is particularly interested in the development of antiviral agents and the computational modeling of drug interactions with viral proteins. His innovative research projects often explore the structure-activity relationships of compounds to enhance therapeutic efficacy.

Professional Journey

Beginning his career as a lecturer in 2005, Dr. Khan progressively advanced to the role of Associate Professor in 2020 at Islamia College University. Throughout his tenure, he has significantly contributed to the academic environment by designing curricula, supervising research, and engaging in community service. His professional journey is marked by a commitment to education, research, and the development of future scientists.

Honors & Awards

Dr. Khan has received several prestigious awards, including the Pakistan and Chinese Government Cultural Exchange Scholarship for his doctoral studies. He was recognized as the topper in his Master’s program, reflecting his dedication and excellence in the field of chemistry. His achievements have earned him a respected place among his peers in academia.

Publications Noted & Contributions

Among his numerous publications, key works include research on the design and synthesis of novel dendro-calix[4]arenes, antiviral drug development, and the characterization of compounds with potential therapeutic applications. His contributions have advanced understanding in various areas of organic chemistry and nanotechnology, facilitating further research in these domains.

Homology modeling and molecular docking study of metabotropic glutamate receptor 5 variant F: An attempt to develop drugs for treating CNS diseases

  • Authors: Ahmad, N., Khan, K., Rashid, H.U., Ullah, R., Ali, E.A.
  • Journal: Zeitschrift für Physikalische Chemie
  • Year: 2024
  • Volume: 238, Issue 8, Pages 1551–1577
  • Citations: 1

Direct synthesis, characterization, in vitro and in silico studies of simple chalcones as potential antimicrobial and antileishmanial agents

  • Authors: Ur Rashid, H., Khan, S., Irum, Shah, T., Khan, K.
  • Journal: Royal Society Open Science
  • Year: 2024
  • Volume: 11, Article 240410
  • Citations: 0

Homology modeling and molecular docking study of corticotrophin-releasing hormone: An approach to treat stress-related diseases

  • Authors: Ahmad, N., Khan, K., Khan, S.W., Ullah, R., Ali, E.A.
  • Journal: Open Chemistry
  • Year: 2024
  • Volume: 22, Article 20240069
  • Citations: 0

Biological investigations of Aspergillus ficuum via in vivo, in vitro and in silico analyses

  • Authors: Shah, Z.A., Khan, K., Shah, T., Muhammad, A., Rashid, H.
  • Journal: Scientific Reports
  • Year: 2023
  • Volume: 13, Article 17260
  • Citations: 1

Insights into metabolic and pharmacological profiling of Aspergillus ficuum through bioinformatics and experimental techniques

  • Authors: Shah, Z.A., Khan, K., Rashid, H.U., Jaremko, M., Iqbal, Z.
  • Journal: BMC Microbiology
  • Year: 2022
  • Volume: 22, Article 295
  • Citations: 4

Research Timeline

Dr. Khan’s research trajectory spans over a decade, beginning with his PhD studies from 2008 to 2013, followed by various research projects involving computational analyses and synthesis of organic compounds. His ongoing projects encompass a wide range of studies aimed at understanding and inhibiting viral proteins, particularly related to SARS-CoV-2 and other pathogenic viruses.

Collaborations and Projects

Dr. Khan has collaborated with both national and international researchers on diverse projects, enhancing the scope and impact of his research. These collaborations have resulted in joint publications and a collective effort to address significant challenges in medicinal chemistry and virology. His ability to work across disciplines and institutions underscores his commitment to collaborative scientific inquiry.

Conclusion

Dr. Khalid Khan’s recognition as a Best Researcher reflects his significant contributions to organic chemistry and medicinal research. His publication record and collaborative efforts enhance his impact within the scientific community. By addressing areas for improvement, such as increasing citation metrics and expanding research diversification, Dr. Khan can further strengthen his position as a leader in his field. His commitment to education and research not only benefits his students but also contributes to the broader scientific landscape, making his work essential for advancements in drug discovery and public health.

Asmaa Hamouda | Medicinal Chemistry | Best Researcher Award

Dr. Asmaa Hamouda | Medicinal Chemistry | Best Researcher Award

Doctorate at Alexandria University, Egypt

Asmaa F. Hamouda is an accomplished biochemist with over a decade of experience in teaching and research, focusing on medical biochemistry and lifestyle-related disorders. A breast cancer survivor, she is deeply committed to patient education and support, particularly in disease management. Based in Egypt, Asmaa has authored 25 books and published 30 scientific papers, making significant contributions to her field. Her diverse experiences include roles at prestigious universities and clinical settings.

Author Metrics

Scopus Profile

ORCID Profile

Google Scholar Profile

Asmaa has achieved considerable recognition in the academic community, evidenced by a robust citation record on platforms such as Google Scholar. Her research impact is reflected in her numerous publications and her active engagement in scientific discourse, highlighting the significance of her contributions to biochemistry and nutrition.

  • Citations: 48
  • Documents: 7
  • h-index: 4

Education

Asmaa holds a PhD in Biochemistry from Alexandria University, earned in January 2013, where she graduated with distinction. She also completed her Master’s degree in Biochemistry in October 2007 and her Bachelor of Science in Biochemistry/Chemistry in May 2003, both from the same institution. In 2021, she further enhanced her expertise by obtaining a professional certification in Functional Medicine and Nutrition.

Research Focus

Her research primarily investigates the biochemical mechanisms underlying lifestyle diseases and the role of nutrition in health management. Asmaa is particularly interested in exploring natural compounds for disease prevention and treatment, aiming to bridge the gap between biochemistry and practical health solutions.

Professional Journey

Asmaa began her career as a demonstrator at Alexandria University, gradually advancing to positions such as lecturer and assistant professor at universities in Saudi Arabia. Currently, she serves as a nutrition advisor, leveraging her academic expertise to support patients in managing their health through tailored nutritional strategies.

Honors & Awards

Throughout her career, Asmaa has received numerous accolades for her contributions to teaching and research. Her work has been recognized at various international conferences, where she has been invited to speak and present, underscoring her influence and leadership in the field of biochemistry.

Publications Noted & Contributions

Asmaa has authored a variety of influential publications in reputable scientific journals, with key studies focusing on the biochemical effects of natural extracts. Her research on the therapeutic potential of compounds like pomegranate and avocado has drawn attention, showcasing innovative approaches to managing chronic diseases.

Investigating Grape Seed Extract as a Natural Antibacterial Agent for Water Disinfection in Saudi Arabia: A Pilot Chemical, Phytochemical, Heavy-Metal, Mineral, and CB-Dock Study Employing Water and Urine Samples

Identification of Effective Anti-HCV and Anti-HIV Royal Jelly Constituents and Their Acute Toxicity Evaluation in Albino Rats

  • Journal: Food and Chemical Toxicology
  • Date: 2023-12
  • DOI: 10.1016/j.fct.2023.114170
  • Contributors: Noha H. Habashy, Asmaa F. Hamouda, Marwa M. Abu Serie

A Bio-Indicator Pilot Study Screening Selected Heavy Metals in Female Hair, Nails, and Serum from Lifestyle Cosmetic, Canned Food, and Manufactured Drink Choices

Biochemical Pilot Study on Effects of Pomegranate Seed Oil Extract and Cosmetic Cream on Neurologically Mediated Skin Inflammation in Animals and Humans: A Comparative Observational Study

A Pilot Study of the Amelioration of Avocado Seed Oil in Obese Female Rats Induced by Carbon Tetrachloride and Alloxan Monohydrate

  • Journal: Journal of Drug and Alcohol Research
  • Date: 2022
  • Contributors: Asmaa Fathi Hamouda

 Research Timeline

Her research journey spans several significant projects, from her doctoral studies to her ongoing work as a nutrition advisor. Asmaa has consistently contributed to the academic literature, providing valuable insights into the role of biochemistry in health and disease management.

Collaborations and Projects

Asmaa has engaged in numerous collaborations with institutions and researchers across the globe. Her participation in international conferences has fostered partnerships in the fields of biochemistry and nutrition, enhancing the impact and reach of her research efforts.

Conclusion

Dr. Asmaa Hamouda exemplifies excellence in the field of medicinal chemistry and biochemistry. Her robust publication record, innovative research, and commitment to patient education highlight her as a leading figure in the academic community. While she has achieved significant recognition, focusing on collaboration, visibility, and public engagement can further enhance her impact. With her dedication and expertise, Asmaa is well-positioned to continue making meaningful contributions to health management and disease prevention.

 

Jian Gao | Chemical Engineering | Best Researcher Award

Dr. Jian Gao | Chemical Engineering | Best Researcher Award

Doctorate at Tianjin University of Science and Technology, China

Jian Gao is a dedicated PhD candidate at Tianjin University of Science and Technology, specializing in electrochemical lithium extraction. With a strong background in materials and chemical engineering, Jian has demonstrated leadership through various roles in academic and student organizations. His research focuses on innovative methods for lithium recovery, contributing significantly to the field of sustainable energy materials.

Author Metrics

Scopus Profile

Jian’s research contributions have led to three published patents and several impactful publications in high-impact journals, highlighting his innovative work in lithium extraction technologies. Although his publications in indexed journals are currently in progress, his work is recognized in databases such as ScienceDirect.

Jian Gao is a researcher at Tianjin University of Science and Technology, focusing on electrochemical lithium extraction. His work has gained recognition, as evidenced by 12 citations across his published documents, contributing to an h-index of 2.

Education

Jian began his academic journey at Tangshan Normal University, where he earned a degree in Energy Chemical Engineering. He then pursued a Master of Engineering at Tianjin University of Science and Technology, where he honed his skills in materials science and chemical engineering. Currently, he is completing his PhD, focusing on electrochemical processes.

Research Focus

Jian’s research centers on electrochemical lithium extraction, particularly the development of advanced materials and techniques to improve the efficiency and sustainability of lithium recovery from brines. His work addresses critical challenges in energy materials and supports the growing demand for lithium in renewable energy technologies.

Professional Journey

Jian’s professional journey includes significant leadership roles, such as serving as the Head of the Laboratory of Materials and Chemical Engineering and contributing to the Graduate Student Union. His experiences have equipped him with a robust understanding of both academic and administrative aspects of research.

Honors & Awards

Throughout his academic career, Jian has been recognized for his contributions to research and leadership. He has received accolades for his innovative work in electrochemical processes and has been nominated for the Best Researcher Award, reflecting his commitment to excellence in research.

Publications Noted & Contributions

Jian has authored key research papers in prominent journals, including:

1. Structural Stabilization of Cr-doped Spinel LiMn2O4 for Long-Term Cyclability Towards Electrochemical Lithium Recovery in Original Brine

  • Authors: Tian, G., Gao, J., Wang, M., Zhang, J., Tang, N.
  • Journal: Electrochimica Acta
  • Year: 2024
  • Volume: 475
  • Article Number: 143361
  • Citations: 6

2. Sintering Analysis of Garnet-type Ceramic as Oxide Solid Electrolytes for Rapid Li+ Migration

  • Authors: Zhao, X., Gao, J., Khalid, B., Huang, Y., Tian, G.
  • Journal: Journal of the European Ceramic Society
  • Year: 2022
  • Volume: 42(15)
  • Pages: 7063–7071
  • Citations: 5

Research Timeline

Jian’s research timeline includes pivotal milestones such as completing his Master’s thesis in 2021, leading research projects on lithium extraction, and achieving notable results published in high-impact journals. His ongoing PhD research aims to further innovate in the field, with a focus on material optimization.

Conclusion

Jian Gao exemplifies the qualities of a leading researcher in the field of chemical engineering, particularly through his innovative work in electrochemical lithium extraction. His strong academic background, leadership experience, and commitment to sustainability make him a deserving candidate for the Best Researcher Award. However, by addressing areas such as publication volume and collaborative initiatives, Jian can further enhance his impact and contributions to the scientific community. With a focus on these improvements, he is well-positioned to continue making significant advancements in sustainable energy materials.