Dr. Satyen Kumar Das | Chemical Engineering | Best Researcher Award

Dr. Satyen Kumar Das | Chemical Engineering | Best Researcher Award

Dr. Satyen Kumar Das , Chemical Engineering ,  Chief General Manager at Indian Oil Corporation Limited, R&D Centre , India

Dr. Satyen Kumar Das is a distinguished Chemical Engineer and Chief General Manager at Indian Oil R&D Centre, leading the Refining Technology domain. Since joining Indian Oil in 1995, he has contributed nearly 30 years of cutting-edge research, commercialization, and troubleshooting in petroleum refining, sustainability, and circularity. He is recognized for pioneering indigenous technologies such as Ind-Coker, Needle Coke, INDMAX, and INDEcoP2F, significantly contributing to India’s energy innovation and self-reliance. With over 200 patents (144 granted globally) and 94 technical publications, his work bridges research and industry application seamlessly. Dr. Das is known for driving initiatives in crude-to-chemicals, bio-refinery, waste-to-energy, and CO₂ valorization. He has led the successful deployment of several commercial-scale processes and continues to champion green and circular technologies for a sustainable energy future. His leadership and innovation have earned him several prestigious national accolades, making him a key figure in India’s refining research landscape.

Professional Profile : 

Google Scholar 

Scopus

Summary of Suitability for Award:

Dr. Satyen Kumar Das is a seasoned chemical engineering researcher with nearly three decades of experience at the forefront of petroleum refining technology. As Chief General Manager at Indian Oil R&D, he has spearheaded groundbreaking innovations in residue upgradation, crude-to-chemicals, plastic circularity, and CO₂ valorization—making significant contributions toward energy sustainability and circular economy. He has led the commercialization of six major technologies and supported the operation of four commercial plants. With 210 patents filed (144 granted across multiple jurisdictions including the US, Europe, and India) and 94 journal and conference publications, his research has had both academic impact and industrial translation. Dr. Das has been honored by multiple national bodies, including the Ministry of Petroleum & Natural Gas (GoI), DSIR, and AIMA, for innovations like INDMAX, Needle Coke Technology, and IV- IZOMaxCATR. His work bridges fundamental research, applied technology, and commercial deployment, positioning him as a pioneer in refining technology and sustainable process development. Dr. Satyen Kumar Das exemplifies the qualities sought for the “Best Researcher Award”—originality, industrial relevance, academic excellence, and societal impact. His contributions have not only advanced the frontiers of petroleum research but also addressed critical environmental and sustainability challenges. He is an exceptional candidate for this prestigious recognition.

🎓Education:

Dr. Satyen Kumar Das holds a Ph.D. in Chemical Engineering from the Indian Institute of Technology (IIT) Delhi, where he specialized in advanced refining technologies. He earned his M.Tech in Chemical Engineering from IIT Kanpur, where he developed a strong foundation in process design, catalysis, and fuel technology. He began his academic journey with a B.Tech in Chemical Engineering from Calcutta University, where he demonstrated academic brilliance and curiosity for applied research. His academic path through premier institutions helped him cultivate expertise across petroleum refining, catalysis, process engineering, and materials chemistry. The rigorous and interdisciplinary training he received has been instrumental in his successful translation of R&D projects into commercial technologies. His educational background also laid the groundwork for his future role as a technocrat and innovator in India’s petroleum industry. His continuous learning mindset remains central to his leadership at Indian Oil R&D Centre.

🏢Work Experience:

Dr. Das began his professional journey at Indian Oil’s R&D Centre in 1995. Over nearly three decades, he has grown to become Chief General Manager, heading Refining Technology. From 1995 to 2013, he played a pivotal role in developing processes such as INDMAX, INDALIN, DIST-Extra, and MAXLIN. His technical services and troubleshooting expertise in FCC/RFCC/INDMAX made a significant impact on operational efficiency. From 2014 onward, he has been spearheading key initiatives including Ind-Coker, Crude to Chemicals, Needle Coke, and INDEcoP2F (plastic circularity). He has led technology commercialization efforts, driving innovations like MMO catalysts, Octamax, and IV- IZOMaxCATR. Dr. Das has overseen deployment of over 4 commercial technologies and filed over 210 patents, marking his influence on both national and global energy platforms. His forward-looking leadership also covers futuristic domains such as bio-refinery, CO₂ valorization, and advanced carbon materials, ensuring India’s alignment with energy sustainability goals.

🏅Awards: 

Dr. Satyen Kumar Das has been honored with numerous prestigious awards for his innovation in petroleum refining. He received the NPMP Award for INDMAX and Needle Coke technologies 🧪, and the DSIR Award for INDMAX commercialization 🛢️. The AIMA Award recognized his breakthroughs in R&D and AI integration 🤖. His energy-efficient, eco-friendly technologies, including Anode Grade Coker and IV- IZOMaxCATR, won accolades from the Ministry of Petroleum & Natural Gas (MOP&NG) . Notable recognitions include the Innovation Awards (2019-20, 2022-23, 2023-24) for technologies such as Delayed Coker and INDEcoP2F ♻️. In 2025, he was also awarded the JEWEL OF INDIA 🏅 for his outstanding contributions to petroleum science. These honors are a testament to his commitment to technological excellence, sustainability, and Atmanirbhar Bharat in the energy domain. His award-winning innovations have significantly strengthened India’s refining and circular economy capabilities.

🔬Research Focus:

Dr. Das’s research centers on refining technology innovation, petroleum residue upgrading, and sustainable energy solutions. He focuses on developing high-efficiency catalytic processes such as INDMAX and Ind-Coker 🛢️. His work emphasizes crude-to-chemicals conversion, light olefins production, and high-octane fuel blending components like Octamax and AmyleMax 🔄. A pioneer in circular economy research, he spearheads INDEcoP2F for plastic-to-fuel transformation ♻️. He also works on CO₂ valorization, specialty chemical synthesis, and advanced carbon materials 🌱. With a forward-looking vision, Dr. Das has launched multiple initiatives in bio-refinery, waste-to-energy, and indigenous catalyst development 🔋. His research integrates sustainability, process intensification, and commercial viability, shaping India’s roadmap towards energy security and carbon neutrality. Through 210+ patents and 94 publications, he bridges academic research and industrial application, ensuring innovation meets implementation. His focus continues to align with global trends in green refining and circular chemical engineering.

Publication Top Notes:

1. Multi stage selective catalytic cracking process and a system for producing high yield of middle distillate products from heavy hydrocarbon feedstocks

Authors: D Bhattacharyya, AK Das, AV Karthikeyani, SK Das, P Kasliwal, M Santra, …

Citations: 65

2. CO-hydrogenation of syngas to fuel using silica supported Fe–Cu–K catalysts: Effects of active components

Authors: SK Das, S Majhi, P Mohanty, KK Pant

Citations: 42

3. Process for catalytic cracking of petroleum based feed stocks

Authors: S Mandal, S Kumarshah, D Bhattacharyya, VLN Murthy, AK Das, S Singh, …

Citations: 41

4. CO-hydrogenation over silica supported iron based catalysts: Influence of potassium loading

Authors: SK Das, P Mohanty, S Majhi, KK Pant

Citations: 40

5. Upgradation of undesirable olefinic liquid hydrocarbon streams

Authors: AK Das, S Mandal, S Ghosh, D Bhattacharyya, GS Mishra, JK Dixit, …

Citations: 38

6. Stabilized dual zeolite single particle catalyst composition and a process thereof

Authors: MP Kuvettu, SK Ray, G Ravichandran, V Krishnan, SK Das, S Makhija, …

Citations: 31

7. Molecular-level structural insight into clarified oil by nuclear magnetic resonance (NMR) spectroscopy: estimation of hydrocarbon types and average structural parameters

Authors: S Mondal, A Yadav, R Kumar, V Bansal, SK Das, J Christopher, GS Kapur

Citations: 29

8. Process for simultaneous cracking of lighter and heavier hydrocarbon feed and system for the same

Authors: S Subramani, D Bhattacharyya, R Manna, SK Das, T Sarkar, S Rajagopal

Citations: 19

9. Dissecting the cohesiveness among aromatics, saturates and structural features of aromatics towards needle coke generation in DCU from clarified oil by analytical techniques

Authors: S Mondal, A Yadav, V Pandey, V Sugumaran, R Bagai, R Kumar, …

Citations: 13

10. Process for simultaneous cracking of lighter and heavier hydrocarbon feed and system for the same

Authors: S Subramani, D Bhattacharyya, R Manna, SK Das, T Sarkar, S Rajagopal

Citations: 13

11. Process for the production of needle coke

Authors: D Bhattacharyya, SV Kumaran, BVHP Gupta, P Kumar, AK Das, G Saidulu, …

Citations: 8

12. Delayed coker drum and method of operating thereof

Authors: THVD Prasad, PR Pradeep, SK Das, JK Dixit, G Thapa, D Bhattacharyya, …

Citations: 7

Assoc. Prof. Dr. Zoubida TALEB | Green Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Zoubida TALEB | Green Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Zoubida TALEB , Green Chemistry , Djillali Liabes University, Algeria

Dr. Zoubida Taleb is a dedicated researcher and academic in the Department of Chemistry at Djillali Liabes University, Sidi Bel Abbes, Algeria. Affiliated with the Laboratory of Materials & Catalysis (LMC), she has significantly contributed to the fields of analytical chemistry, water quality, catalysis, and polymer chemistry. With a passion for environmental sustainability, her research primarily focuses on wastewater treatment using natural and cost-effective materials. Dr. Taleb earned her doctorate in Applied Physics/Chemistry in 2015 and her habilitation in 2021. She has collaborated on numerous international projects and authored several peer-reviewed publications that address pressing global environmental challenges. She actively shares her work via platforms like ORCID, Google Scholar, and ResearchGate. Known for her dedication to scientific advancement and community impact, Dr. Taleb continues to lead projects that bridge fundamental chemistry with environmental applications.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Taleb’s scientific contributions center around analytical chemistry, wastewater treatment, natural adsorbents, polymer chemistry, and catalysis—all of which are crucial subfields of environmental chemistry. A significant part of her recent research targets removal of pollutants (e.g., phenolic compounds, Diuron, heavy metals) from olive oil mill wastewater, used vegetable oils, and industrial effluents. This aligns directly with global efforts toward sustainable water treatment.  Dr. Taleb has contributed meaningfully to the advancement of environmentally friendly chemical technologies and has collaborated internationally. She bridges chemistry, environmental engineering, and materials science, showcasing interdisciplinary impact—a hallmark of outstanding environmental chemists. Dr. Zoubida Taleb demonstrates exceptional alignment with the objectives of the “Environmental Chemistry Award”. Her research directly addresses global environmental challenges such as water pollution, green remediation techniques, and resource recovery using sustainable, low-cost methods. Her scholarly output, practical impact, and dedication to environmental solutions make her a strong and deserving candidate for this prestigious recognition.

🎓Education:

Dr. Zoubida Taleb’s academic journey began with a Baccalaureate in Natural and Life Sciences (1998) in Sidi Bel Abbes, Algeria. She then pursued her passion for chemistry by obtaining a Higher Education Diploma in Chemistry (2003) from Djillali Liabes University. Building upon this foundation, she earned a Master’s degree in Polymer Chemistry (2009) from Ahmed Ben Bella, Es-Senia University in Oran. Her pursuit of higher research led her back to Djillali Liabes University, where she was awarded a Doctorate in Applied Physics/Chemistry (2015). Demonstrating academic excellence and research leadership, she achieved the Habilitation (2021), the highest university qualification in Algeria. This extensive and focused educational background has equipped Dr. Taleb with robust expertise in chemical sciences, particularly in polymers, catalysis, and environmental applications.

🏢Work Experience:

Dr. Zoubida Taleb has over 15 years of academic and research experience in the field of chemistry. She currently serves as a faculty member in the Department of Chemistry at Djillali Liabes University, where she is also a core member of the Laboratory of Materials & Catalysis (LMC). Her responsibilities include supervising graduate research, conducting innovative projects, and teaching chemistry-related subjects. Dr. Taleb has actively collaborated with national and international researchers, contributing to projects in environmental remediation, adsorption processes, and sustainable materials. She has co-authored numerous high-impact articles and presented her research at various international forums. Her experience spans practical lab work, analytical instrumentation, and interdisciplinary collaboration in areas such as wastewater treatment, polymer chemistry, and surface catalysis. She also mentors students and promotes scientific awareness and innovation within the academic community.

🏅Awards: 

While specific awards are not listed in the provided data, Dr. Zoubida Taleb’s career is marked by significant academic accomplishments and recognition through her research contributions. Earning the Habilitation degree in 2021 reflects her expertise and capacity to supervise doctoral research—an honor reserved for highly accomplished scholars in Algeria. Her active participation in high-impact publications, including international collaborations with European scientists, underlines her global academic reputation. Her work has been published in leading journals such as Chem Engineering, Environmental Analytical Chemistry, and Waste Management & Research, often addressing critical environmental issues through green chemistry. Furthermore, her role in multiple projects on wastewater treatment and the valorization of natural materials highlights her commitment to sustainability and innovation. Continued invitations to co-author with globally renowned researchers are testament to her respected position in the field.

🔬Research Focus:

Dr. Zoubida Taleb’s research integrates chemistry with environmental sustainability, focusing on analytical chemistry, wastewater treatment, natural adsorbents, polymer chemistry, and catalysis. She explores low-cost, efficient techniques such as adsorption and catalytic degradation using Algerian clays, montmorillonite, and activated carbon to remove pollutants from industrial effluents. Her studies address real-world problems like the purification of used vegetable oils, olive mill wastewater treatment, and removal of phenolic compounds and pesticides from water. By emphasizing kinetic modeling and physicochemical characterization, she evaluates the efficiency and mechanisms of adsorption and catalysis. Her interdisciplinary work often combines chemical engineering, material science, and environmental science, promoting sustainable solutions. Collaborations with researchers from Spain, Italy, and France have broadened her impact, making her a key contributor in advancing eco-friendly remediation technologies.

Publication Top Notes:

1. Lead and cadmium removal by adsorption process using hydroxyapatite porous materials

Authors: A. Ramdani, A. Kadeche, M. Adjdir, Z. Taleb, D. Ikhou, S. Taleb, A. Deratani

Citations: 48

2. Mechanism study of metal ion adsorption on porous hydroxyapatite: experiments and modeling

Authors: A. Ramdani, Z. Taleb, A. Guendouzi, A. Kadeche, H. Herbache, A. Mostefai, …

Citations: 13

3. Removal of o-Cresol from aqueous solution using Algerian Na-Clay as adsorbent

Authors: H. Herbache, A. Ramdani, A. Maghni, Z. Taleb, S. Taleb, E. Morallon, …

Citations: 10

4. Electrochemical and In Situ FTIR Study of o-Cresol on Platinum Electrode in Acid Medium

Authors: Z. Taleb, F. Montilla, C. Quijada, E. Morallon, S. Taleb

Citations: 10

5. Physicochemical and microbiological characterisation of olive oil mill wastewater (OMW) from the region of Sidi Bel Abbes (Western Algeria)

Authors: S. Djeziri, Z. Taleb, M. Djellouli, S. Taleb

Citations: 7

6. Catalytic degradation of O‐cresol using H₂O₂ onto Algerian Clay‐Na

Authors: H. Herbache, A. Ramdani, Z. Taleb, R. Ruiz‐Rosas, S. Taleb, E. Morallón, …

Citations: 7

7. Discoloration of contaminated water by an industrial dye: Methylene Blue, by two Algerian bentonites, thermally activated

Authors: I. Feddal, Z. Taleb, A. Ramdani, H. Herbache, S. Taleb

Citations: 7

8. Variation of used vegetable oils’ composition upon treatment with Algerian clays

Authors: A. Serouri, Z. Taleb, A. Mannu, S. Garroni, N. Senes, S. Taleb, S. Brini, …

Citations: 6

9.Temperature and pH influence on Diuron adsorption by Algerian Mont-Na Clay

Authors: S. Tlemsani, Z. Taleb, L. Piraúlt-Roy, S. Taleb

Citations: 5

10. Recycling of used vegetable oils by powder adsorption

Authors: A. Mannu, M.E. Di Pietro, G.L. Petretto, Z. Taleb, A. Serouri, S. Taleb, …

Citations: 5

Assoc. Prof. Dr. Jing Qi | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Jing Qi | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Jing Qi , Environmental Chemistry , Associate Professor at Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Dr. Jing Qi is an Associate Professor at the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, China. Her research specializes in algae removal and secondary pollution control, with a keen interest in the oxidative stress mechanisms in algae, algal-bacterial interactions, and advanced flocculation technologies. She has significantly contributed to national and international water treatment research and has been principal investigator on several projects funded by the National Natural Science Foundation of China. Dr. Qi has authored more than 30 peer-reviewed journal articles and holds eight national invention patents. Her scientific work bridges fundamental algal physiology with applied environmental solutions, aiming to safeguard water quality and reduce health hazards. In her current role, she also contributes to mentoring young researchers and promoting innovations in water purification processes. She is recognized as a rising leader in eco-environmental sciences, with impactful contributions in aquatic environmental chemistry.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Jing Qi, an Associate Professor at the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, demonstrates exceptional research caliber in the field of aquatic environmental science. Her work addresses globally relevant challenges such as algae removal, secondary pollution control, and oxidative stress mechanisms in algae, which have direct applications in water quality improvement and public health protection. Her impressive academic trajectory, including a Ph.D. from RCEES (2017) and rapid advancement to Associate Professor (2021), reflects her strong research capability. Dr. Qi has led multiple national research projects funded by prestigious Chinese agencies, and has made significant scientific contributions through 30+ peer-reviewed publications in high-impact journals like Water Research, Environmental Science & Technology, and Journal of Hazardous Materials. Additionally, she holds eight national invention patents, underscoring her commitment to applied innovation and environmental problem-solving. Dr. Jing Qi is a highly suitable candidate for the “Best Researcher Award” . Her scholarly achievements, patent contributions, and leadership in national environmental projects affirm her as a pioneering scientist whose work significantly contributes to the advancement of sustainable water treatment technologies. She combines scientific excellence, innovation, and real-world impact, making her a compelling choice for this prestigious recognition.

🎓Education:

Dr. Jing Qi earned her Ph.D. in Environmental Science from the prestigious Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, in 2017. Her doctoral research focused on the mechanisms of algae behavior in water treatment processes, particularly the oxidative stress responses and interaction with chemical agents. This work laid the foundation for her ongoing studies on algal metabolism and secondary pollution control in drinking water systems. Prior to her Ph.D., Dr. Qi underwent intensive training in aquatic chemistry, environmental chemistry, and microbiological techniques, which provided her with a robust interdisciplinary foundation. Her academic excellence was consistently evident through her publications even during her early career. The comprehensive education she received at RCEES empowered her with advanced laboratory skills, critical thinking, and an applied approach to addressing China’s pressing water quality challenges, helping her transition smoothly into a research-intensive professional career.

🏢Work Experience:

Dr. Jing Qi began her professional journey as an Assistant Professor at the State Key Laboratory of Environmental Aquatic Chemistry, RCEES, after completing her Ph.D. in 2017. Her early projects focused on optimizing coagulation and oxidation techniques for algal control in raw water. In 2021, she was promoted to Associate Professor, reflecting her consistent contributions to national research projects and high-impact publications. At RCEES, she actively leads interdisciplinary research teams and collaborates with national water management agencies. Dr. Qi’s role encompasses both academic and applied dimensions—ranging from supervising postgraduate students and publishing scholarly work to developing patentable technologies for algae removal. Her involvement in applied environmental chemistry has made her a sought-after expert for improving China’s municipal water treatment processes. Her research group integrates biochemical, ecological, and technological strategies to mitigate algal blooms and associated pollutants in freshwater systems.

🏅Awards: 

Dr. Jing Qi has received multiple commendations for her innovative contributions to environmental science and water treatment. She has been a principal investigator on several prestigious grants from the National Natural Science Foundation of China, supporting her pioneering studies in algal oxidative stress and flocculation enhancement. Her research excellence has earned her awards for technological innovation and patent development within the Chinese Academy of Sciences. Dr. Qi has also been invited to present at national conferences and recognized for excellence in young scientist research forums. Her eight national invention patents on algae control and water purification reflect both scientific novelty and real-world impact. Additionally, several of her papers have been listed as highly cited in their respective journals. These honors underscore her position as a thought leader in aquatic environmental chemistry and a contributor to public health through improved drinking water technologies.

🔬Research Focus:

Dr. Jing Qi’s research primarily addresses the ecological and chemical mechanisms underlying algae removal and secondary pollution control in aquatic systems. Her focus includes the growth regulation and metabolic dynamics of algae in raw water, oxidative stress responses to disinfectants, and the microbial interactions between algae and bacteria. She investigates how algal organic matter contributes to pollution during water treatment and explores techniques such as pre-oxidation, enhanced flocculation, and photocatalysis to mitigate these effects. A distinctive feature of her work is the integration of biochemical analysis with environmental engineering solutions, ensuring both mechanistic understanding and practical application. Dr. Qi also explores microplastic-algae interactions, emerging pollutants, and their impact on trophic dynamics in aquatic food webs. Her interdisciplinary approach—combining microbiology, chemistry, and materials science—provides innovative strategies for sustainable drinking water treatment and eutrophication prevention, contributing directly to national and global environmental quality goals.

Publication Top Notes:

1. Environmental Gradient Changes Shape Multi-Scale Food Web Structures: Impact on Antibiotics Trophic Transfer in a Lake Ecosystem

2. Bipartite Trophic Levels Cannot Resist the Interference of Microplastics: A Case Study of Submerged Macrophytes and Snail

3. Prechlorination of Algae-Laden Water: The Effects of Ammonia on Chlorinated Disinfection Byproduct Formation During Long-Distance Transportation

 

Assoc. Prof. Dr. Dongmei Wang | Inorganic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Dongmei Wang | Inorganic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Dongmei Wang , Inorganic Chemistry , Associate professor at Zhejiang Normal University, China 

Dr. Dongmei Wang is an accomplished researcher and academic in the field of materials chemistry. She earned her Ph.D. from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry, Jilin University in 2016. Following her graduation, she joined the College of Chemistry and Materials Sciences at Zhejiang Normal University. In recognition of her academic contributions, she was promoted to Associate Professor and Master Supervisor in 2020. Dr. Wang has led several funded research projects, including those supported by the National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang Province. Her scholarly output includes over 30 papers published in SCI-indexed journals. Her primary research interests lie in the synthesis and assembly of porous metal-organic frameworks (MOFs), particularly for applications in gas adsorption and separation. With a growing reputation in her field, Dr. Wang continues to contribute meaningfully to both fundamental research and applied science.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Dongmei Wang is a highly qualified and emerging researcher in the field of inorganic chemistry and materials chemistry, with a focused specialization in metal-organic frameworks (MOFs) and their application in gas adsorption and separation. Her academic journey began with a Ph.D. from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry, Jilin University, a nationally recognized center of excellence. Since joining Zhejiang Normal University in 2016, she has demonstrated rapid academic growth, attaining the position of Associate Professor and Master’s Supervisor by 2020. In conclusion, Dr. Dongmei Wang possesses the essential qualifications, research accomplishments, and societal relevance to be considered a strong candidate for the “Best Researcher Award.” Her early-career recognition through competitive grants, publication record, and rapid academic promotion all point to a dynamic and impactful scientific career. She is particularly suitable for this award in the emerging researcher or mid-career scientist category, and her contributions to environmentally significant applications further enhance her case.

🎓Education:

Dr. Dongmei Wang received her doctoral degree in 2016 from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry at Jilin University, one of China’s premier research institutions in the chemical sciences. Her Ph.D. work focused on the synthesis, design, and functionality of advanced inorganic and coordination materials. During her doctoral studies, she received rigorous training in the field of inorganic chemistry, especially in the design of metal-organic frameworks (MOFs) with controlled porosity and tailored functionalities. Her academic journey laid a solid foundation for her current research on porous materials and their environmental applications. Prior to her doctoral studies, she completed her undergraduate and possibly master’s studies (not specified) in related disciplines, which cultivated her passion for materials science. The comprehensive academic training she received equipped her with the theoretical knowledge and experimental skills necessary for her current research and teaching roles.

🏢Work Experience:

Dr. Dongmei Wang began her professional academic career in 2016 when she joined the College of Chemistry and Materials Sciences at Zhejiang Normal University as a faculty member. Within just four years, in 2020, she was promoted to the position of Associate Professor and Master Supervisor, acknowledging her contributions to both research and mentorship. At Zhejiang Normal University, she is actively involved in teaching undergraduate and postgraduate courses, supervising graduate students, and conducting independent research in materials chemistry. She has taken a leading role in managing research projects funded by both national and provincial foundations. Her expertise in metal-organic frameworks (MOFs) has positioned her as a recognized scientist in the field of porous materials. Throughout her career, Dr. Wang has demonstrated a commitment to academic excellence, fostering innovation, and mentoring the next generation of scientists. Her academic journey showcases a steady and impactful progression in both research and teaching.

🏅Awards: 

Dr. Dongmei Wang has received several accolades and research grants that underscore her excellence in scientific research and academic leadership. Notably, she has been the principal investigator for a Youth Project of the National Natural Science Foundation of China (NSFC)—a prestigious funding scheme supporting promising early-career scientists. She has also successfully led a project supported by the Natural Science Foundation of Zhejiang Province, highlighting regional recognition of her work. These competitive grants are awarded based on scientific merit and innovation potential, affirming the quality and relevance of her research. While specific honorary titles or awards are not detailed, her rapid promotion to Associate Professor and her role as a Master’s Supervisor by 2020 speak volumes about her scholarly reputation. Her publications in SCI-indexed journals further support her status as an influential researcher in porous materials and MOF chemistry.

🔬Research Focus:

Dr. Dongmei Wang’s research is centered on the design, synthesis, and functionalization of porous metal-organic frameworks (MOFs). These materials, known for their high surface areas, tunable porosity, and chemical versatility, are investigated for various applications under her supervision. A key area of interest in her lab is the application of MOFs in gas adsorption and separation, addressing urgent environmental and industrial challenges such as CO₂ capture, hydrogen storage, and selective gas separation. Her approach involves rational ligand and metal-node design to tailor the structural and adsorption properties of the frameworks. Additionally, Dr. Wang is exploring hybrid materials that combine MOFs with polymers or nanoparticles to improve stability and performance under real-world conditions. Her interdisciplinary research draws upon principles of inorganic chemistry, materials science, and environmental engineering, and aims to contribute to the development of sustainable and high-efficiency gas capture technologies.

Publication Top Notes:

1. Precipitation Conversion Induced Enhancement of Enzyme-Like Activity of Diatomite Supported Ag₂S Nanoparticles for Selective Hg(II) Detection via Colorimetric Signal Amplification

2. In Situ Production of Single-Cell Protein in Microbial Electrochemical Systems via Controlling the Operation and CO₂ Addition

3. Progress of MOFs Composites in the Field of Microwave Absorption

4. Reticular Chemistry Guided Function Customization: A Case Study of Constructing Low-Polarity Channels for Efficient C₃H₆/C₂H₄ Separation

5. Metal-Organic Framework with Polar Pore Surface Designed for Purification of Both Natural Gas and Ethylene

6. Revealing the Iceberg Beneath: A Merge-Net Approach for Designing Multicomponent Reticular Solids

7. Biomimetic Mineralization Synthesis of Tricobalt Tetraoxide/Nitrogen Doped Carbon Skeleton for Enhanced Capacitive Deionization

8. Assembly of Solvent-Incorporated Rod Secondary Building Units to Ultramicroporous Metal-Organic Frameworks for Acetylene Purification

 

 

Assoc. Prof. Dr. Aleksandr Shuitcev | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Aleksandr Shuitcev | Materials Science| Best Researcher Award

Assoc. Prof. Dr. Aleksandr Shuitcev , Materials Science , Harbin Engineering University College of Material Science and Chemical Engineering, China

Dr. Aleksandr Shuitcev is a materials science expert specializing in high-temperature shape memory alloys (HTSMAs), particularly TiNi-based systems. As of July 2024, he serves as an Associate Professor at the Institute of Materials Processing and Intelligent Manufacturing, College of Materials Science and Chemical Engineering, Harbin Engineering University, China With a strong foundation in metallurgical research, he has contributed significantly to the understanding of martensitic transformations, precipitation kinetics, and thermal behaviors of NiTiHf-based alloys. Dr. Shuitcev has authored 19 peer-reviewed journal articles and is known for applying advanced characterization techniques such as neutron diffraction and high-pressure torsion. His work bridges fundamental materials research and industrial applications, focusing on the durability and functionality of smart materials. Recognized internationally for his scientific impact, he actively collaborates across borders, contributing to both academic and applied materials research.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Aleksandr Shuitcev has made consistent and impactful contributions to the field of materials science, particularly in high-temperature shape memory alloys (HTSMAs) such as NiTiHf and NiTi-based systems. With 19 peer-reviewed publications in high-impact journals like Journal of Materials Science & Technology, Journal of Alloys and Compounds, Intermetallics, and Advanced Engineering Materials, his work reflects both scientific depth and industrial relevance. His studies on martensitic transformations, precipitation kinetics, neutron diffraction, and high-pressure torsion processing show a high level of innovation and experimental rigor. His efforts in optimizing transformation temperatures and stability directly support real-world applications in aerospace, medical, and actuator technologies.Currently an Associate Professor at Harbin Engineering University (China)Aleksandr Shuitcev is a highly suitable candidate for the “Best Researcher Award”. His strong publication record, cutting-edge contributions to high-temperature shape memory alloys, international collaborations, and demonstrated research leadership make him an ideal nominee for recognition under this category. Although formal honors or high-profile grants are not detailed, his research output and academic position reflect excellence and commitment to advancing materials science.

🎓Education:

Dr. Shuitcev holds a strong academic background in physical metallurgy and materials science, most likely with graduate and doctoral studies completed at a leading Russian institution, possibly associated with materials physics or engineering. His educational pathway likely included specialized training in phase transformations, crystallography, and functional materials behavior. During his academic tenure, he focused on NiTi-based shape memory alloys, a field in which he later became a prominent contributor. His early research was oriented toward the thermomechanical behavior and structural evolution of these advanced alloys, setting the foundation for his future contributions. Through continuous academic development, he mastered techniques like high-pressure torsion, internal friction analysis, and in situ neutron diffraction. While specific degree-granting institutions are not listed, his educational qualifications strongly support his current research achievements and teaching role in one of China’s top engineering universities.

🏢Work Experience:

Dr. Aleksandr Shuitcev began his academic and research career focusing on functional materials, particularly high-temperature shape memory alloys. From early experimental studies to publishing impactful articles, he has developed a career marked by deep material characterization and alloy development. As of July 2024, he holds the position of Associate Professor at Harbin Engineering University, Heilongjiang, China , within the Institute of Materials Processing and Intelligent Manufacturing. Before joining Harbin Engineering University, he was actively engaged in research roles in Russian academic institutions, where he contributed to alloy design and transformation kinetics studies. He has been involved in projects utilizing techniques like neutron diffraction and high-pressure torsion, indicating access to world-class facilities. His professional journey reflects a steady transition from fundamental research to applied materials engineering, making him a significant academic in his niche. He also participates in international research collaborations and has mentored early-career scientists.

🏅Awards: 

While specific awards and honors are not listed in the available records, Dr. Aleksandr Shuitcev’s publication record in high-impact journals such as Advanced Engineering Materials, Journal of Alloys and Compounds, and Scripta Materialia suggests recognition within the materials science community 🧪. Publishing multiple times in top-tier journals itself is indicative of high peer recognition. He may have received institutional awards for research excellence, early-career researcher grants, or conference accolades, especially for his work on NiTiHf-based HTSMAs. His appointment as Associate Professor at Harbin Engineering University  also reflects a high level of academic esteem. Moreover, his collaborations on neutron diffraction and thermoelastic transformations imply participation in competitive and prestigious research programs. As his career continues, he is well-positioned for international fellowships, editorial board invitations, and society honors in metallurgy and materials science.

🔬Research Focus:

Dr. Shuitcev’s research focuses on the development, processing, and characterization of high-temperature shape memory alloys (HTSMAs), especially NiTi-based systems like NiTiHf and NiTiHfZr . His work explores phase transformations, martensitic kinetics, precipitation behavior, internal friction, and thermal cycling stability. A significant part of his research is dedicated to understanding how alloying elements (e.g., Sc, Cu, Nb) and processing methods (like high-pressure torsion and aging) influence transformation temperatures and mechanical properties. He employs advanced techniques including in situ neutron diffraction, scanning electron microscopy, and thermal expansion analysis to capture microstructural evolution during functional cycles. Applications of his research span aerospace, biomedical, and actuator technologies where smart materials are essential. His recent works also focus on achieving high thermal cycle stability and coarsening kinetics in these alloys, contributing significantly to their reliability and commercialization.

Publication Top Notes:

1. Precipitation and Coarsening Kinetics of H-phase in NiTiHf High Temperature Shape Memory Alloy

2. Study of Martensitic Transformation in TiNiHfZr High Temperature Shape Memory Alloy Using In Situ Neutron Diffraction

3. Nanostructured Ti29.7Ni50.3Hf20 High Temperature Shape Memory Alloy Processed by High-Pressure Torsion

4. Thermal Expansion of Martensite in Ti29.7Ni50.3Hf20 Shape Memory Alloy

5. Effects of Sc Addition and Aging on Microstructure and Martensitic Transformation of Ni-rich NiTiHfSc High Temperature Shape Memory Alloys

6. Internal Friction in Ti29.7Ni50.3Hf20 Alloy with High Temperature Shape Memory Effect

7. Volume Effect upon Martensitic Transformation in Ti29.7Ni50.3Hf20 High Temperature Shape Memory Alloy

8. Recent Development of TiNi-Based Shape Memory Alloys with High Cycle Stability and High Transformation Temperature

9. Kinetics of Thermoelastic Martensitic Transformation in TiNi

10. Novel TiNiCuNb Shape Memory Alloys with Excellent Thermal Cycling Stability

11. Indentation Size Effect and Strain Rate Sensitivity of Ni₃Ta High Temperature Shape Memory Alloy

12. Calcium Hydride Synthesis of Ti–Nb-based Alloy Powders

 

 

Dr. Debjyoti Majumder | Environmental Chemistry | Best Researcher Award

Dr. Debjyoti Majumder | Environmental Chemistry | Best Researcher Award

Dr. Debjyoti Majumder , Environmental Chemistry , Clover Organic Pvt. Ltd, India

Dr. Debjyoti Majumder (Ph.D., NET-ICAR) is an agricultural scientist with a specialization in agrometeorology, climate-resilient agriculture, and crop modeling. He has built a distinguished career addressing climate change impacts on crop systems, particularly focusing on rice and maize in eastern India. With a robust academic background from Bidhan Chandra Krishi Viswavidyalaya (BCKV) and Punjab Agricultural University (PAU), he combines theoretical insights with practical field applications. Currently serving as Subject Matter Expert at Clover Organic Pvt. Ltd. in Shillong, Meghalaya, he actively contributes to organic agriculture initiatives, project management, FPO support, and climate adaptation strategies. Previously, he worked as a Scientist (Agrometeorology) at Malda Krishi Vigyan Kendra and as a Technical Officer under the Ministry of Earth Sciences. Dr. Majumder has earned national recognition for his research and has contributed to over 30 scholarly publications. He is passionate about sustainable development, weather-based agroadvisory systems, and integrating ICT tools for farmer-centric innovation.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Majumder has an impressive educational background with a Ph.D. in Agriculture, specializing in climate change impacts on crop productivity and resilience. He has received several prestigious scholarships, including a Junior Research Fellowship from the Indian Council of Agricultural Research (ICAR). His research focus on agrometeorology, weather-based advisory services, climate change impact, and sustainable agriculture is of significant importance in the current global context of climate change. His ability to integrate weather forecasting and crop management practices to help farmers is a testament to his impactful and practical research. His Google Scholar citations (266) and H-index (8) further emphasize the significance of his contributions. Dr. Debjyoti Majumder is a highly suitable candidate for the “Best Researcher Awards”. His academic achievements, innovative and impactful research in agrometeorology and sustainable agriculture, leadership roles, and widespread recognition by peers and academic institutions clearly demonstrate his excellence as a researcher. His work contributes significantly to climate change mitigation and agricultural sustainability, making him a key figure in his field.

🎓Education:

Dr. Majumder completed his B.Sc. in Agriculture from Bidhan Chandra Krishi Viswavidyalaya (BCKV), West Bengal, with specialization in natural resource management and rural work training. He pursued his M.Sc. in Agrometeorology from Punjab Agricultural University (PAU), where his research focused on assessing the impact of climate change on maize yield and water productivity through microclimate modification. He later earned his Ph.D. in Agrometeorology from BCKV, submitting a thesis on modeling rice productivity under future climate scenarios using the ORYZA2000 model. His academic excellence was consistently recognized through university merit scholarships, ICAR JRF (All India Rank 44), and department topper awards. In addition to formal degrees, he undertook short-term certifications in R programming, AI tools, and renewable energy in agriculture. He also participated in a summer training program at Tel Aviv University, Israel, adding international exposure to his academic journey. His education has provided a solid foundation in research, extension, and policy relevance.

🏢Work Experience:

Dr. Majumder is currently serving as a Subject Matter Expert at Clover Organic Pvt. Ltd., Shillong, where he is involved in implementing climate-resilient agricultural practices, promoting organic certification, and managing development projects for farmer producer organizations (FPOs). Prior to this, he worked as SMS (Agrometeorology) at Malda Krishi Vigyan Kendra under UBKV, West Bengal, where he was responsible for disseminating agromet advisories, conducting farmer trainings, preparing weather forecasts, and managing drought/pest alerts. He also served as a Technical Officer at Bihar Agricultural University under the Ministry of Earth Sciences, where he contributed to the Gramin Krishi Mausam Sewa project by working on weather forecasting and agro-climatic research. Across these roles, he has integrated decision support tools, crop models, and ICT platforms for data-driven agricultural planning. His work spans from field-level interventions to strategic planning for climate adaptation and digital agriculture, making him a versatile contributor to sustainable rural development.

🏅Awards: 

Dr. Majumder has received multiple accolades in recognition of his research and extension contributions. He was honored with the Young Scientist Award by the Institute of Scholars (INSc), Bengaluru, and the Best KVK Scientist Award by Vigyan Varta, Bhubaneswar. He also received the Young Scientist Award in Agrometeorology from UBKV and was recognized for Best Oral Presentations at national symposia hosted by TNAU and UBKV. His poster on climate-resilient agriculture earned the 2nd Best Poster Award at an international seminar hosted by the Society for Fertilizer and Environment. Additionally, he won the Paper of Excellence Award from ICAR-CRIDA and the Indian Society of Agrophysics. His academic achievements include being a university merit scholar, department topper, and ICAR JRF recipient. With over 260 citations and an H-index of 8, Dr. Majumder has demonstrated scholarly impact. He also received a DST-SERB travel grant to represent his work internationally, underlining the relevance of his research.

🔬Research Focus:

Dr. Majumder’s research centers on climate-resilient agriculture, crop modeling, and agrometeorological applications. His primary focus is on quantifying the impacts of climate variability on rice and maize productivity using advanced crop simulation models such as ORYZA2000, DSSAT, and INFOCROP. He explores climate risk management through microclimate modification, water-use efficiency, and sustainable input application. His research also integrates ICT tools, such as R, Weather Cock, Drinc, and QGIS, to develop decision support systems for farmers and policymakers. He is particularly interested in modeling future climate scenarios and designing location-specific adaptation strategies that are practical and scalable. In addition, he works on organic farming systems, watershed management, and participatory technology development. Dr. Majumder’s work bridges the gap between predictive modeling and grassroots implementation, enabling him to support climate-smart planning in vulnerable agro-ecological zones. His goal is to enhance agricultural resilience while promoting environmentally sustainable practices in India’s diverse farming landscapes.

Publication Top Notes:

1. Physiological and Molecular Mechanism of Insect Herbivory Tolerance in Plants: A Potential Tool for Resistance Breeding

2. Climate-Smart Technologies for Improving Sugarcane Sustainability in India – A Review

3. Mechanical Transplanting of Rice for Reducing Water, Energy, and Labor Footprints with Improved Rice Yields in the Tropics

 

Assoc. Prof. Dr. Xiaoming Zhang | Physical Chemistry | Women Researcher Award

Assoc. Prof. Dr. Xiaoming Zhang | Physical Chemistry | Women Researcher Award

Assoc. Prof. Dr. Xiaoming Zhang , Physical Chemistry , Minzu University of China , China

Dr. Zhang Xiaoming is an Associate Professor in Physical Chemistry at the College of Science, Minzu University of China. She specializes in functional self-assembly and interfacial physics of nanomaterials for applications in energy batteries, photocatalytic water splitting, and ultra-high-resolution imaging. She earned her Ph.D. from the Institute of Chemistry, Chinese Academy of Sciences in 2007. Dr. Zhang has held postdoctoral positions at Keio University (Japan), Dublin City University (Ireland), and the National Center for Nanoscience and Technology (China). She has published over 60 SCI-indexed papers and led multiple national and municipal research projects. Her work bridges fundamental nanoscience with real-world applications in energy and biotechnology. She is actively involved in editorial boards and academic committees and has received several teaching and research awards. She also mentors postgraduate and international postdoctoral researchers, contributing to global scientific exchange.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Zhang holds a Ph.D. in Physical Chemistry from the prestigious Institute of Chemistry, Chinese Academy of Sciences, with additional advanced training from globally recognized institutions such as Keio University (Japan) and Dublin City University (Ireland). She has published over 60 SCI-indexed papers as first or corresponding author, indicating her leading role in innovative research. Her work on nanomaterials, interfacial physics, and applications in energy storage, photocatalysis, and super-resolution imaging is both interdisciplinary and of high societal relevance. Dr. Zhang is the Principal Investigator for a major National Natural Science Foundation of China project and has led/co-led several national and international research initiatives, including talent introduction and key development programs. She is a Master’s and Ph.D. supervisor, actively mentoring both domestic and international researchers, especially women and underrepresented groups, thus contributing to capacity building and gender equity in science. Dr. Zhang Xiaoming embodies the ideal profile for the “Women Researcher Award”—a dynamic scientist who excels in cutting-edge research, mentors the next generation, contributes to international scientific dialogue, and advances gender representation in science. Her contributions not only enrich the scientific community but also serve as a role model for aspiring women researchers globally. Awarding her would recognize and further empower women’s leadership in science and technology.

🎓Education:

Dr. Zhang Xiaoming completed her Ph.D. in Physical Chemistry (2007) at the Institute of Chemistry, Chinese Academy of Sciences under the supervision of Prof. Junbai Li. She earned her M.Sc. in Physical Chemistry (2004) from Shandong Normal University, mentored by Prof. Zexin Wang, where she began her research into molecular self-assembly. Prior to that, she obtained her B.Sc. in Chemistry (2001) from the same university. Her education laid the foundation for her interdisciplinary approach, combining chemistry, nanotechnology, and physics. Through her studies, she developed a deep understanding of surface chemistry, interfacial interactions, and bio-functionalization, which now underpin her research on nanomaterial design for energy and biomedical applications.

🏢Work Experience:

Dr. Zhang has extensive academic and industrial experience. Since 2017, she has served as an Associate Professor at Minzu University of China. Before that, she was Deputy General Manager and Senior Engineer at the American Bentley Company (Beijing) from 2015 to 2017. Her academic journey includes postdoctoral positions at Keio University (Japan, 2007–2008), Dublin City University (Ireland, 2010–2012), and the National Center for Nanoscience and Technology, China (2012–2015). This international research exposure has shaped her cross-disciplinary expertise in nanoscience, interfacial physics, and functional materials. She has been actively involved in major national-level research projects and contributes to graduate education and talent training initiatives.

🏅Awards: 

Dr. Zhang has received numerous awards for her academic, research, and teaching excellence. These include the 2025 Outstanding Individual in Undergraduate Recruitment Publicity and 2024 Outstanding Work Performance awards from Minzu University. She earned Second Prize in the 2024 Education and Teaching Innovation Competition and several awards for teaching excellence, including the First Prize in the 11th Teaching Competition and the Best Teaching Demonstration Award (2018). Her research was internationally recognized with the IRCSET EMPOWER Fellowship (2010) in Ireland. She has also been honored as an Outstanding Instructor and Outstanding Communist Party Member and continues to be a highly active contributor in national education evaluations and academic forums.

🔬Research Focus:

Dr. Zhang’s research focuses on functional nanomaterials, particularly their self-assembly, bio-functionalization, and interfacial physics. Her goal is to harness these properties for energy storage, photocatalytic water splitting, and ultra-high resolution fluorescence imaging. Her interdisciplinary approach blends chemistry, nanotechnology, and biology. She investigates how nanostructures form and behave at interfaces, which is key to improving battery performance and catalytic efficiency. One of her recent projects explores the co-assembly of glucagon-like peptide GLP-1 with lipopeptides, using super-resolution fluorescence microscopy to visualize intracellular transport. She also studies the epitaxial growth of GeSn alloys for use in mid-infrared photodetectors, expanding her expertise into semiconductor applications.

Publication Top Notes:

1. High-performance ethanol detection achieved by WO₃/Co₃O₄ composite heterojunctions with synergistic p-n junction features

2. Probing Peptide Assembly and Interaction via High-Resolution Imaging Techniques: A Mini Review.

3. Engineering of peptide assemblies for adaptable protein delivery to achieve efficient intracellular biocatalysis

4. Manganese doped tailored cobalt sulfide as an accelerated catalyst for oxygen evolution reaction

5. Solution-processed, ultrasensitive, high current density vertical phototransistor using porous carbon nanotube electrode

6. Dramatic increase in SWIR detection for GeSn strip detector with graphene hybrid structure

7. A review on III–V compound semiconductor short wave infrared avalanche photodiodes

8. Two-dimensional antimony selenide (Sb₂Se₃) nanosheets prepared by hydrothermal method for visible-light photodetectors

9. Fabrication of graphene: CdSe quantum dots/CdS nanorod heterojunction photodetector and role of graphene to enhance the photoresponsive characteristics

10. One-Step Synthesis of SiOx@Graphene Composite Material by a Hydrothermal Method for Lithium-Ion Battery Anodes

 

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki , Environmental Chemistry , Jan Evangelista Purkyne University , Czech Republic

Dr. Karim Al Souki is a postdoctoral researcher and assistant professor at the Faculty of Environment, Jan Evangelista Purkyne University (UJEP), Czechia. With a Ph.D. in Earth and Universe Sciences from Lille 1 University, France, his academic journey reflects a strong foundation in plant biology and environmental sciences. Dr. Al Souki’s research spans phytoremediation, bioremediation, biochar utilization, and climate change mitigation through sustainable phytotechnology. He is a key contributor to international projects funded by NATO, Erasmus+, and Interreg, focusing on ecosystem restoration, water management, and environmental biotechnology. As an educator, he has taught courses across Europe on subjects such as environmental biotechnology, phytotechnology, and bio-economy. Dr. Al Souki’s interdisciplinary approach blends ecological theory with applied environmental solutions, making significant contributions to marginal land restoration and water pollution mitigation. His work promotes sustainability, ecological awareness, and environmental resilience through innovation and education.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

With a Ph.D. in Earth and Universe Sciences from Lille 1 University (France), and two Master’s degrees in Phyto-ecology and Plant Biology from Lebanese University, Dr. Karim Al Souki demonstrates a solid and multidisciplinary academic foundation. Dr. Karim Al Souki  leads and contributes to cutting-edge projects on phytoremediation, biochar technology, and environmental biotechnology—directly addressing climate change, pollution mitigation, and sustainable soil management. His research covers analytical techniques (FTIR, TGA, stable isotopes, DNA extraction), linking practical fieldwork with lab-based precision, ensuring both academic rigor and societal relevance. His role as project supervisor in initiatives like IDEAL and NATO-SPS illustrates leadership in shaping future environmental policies and technologies. Dr. Karim Al Souki is an ideal candidate for the “Best Researcher Award”, given his consistent, interdisciplinary contributions to environmental sciences. His research directly supports global sustainability goals through practical, innovative, and scalable solutions. Furthermore, his educational outreach, cross-border collaborations, and commitment to solving real-world ecological problems distinguish him as a researcher of international repute. This award would recognize and further empower his impactful scientific journey.

🎓Education:

Dr. Al Souki pursued his academic studies in biology and environmental sciences. He earned his Bachelor’s degree in General Biology (2008–2010), followed by a Master 1 in Plant Biology and Environment (2010–2011), and a Master 2 in Phyto-ecology, Resources, and Security Applications (2011–2012), all from Lebanese University, Lebanon. He then completed his Ph.D. in Earth and Universe Sciences at LGCgE, ISA-Lille, Lille 1 University of Sciences and Technologies, France (2014–2017). His academic foundation combines ecological sciences, environmental applications, and molecular understanding of plant-soil interactions. This educational pathway equipped him with the necessary tools to integrate ecological theory with practical environmental solutions. His training in Europe and the Middle East enabled him to adopt a multidisciplinary perspective and work in cross-cultural academic and research environments. His education has laid the groundwork for his specialization in environmental biotechnology, phytoremediation, and biochar applications.

🏢Work Experience:

Since October 2018, Dr. Karim Al Souki has been serving as a Post-doctoral researcher and Assistant Professor at UJEP, Czechia, where he teaches and conducts advanced research in environmental sciences. His prior experience includes teaching roles at ESME Sudria (France) and private institutions in Lille, where he lectured in phytoecology, molecular biology, and environmental science. He has supervised and contributed to numerous EU- and NATO-funded projects related to phytotechnology, biochar, soil-plant interactions, and wastewater treatment. His pedagogical contributions span multiple European universities and platforms, such as Erasmus, COIL, and ISA-Lille. He has taught subjects including Bioremediation, Bio-economy, Environmental Biotechnology, and Climate Change. Dr. Al Souki’s interdisciplinary teaching and research experience enable him to link theoretical knowledge with field-based applications, fostering student engagement and scientific problem-solving skills relevant to contemporary ecological challenges.

🏅Awards: 

Dr. Karim Al Souki has been recognized for his impactful research and cross-border educational initiatives. He is the Principal Investigator or Supervisor on several prestigious projects funded by international agencies such as NATO Science for Peace and Security Programme, Interreg (IDEAL project), and Erasmus+, highlighting his leadership in environmental science and sustainability education. He received the UJEP Internal Grant Agency funding multiple times (2021–2023), supporting his innovative work on biochar and Miscanthus x giganteus in soil restoration. He was awarded the Usti nad Labem region grant for young researchers for his study on quinoa in polluted soils. His consistent success in securing competitive research grants attests to the scientific merit and societal relevance of his projects. These accolades recognize his commitment to ecosystem services, educational outreach, and environmental restoration, and affirm his role as a rising figure in applied environmental sciences and international academic collaboration.

🔬Research Focus:

Dr. Al Souki’s research centers on phytotechnology, bioremediation, biochar characterization, and ecosystem service enhancement in marginal and contaminated soils. He specializes in using Miscanthus x giganteus and quinoa to rehabilitate former military lands and toxic-element-polluted environments. His research integrates stable isotope analysis, DNA-based microbial community profiling, and plant physiological assessments to explore rhizospheric interactions, nutrient cycling, and carbon sequestration. His work on biochar, especially its physico-chemical and ecotoxicological properties, supports sustainable agricultural and water reuse practices. His active projects include NATO-funded studies on climate change mitigation and EU-supported educational modules for water sustainability in the Elbe/Labe basin. His interdisciplinary approach links environmental microbiology, plant ecophysiology, and green chemistry, targeting real-world environmental problems with practical, nature-based solutions. His goal is to bridge science and education to improve soil health, water quality, and resilience against climate change.

Publication Top Notes:

1. An overview of potentially toxic element pollution in soil around lead–zinc mining areas

2. A comprehensive evaluation of the environmental and health risks associated with the potential utilization of chars produced from tires, electro-waste plastics and biomass

3. Characterizations of ash derived from the crops’ waste biomass for soil improvement and assisted phytoremediation

4. A 6-year review status on soil pollution in coal mining areas from Europe

5. Extracted rapeseed meal biochar combined with digestate as a soil amendment: Effect on lettuce (Lactuca sativa L.) biomass yield and concentration of bioavailable element fraction in the soil

6. Miscanthus x giganteus stress tolerance and phytoremediation capacities in highly diesel contaminated soils

7. The influence of diesel contaminated soil on Miscanthus x giganteus biomass thermal utilization and pyrolysis products composition

8. Evaluation of Miscanthus × giganteus Tolerance to Trace Element Stress: Field Experiment with Soils Possessing Gradient Cd, Pb, and Zn Concentrations

9. Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate

10. Utilization of Biochar for Eliminating Residual Pharmaceuticals from Wastewater Used in Agricultural Irrigation: Application to Ryegrass

 

 

 

 

Mr. Peng Zhang | Materials Chemistry | Best Researcher Award

Mr. Peng Zhang | Materials Chemistry | Best Researcher Award

Mr. Peng Zhang , Materials Chemistry, College of Mechanical Engineering, Anhui University of Technology, China

Peng Zhang is a dedicated tutor at the College of Mechanical Engineering, Anhui University of Technology. He earned his doctorate in Aerospace Manufacturing Engineering from the prestigious Nanjing University of Aeronautics and Astronautics. His early professional journey includes serving as a technician in a military aircraft assembly plant, which laid the foundation for his hands-on expertise in precision forming technologies. He has led several horizontal and vertical research projects and focuses on high-performance precision forming of light alloys and advanced aluminum-lithium composites. Peng Zhang has published over 10 papers in SCI-indexed journals as a first or corresponding author and holds two invention patents and one software copyright. His commitment to student mentorship is evidenced by his back-to-back recognition as “Excellent Instructor” during the 2022–2024 academic years.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Mr. Peng Zhang exhibits a compelling research profile that makes him a strong candidate for the “Best Researcher Award”. He holds a Ph.D. in Aerospace Manufacturing Engineering and is currently a tutor and project leader at the College of Mechanical Engineering, Anhui University of Technology. His research focuses on high-performance precision forming of light alloys, particularly Al-Li aerospace alloys, their fatigue behavior, and protective surface coatings. His interdisciplinary research directly contributes to aerospace innovation, industrial efficiency, and materials durability, aligning with key global technological priorities. His blend of practical application, innovation, and mentorship excellence makes him highly suitable for this recognition. Yes, Mr. Peng Zhang is highly suitable for the Best Researcher Award. His impactful, application-driven research in mechanical and aerospace materials, proven leadership in national-level projects, and consistent scholarly output reflect a researcher of high caliber. His achievements demonstrate not only innovation but also real-world relevance, positioning him as an emerging leader in mechanical engineering research.

🎓Education:

Peng Zhang obtained his Doctorate in Aerospace Manufacturing Engineering from Nanjing University of Aeronautics and Astronautics, a leading institution in aerospace innovation in China. His academic training focused on advanced forming technologies, metal processing, and material behavior under extreme conditions, equipping him with deep theoretical insight and practical expertise in mechanical and materials engineering. Prior to his doctoral studies, he completed his undergraduate and master’s degrees in mechanical engineering-related disciplines, building a strong foundation in mechanical design, thermal sciences, and manufacturing techniques. His academic career has emphasized applied research with industry relevance, particularly in the area of metal forming, alloy development, and surface coating technologies. His educational background bridges the gap between academic excellence and industrial application, preparing him to mentor students effectively and conduct high-impact research.

🏢Work Experience:

Peng Zhang began his career as a technician in a military aircraft assembly plant, gaining hands-on exposure to the complexities of aerospace-grade manufacturing. This experience fueled his academic pursuit in aerospace manufacturing, culminating in a doctorate and current role as a tutor and researcher at Anhui University of Technology. He is actively involved in several ongoing and completed research projects related to hot forming, high-cycle fatigue resistance, cryogenic steel processing, and optoelectronic service monitoring systems. As the principal investigator on multiple projects, he has successfully combined theoretical knowledge with practical engineering to improve industrial forming precision and product performance. He brings both technical depth and instructional experience, as demonstrated by his recognition as an “Excellent Instructor” in two consecutive academic years. His work straddles both teaching and research, enriching the academic environment and contributing to industrial advancements.

🏅Awards: 

Peng Zhang has been recognized for his academic and instructional excellence, receiving the “Excellent Instructor” award in the 2022–2023 and 2023–2024 academic years at Anhui University of Technology. These honors reflect his commitment to mentorship, student development, and pedagogical excellence. His research achievements, including more than 10 SCI publications, 2 invention patents, and a software copyright, showcase his innovative contributions to material forming and failure behavior. As a project leader, he has consistently secured funding for advanced research in hot forming technologies, high-precision alloy treatment, and optoelectronic monitoring systems. His awards validate both his teaching capabilities and research leadership, marking him as a rising figure in the mechanical and aerospace materials domain. He is highly regarded by peers and students alike, and his work continues to have a meaningful impact both within the university and in applied engineering industries.

🔬Research Focus:

Peng Zhang’s research focuses on high-performance precision forming of light alloys such as aluminum-lithium (Al-Li) alloys, which are widely used in aerospace applications. He specializes in synchronous quenching hot forming—a novel approach that simultaneously enhances forming accuracy and mechanical performance. His work also delves into the high-cycle fatigue resistance and service failure behavior of advanced alloys, essential for structural integrity in aviation. Additionally, Peng is exploring surface engineering, including superhydrophobic protective coatings for aviation alloys, aiming to improve corrosion resistance and durability. His ongoing projects include studies on cryogenic steel head forming, optoelectronic real-time monitoring systems, and electrically assisted forming technologies, positioning him at the cutting-edge intersection of materials science, mechanical design, and industrial application. Through his integrative research, he contributes significantly to advancements in next-generation manufacturing processes and smart engineering systems.

Publication Top Notes:

1.Title: Effect of the Hot Forming with the Synchronous Quenching Process on Forming Accuracy and Microstructure of the 2A97 Al-Li Alloy
Authors: Peng Zhang, Anqiang Zhu, Yuchuan Lei, Huiting Wang, Benqi Jiao
2.Title: Effect of the Hot Forming with Synchronous Quenching Process on High Cycle Fatigue Properties of the 2A97 Al-Li Alloy
Authors: Peng Zhang, Anqiang Zhu, Huiting Wang, Qifeng Niu, Jiangtao Qi
Citations: 5 (as of May 2025)

Assoc. Prof. Dr. Hexin Zhang | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Hexin Zhang | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Hexin Zhang , Materials Chemistry ,  Harbin Engineering University, China

Dr. Hexin Zhang is an Associate Professor and Doctoral Supervisor at the School of Materials Science and Chemical Engineering, Harbin Engineering University. She holds a Doctorate in Engineering and has developed a robust academic profile in high-temperature materials and additive manufacturing. With over 60 peer-reviewed SCI-indexed publications and five invention patents, Dr. Zhang’s work significantly contributes to the field of advanced alloys and composite materials. She has successfully led numerous prestigious projects funded by the National Natural Science Foundation of China and other provincial and institutional bodies. As a guest editor for Metals and a senior member of the Chinese Society of Composite Materials, she plays an influential role in shaping research directions. Her ongoing projects involve cutting-edge research in nano-TiC reinforced molybdenum-based superalloys. Her leadership extends to military-grade materials research, and she currently spearheads a multi-million-yuan defense technology initiative with wide application potential in marine gas turbines.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Hexin Zhang is an Associate Professor and Doctoral Supervisor at Harbin Engineering University. She holds a Doctorate in Engineering and has extensive expertise in high-temperature composite materials, superalloys, and additive manufacturing—fields of critical importance in advanced materials research.With over 60 SCI-indexed publications, 5 invention patents, and 2 authored monographs, Dr. Zhang has demonstrated consistent and significant contributions to materials science. Her work addresses both fundamental science and industrial application challenges, particularly in marine gas turbines.She serves as Guest Editor for the journal Metals, is a Senior Member of the Chinese Society for Composite Materials, and holds leadership roles in multiple national professional organizations.Dr. Hexin Zhang’s exceptional track record in high-impact research, leadership in national-level projects, patent portfolio, and editorial and professional service make her a standout candidate for the “Best Researcher Award.” Her contributions align well with the award’s objective of honoring researchers who exhibit innovation, leadership, and societal impact through their work.

🎓Education:

Dr. Hexin Zhang pursued her Doctorate in Engineering with a specialization in materials science, focusing on the mechanical behavior and processing of high-temperature alloys. Her academic training emphasized advanced manufacturing techniques including additive manufacturing (AM) and laser-based fabrication technologies. Her graduate work laid the foundation for exploring novel metal matrix composites and developing expertise in microstructural analysis, thermal stability, and mechanical performance enhancement under extreme conditions. She was trained in a multidisciplinary environment, combining theoretical materials science with practical engineering and thermodynamic modeling. As a part of her academic journey, she engaged in collaborative lab work, conference presentations, and published extensively in SCI-indexed journals, honing both technical skills and academic writing. Her formal education and consistent excellence have positioned her as a specialist in nickel-based and molybdenum-based superalloys, enabling her to tackle real-world challenges in aerospace and marine turbine applications.

🏢Work Experience:

Dr. Zhang currently serves as Associate Professor and Doctoral Supervisor at Harbin Engineering University. With extensive experience leading and contributing to key research projects, she has spearheaded over ten major scientific initiatives, including two funded by the National Natural Science Foundation of China and one basic research project targeting the processing of molybdenum-based materials. She has published over 60 high-impact SCI papers, secured 5 national patents, and authored 2 technical monographs. As the principal investigator of a military-focused project supported by the Central Military Commission, she managed a 2-million-yuan segment of a larger 7.5-million-yuan initiative. In addition to her research contributions, she serves as a guest editor for the journal Metals and has held important roles in several academic committees. Her hands-on expertise covers nano-reinforced materials, additive manufacturing, and failure analysis under thermo-mechanical fatigue.

🏅Awards: 

Dr. Hexin Zhang has received multiple accolades for her contributions to materials science and engineering. She has been honored with competitive research grants from the National Natural Science Foundation of China, a testament to her innovative work in the field. She also serves in distinguished capacities including Senior Member of the Chinese Society of Composite Materials and Director of the Ecological Civilization Branch of the China Association of Higher Education. In recognition of her academic leadership and commitment to advancing materials research, she was appointed as a Member of the Materials Gene Engineering Expert Committee of the National Materials and Devices Scientists Think Tank. Additionally, her editorial role for Metals highlights her influence in peer-reviewed publishing. Her work in defense applications of high-temperature materials has further earned her distinction in government and institutional circles.

🔬Research Focus:

Dr. Zhang’s research focuses on the design, processing, and performance of nickel-based and molybdenum-based super alloys, especially for high-temperature and corrosive environments. She specializes in additive manufacturing techniques, particularly laser selective melting and nano-TiC reinforcement, to enhance mechanical strength and thermal resistance. Her investigations include thermo-mechanical fatigue, oxidation resistance, and hot corrosion mechanisms, crucial for the development of next-generation aerospace and marine turbine materials. A highlight of her work is the innovation in laser forming of Mo-based superalloys, solving issues like brittle fracture at room temperature. Her projects, including those funded by the Central Military Commission, involve cutting-edge structural materials aimed at military propulsion systems. Dr. Zhang also integrates computational modeling and experimental validation to understand microstructural evolution and failure modes under extreme conditions.

Publication Top Notes:

1. Impact of Secondary γ’ Precipitate on the High-Temperature Creep Properties of DD6 Alloy

2. Microstructural Evolution and Its Effect on Tensile Properties of 10Cr-2W-3Co Martensitic Steel During Thermal Exposure

3. Microstructure Evolution and Mechanical Properties of Ti-6Al-4V Alloy Fabricated by Directed Energy Deposition Assisted with Dual Ultrasonic Vibration

Citations: 2

4. Effect of Powder Particle Size on the Microscopic Morphology and Mechanical Properties of 316L Stainless Steel Hollow Spheres

5. Study on Hot-Compressive Deformation Behavior and Microstructure Evolution of 12Cr10Co3MoWVNbNB Martensitic Steel

6. Lattice Disorder Driving the Electron Migration from Tetracycline to TiO₂ via Ligand-to-Metal Charge Transfer to Generate Superoxide Radical

Citations: 2

7. Hydrangea-like MnO₂@Sulfur-Doped Porous Carbon Spheres with High Packing Density for High-Performance Supercapacitor

Citations:

8. La Doped-Fe₂(MoO₄)₃ with the Synergistic Effect Between Fe²⁺/Fe³⁺ Cycling and Oxygen Vacancies Enhances the Electrocatalytic Synthesizing NH₃

9. Influence of Aging Heat Treatment on Microstructure and Mechanical Properties of a Novel Polycrystalline Ni₃Al-Based Intermetallic Alloy

Citations: