Kamal Kishore | Physical Organic Chemistry | Best Researcher Award

Prof. Kamal Kishore | Physical Organic Chemistry | Best Researcher Award

Eternal University | India

Prof. Kamal Kishore is a distinguished Professor of Chemistry and Biochemistry at Eternal University, Baru Sahib, Himachal Pradesh, India. With more than fourteen years of teaching experience and valuable exposure in the pharmaceutical industry, he has made impactful contributions to higher education and research in chemistry. He earned his Ph.D. in Chemistry from Barkatullah University, Bhopal, under the supervision of Prof. S.K. Upadhyaya, focusing on the physicochemical, thermal, and acoustical behavior of terbium soaps. Over the course of his career, he has held academic positions ranging from Lecturer to Professor, establishing himself as an accomplished educator, mentor, and researcher. His research has been published in reputed international and national journals, with a focus on surfactants, thermodynamics, nanotechnology, and environmental chemistry. Alongside his teaching and research, he has served as a resource person for academic bodies and delivered invited lectures at several institutions, inspiring students and fellow researchers alike.

Professional Profile

Scopus

Orcid

Education

Prof. Kamal Kishore has a strong academic background that integrates both chemistry and education. He completed his Ph.D. in Chemistry at Barkatullah University, Bhopal, where his thesis explored the thermal, acoustical, and physicochemical behavior of terbium soaps. Prior to this, he earned a Master of Science degree in Chemistry from Barkatullah University, developing a deeper understanding of advanced chemical principles and laboratory techniques. He also pursued a Bachelor of Education in Science at Jammu University, equipping himself with pedagogical training and skills essential for an academic career. His journey into higher education began with a Bachelor of Science (Non-Medical) from Himachal Pradesh University, Shimla, where he studied core subjects such as physics, chemistry, and mathematics. In addition, he qualified the Himachal Pradesh Teachers Eligibility Test (HPTET), further strengthening his academic and teaching credentials. This educational path has laid a solid foundation for his dual role as a teacher and researcher.

Professional Experience

Prof. Kamal Kishore brings extensive professional experience in academia and industry. Currently serving as Professor in the Department of Chemistry and Biochemistry at Eternal University, Baru Sahib, he has previously held positions as Associate Professor and Assistant Professor at the same institution. He has also contributed his expertise to other reputed universities and colleges in Himachal Pradesh, where he taught chemistry at both undergraduate and postgraduate levels. His academic journey began as a Lecturer in Applied Sciences, where he nurtured young learners and established himself as a dedicated educator. Beyond academia, he gained early professional exposure in the pharmaceutical industry as an IPQA Chemist at Alkem Laboratories, Baddi, where he was engaged in quality assurance processes. Over the years, he has steadily advanced in his career through diverse roles, developing expertise in teaching, research, mentoring, and curriculum development. His professional growth demonstrates his dedication to education and scientific advancement.

Awards 

Prof. Kamal Kishore has been honored with several awards and recognitions for his academic achievements, teaching excellence, and community involvement. During his early education, he earned distinction for securing top positions at the school and state levels and was awarded merit certificates for outstanding performance in examinations and extracurricular activities, including participation in the Republic Day Parade. In his academic career, he was recognized as a disciplined and dedicated faculty member at Career Point University and was honored with the Best Teacher Award for his contribution to teaching and mentoring students. At Eternal University, he received an Award of Honor for his role in a national sports championship and an Award of Appreciation during a university agricultural fair. He has also been certified as a Publons Academy Mentor, highlighting his contributions to the global research and peer review community. Collectively, these recognitions reflect his excellence in academics, research, and service.

Research Interests 

Prof. Kamal Kishore’s research interests lie primarily in physical chemistry, surfactants, thermodynamics, nanotechnology, and environmental chemistry. His doctoral research focused on the physicochemical, acoustical, and thermal behavior of terbium soaps, a theme that has inspired many of his subsequent studies. He has conducted extensive work on the self-assembly behavior of surfactants, micellization processes, and ultrasonic velocity studies, which contribute to a deeper understanding of colloid and interface science. His research further extends to the development of nanocatalysts for oxidation reactions, biosensors for the removal of heavy metals from wastewater, and green chemistry approaches for environmental sustainability. He has also contributed book chapters and collaborated with fellow researchers on interdisciplinary projects that combine theory with applied solutions. His work emphasizes innovation in addressing environmental challenges through chemistry, linking fundamental science to real-world applications in clean water technologies, sustainable nanomaterials, and environmentally friendly industrial processes.

Publication Top Notes

Title: Thermodynamics and interfacial properties for micellization of cationic surfactant with amino acid and drug at different temperatures
Year: 2024
Citations: 2

Title: Removal of Heavy Metals From Waste Water Using Natural Adsorbent—A Review
Year: 2024

Title: Ultrasonic velocity and critical micellar concentration of amino acid surfactant mixed with other surfactants at different temperatures
Year: 2019
Citations: 6

Title: Investigating oxidation of formaldehyde over Co, Ni and Cu incorporated SBA-15 mesoporous materials
Year: 2018
Citations: 11

Title: Leaf senescence: an overview
Year: 2016
Citations: 76

Conclusion 

In conclusion, Prof. Kamal Kishore is a highly accomplished academician and researcher whose career reflects excellence in teaching, research, and professional service. With qualifications in chemistry and education, he has successfully combined subject expertise with innovative pedagogy, making significant contributions to both student learning and research advancement. His recognition as a best teacher, resource person, and mentor underscores his influence in shaping the academic community, while his publications and research collaborations highlight his contributions to scientific knowledge. His work on surfactants, thermodynamics, and nanotechnology demonstrates a commitment to using chemistry as a tool for solving practical environmental and industrial challenges.

Mrs. Mercedes Bertotto | Organic Chemistry | Women Researcher Award

Mrs. Mercedes Bertotto | Organic Chemistry | Women Researcher Award

Mrs. Mercedes Bertotto , Organic Chemistry , Researcher in Chemometrics at Wageningen University & Research , Netherlands

Dr. Mercedes Bertotto is a distinguished chemical engineer and food scientist with over 12 years of specialized experience in spectroscopic techniques, chemometrics, and quality control. Based in The Netherlands, she is currently a lecturer at Wittenborg University of Applied Sciences and founder of Vibralytics.nl, promoting sustainable and data-driven innovations in the agri-food sector. Previously, she was a researcher at Wageningen Food and Biobased Research, where she led spectral sensing projects integrating NIR, MIR, and Raman spectroscopy with machine learning. Her earlier role at SENASA, Argentina’s National Reference Laboratory, showcased her leadership in GC-MS residue analysis and chemometric modeling. Fluent in English, Spanish, and Dutch, Dr. Bertotto bridges scientific excellence with cross-cultural communication, driving sustainable solutions in food safety and circular materials. Her contributions to academia, research, and entrepreneurship reflect a strong commitment to innovation, international collaboration, and applied chemical sciences.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Mercedes Bertotto stands out as an exceptionally qualified candidate for the “Women Researcher Award” due to her profound scientific expertise, leadership, and innovation across multiple sectors. With a Doctorate in Chemical Engineering and a strong academic foundation in Food Science and Technology, she exemplifies excellence in applied and theoretical research. Her 12+ years of impactful work—from Argentina’s SENASA National Reference Laboratory to the Netherlands’ Wageningen Food and Biobased Research—reflect her global research footprint. She has made significant contributions in spectral sensing, chemometrics, machine learning, and food quality control. Moreover, her entrepreneurial initiative as the founder and CEO of Vibralytics.nl demonstrates her commitment to translating science into real-world, sustainable solutions. Dr. Mercedes Bertotto is highly suitable for the “Women Researcher Award’. Her multidisciplinary achievements, pioneering role in spectral analytics, dedication to sustainable food systems, and entrepreneurial leadership in a male-dominated field exemplify the qualities the award seeks to recognize. Her career reflects not only scientific merit but also her inspirational impact as a woman in science, making her a deserving and empowering candidate for this honor.

🎓Education:

Dr. Bertotto holds a Doctorate in Chemical Engineering from the University of Buenos Aires, where her thesis focused on modeling drying and tempering processes of rice (IRGA 424). Her research included dynamic mechanical analysis and mathematical modeling of glass transition temperature, achieving an outstanding score of 10/10. She also holds a Master’s in Food Science and Technology from the Faculty of Pharmacy and Biochemistry, University of Buenos Aires. Her academic formation enabled her to work on food preservation, quality control, and raw material analysis using both physical and chemical techniques. Her educational foundation is rooted in experimental precision, mathematical rigor, and industrial application. This robust background has allowed her to seamlessly bridge theory with practical laboratory and industry-based problem-solving. Her education reflects interdisciplinary training, combining engineering, food science, and analytical chemistry—providing her with the ideal base for impactful research in sustainable biobased materials and food safety.

🏢Work Experience:

Dr. Bertotto brings an extensive and diverse professional background. She currently lectures in Information Management and Data Analytics at Wittenborg University and leads Vibralytics.nl, a company pioneering AI-driven spectroscopy for agri-food applications. Between 2022–2024, she was a spectral sensing researcher at Wageningen Food and Biobased Research, using hyperspectral imaging and chemometrics (PCA, PLS, CNN) for quality control. From 2010 to 2022, she worked at SENASA in Argentina, specializing in NIR/FTIR microscopy, GC-MS, and regulatory compliance in food safety. As a university professor, she taught chemometric tools for doctoral candidates, and she also served as a consultant at SoftLab, contributing to petroleum industry applications of NIR. Her expertise encompasses spectroscopy hardware (Specim FX10/17, MicroNIR, LabSpec), data tools (R, MATLAB), and AI-based modeling. This blend of research, teaching, and consulting makes her a well-rounded scientist, with real-world and academic impact across multiple industries.

🏅Awards: 

While specific awards are not explicitly listed, Dr. Mercedes Bertotto’s recognitions include multiple peer-reviewed publications, oral and poster presentations at prestigious conferences, and leadership roles in top-tier research institutions like Wageningen University. Her work was accepted for presentation at the 38th EFFoST International Conference (2024) and ICNIRS 2023, both internationally acclaimed events in food science and spectroscopy. She has also contributed to publicly recognized innovation efforts in Argentina, featured in national science communications (e.g., Argentina.gob.ar and API-Portal). Her appointment as a doctoral-level professor and selection as a founder and CEO of a research-driven company demonstrates academic and entrepreneurial recognition. Moreover, her trilingual fluency and international engagement serve as indicators of her global scientific outreach and influence. These distinctions—academic, institutional, and professional—reflect her commitment to innovation, research excellence, and interdisciplinary problem-solving in chemical engineering and food safety.

🔬Research Focus:

Dr. Bertotto’s research is grounded in analytical chemistry, spectral sensing, and chemometric modeling applied to food and agricultural systems. Her focus lies in leveraging Near-Infrared (NIR), Mid-Infrared (MIR), FTIR microscopy, Raman spectroscopy, and gas chromatography-mass spectrometry (GC-MS) to improve food quality, detect contaminants, and enable circular and sustainable material flows. She specializes in multivariate analysis (PCA, PLS-DA, ANN, CNN) for interpreting complex spectral data in real-time monitoring systems. Her work integrates hyperspectral imaging with AI-driven tools to predict physical and chemical properties of biological materials, such as fungal susceptibility in tomatoes or nutrient profiling in dairy. She is also deeply involved in modeling moisture and thermal behavior in grains like rice. Her research bridges fundamental science with applied industry solutions—creating novel analytical frameworks that optimize safety, quality, and sustainability in bio-based materials, food systems, and environmental monitoring.

Publication Top Notes:

1. Predicting fungal infection sensitivity of sepals in harvested tomatoes using imaging spectroscopy and partial least squares discriminant analysis

2. Comparison between Chemometrics and Machine Learning for the Prediction of Macronutrients in Fresh Cheeses Using Imaging Spectroscopy

3. Detection of Animal By‑Products in Bone Ashes by Near Infrared Spectroscopy Coupled with Microscopy

  citation : 1

 

 

Prof. Mohammad Gholinejad | Organic Chemistry | Best Researcher Award

Prof. Mohammad Gholinejad | Organic Chemistry | Best Researcher Award 

Prof. Mohammad Gholinejad | Organic Chemistry | Associate Professor of Chemistry at IASBS, Iran

Dr. Mohammad Gholinejad is an Associate Professor of Organic Chemistry at the Institute for Advanced Studies in Basic Sciences (IASBS), Iran, he specializes in catalysis, organic synthesis, and nanomaterials. He completed his Ph.D. from Shiraz University under the supervision of Prof. Habib Firouzabadi, focusing on palladium, copper, iron, and silver nanoparticles in carbon-carbon and carbon-heteroatom bond formation. He undertook a sabbatical at the University of Alicante, Spain, with Prof. Carmen Najera, working on phosphane-free Suzuki-Miyaura coupling. With an h-index of 36 and over 3,400 citations, Dr. Gholinejad has significantly contributed to the field of homogeneous and heterogeneous catalysis. His expertise extends to TGA, GC, NMR, and XPS techniques. He actively teaches advanced organic chemistry and heterocyclic chemistry, mentoring numerous students. His work bridges fundamental research and practical applications, making him a key figure in modern catalysis.

Professional Profile :                       

Google Scholar

Orcid

Scopus

Summary of Suitability for Award:

Dr. Mohammad Gholinejad is a highly accomplished researcher in the field of organic chemistry, specializing in catalysis, nanoparticle applications, and green chemistry. With an h-index of 36 and over 3,400 citations, his research contributions have significantly impacted the scientific community. His expertise in palladium, copper, iron, and silver nanoparticles for carbon-carbon and carbon-heteroatom bond formation reactions has led to innovative methodologies that are both efficient and environmentally friendly. He has held a prestigious sabbatical position at the University of Alicante, Spain, and currently serves as an Associate Professor at the Institute for Advanced Studies in Basic Sciences (IASBS). His extensive publication record, leadership in advanced organic chemistry courses, and hands-on experience with instrumental techniques further highlight his research excellence. Given his outstanding research output, impact on organic synthesis, and contributions to sustainable chemistry, Dr. Gholinejad is a highly suitable candidate for the “Best Researcher Award.” His work exemplifies innovation, academic excellence, and real-world application, making him a strong contender for this recognition.

🎓Education:

Dr. Mohammad Gholinejad obtained his Ph.D. in Organic Chemistry from Shiraz University, Iran (2008-2012), where he investigated carbon-carbon and carbon-heteroatom bond formation using metal nanoparticles. His research introduced efficient catalytic systems for environmentally friendly organic transformations. His M.Sc. in Organic Chemistry (2006-2008) at Shiraz University focused on phosphinite ligands in organic synthesis. He earned his B.Sc. in Applied Chemistry from the University of Tabriz (2002-2006). In 2010, Dr. Gholinejad pursued a sabbatical at the University of Alicante, Spain, under Prof. Carmen Najera, working on phosphane-free Suzuki-Miyaura coupling. His academic journey has shaped his expertise in catalytic systems, green chemistry, and ligand design. His research integrates experimental and theoretical chemistry, leading to numerous high-impact publications. His strong analytical background and mastery of spectroscopic techniques have enhanced his contributions to organic synthesis and catalysis, making him a leading researcher in the field.

🏢Work Experience:

Dr. Mohammad Gholinejad is an Associate Professor at IASBS, Iran, where he has been engaged in research and teaching for over a decade. His teaching portfolio includes Advanced Organic Chemistry (Structure and Mechanisms), Organic Reactions and Synthesis, Heterocyclic Chemistry, and New Discussions in Organic Chemistry. His research focuses on designing novel catalytic systems using palladium, copper, and iron nanoparticles for sustainable organic transformations. He has extensive expertise in TGA, GC, NMR, and XPS, essential for analyzing catalytic reactions. During his sabbatical at the University of Alicante, Spain, he collaborated with Prof. Carmen Najera on phosphane-free Suzuki-Miyaura coupling in aqueous media. His work has led to numerous high-impact publications in prestigious journals. He actively supervises M.Sc. and Ph.D. students, contributing to the development of young researchers. His role at IASBS has been instrumental in advancing research on green and heterogeneous catalysis.

🏅Awards: 

Dr. Mohammad Gholinejad has received numerous prestigious awards and honors in recognition of his outstanding contributions to the field of organic chemistry. His work in catalysis and green chemistry has been widely acknowledged, earning him accolades from both national and international scientific communities. He has been recognized for his high-impact publications in reputed journals, reflecting his significant influence in the domain of sustainable chemical methodologies. His sabbatical at the University of Alicante, Spain, is a testament to his global research collaborations and expertise. Additionally, he has been honored with research grants and funding awards, enabling him to advance studies in nanoparticle catalysis and environmentally friendly synthetic processes. As an Associate Professor at the Institute for Advanced Studies in Basic Sciences (IASBS), he has received institutional recognition for his exemplary research, mentorship, and contributions to academic excellence. His achievements establish him as a leading researcher in organic synthesis and catalysis.

🔬Research Focus:

Dr. Mohammad Gholinejad’s research primarily focuses on the development of novel catalytic systems for organic transformations, particularly using palladium, copper, iron, and silver nanoparticles. His work has significantly advanced carbon-carbon and carbon-heteroatom bond formation reactions, leading to more efficient and environmentally sustainable chemical processes. By integrating nanotechnology with catalysis, he has contributed to the design of innovative, recyclable catalytic systems that minimize waste generation and reduce reliance on hazardous reagents. His expertise extends to green chemistry, where he develops eco-friendly methodologies for organic synthesis, emphasizing the use of non-toxic solvents, reusable catalysts, and sustainable reaction conditions. His pioneering research in heterogeneous catalysis has implications for pharmaceuticals, materials science, and industrial chemistry. Additionally, his work on functionalized nanomaterials has potential applications in energy storage and biomedical fields. Through high-impact publications and global collaborations, Dr. Gholinejad continues to drive advancements in synthetic methodologies, enhancing the efficiency and sustainability of modern chemistry.

Publication Top Notes:

Title: Magnetite (Fe₃O₄) Nanoparticles‐Catalyzed Sonogashira–Hagihara Reactions in Ethylene Glycol under Ligand‐Free Conditions
Authors: H. Firouzabadi, N. Iranpoor, M. Gholinejad, J. Hoseini
Citations: 174
Year: 2011

Title: One‐Pot Thioetherification of Aryl Halides Using Thiourea and Alkyl Bromides Catalyzed by Copper (I) Iodide Free from Foul‐Smelling Thiols in Wet Polyethylene Glycol (PEG 200)
Citations: 164

Title: Highly Efficient Three-Component Coupling Reaction Catalyzed by Gold Nanoparticles Supported on Periodic Mesoporous Organosilica with Ionic Liquid Framework
Citations: 154

Title: Palladium Nanoparticles Supported on Agarose as Efficient Catalyst and Bioorganic Ligand for C–C Bond Formation via Solventless Mizoroki–Heck Reaction and Sonogashira–Hagihara Reaction
Citations: 107

Title: Synthesis and Characterization of Magnetic Copper Ferrite Nanoparticles and Their Catalytic Performance in One-Pot Odorless Carbon-Sulfur Bond Formation Reactions
Citations: 98

Title: 2-Aminophenyl Diphenylphosphinite as a New Ligand for Heterogeneous Palladium-Catalyzed Heck–Mizoroki Reactions in Water in the Absence of Any Organic Co-Solvent
Citations: 93

Title: Copper Nanoparticles Supported on Agarose as a Bioorganic and Degradable Polymer for Multicomponent Click Synthesis of 1,2,3-Triazoles under Low Copper Loading in Water
Citations: 89

Title: Nitro Group Reduction and Suzuki Reaction Catalysed by Palladium Supported on Magnetic Nanoparticles Modified with Carbon Quantum Dots Generated from Glycerol and Urea
Citations: 83

Title: Copper Nanoparticles Supported on Starch Microparticles as a Degradable Heterogeneous Catalyst for Three-Component Coupling Synthesis of Propargylamines
Citations: 83

Title: Palladium Nanoparticles Supported on Agarose-Functionalized Magnetic Nanoparticles of Fe₃O₄ as a Recyclable Catalyst for C–C Bond Formation via Suzuki–Miyaura, Heck–Mizoroki Reactions
Citations: 77

Title: Recyclable Palladium-Catalyzed Sonogashira–Hagihara Coupling of Aryl Halides Using 2-Aminophenyl Diphenylphosphinite Ligand in Neat Water under Copper-Free Condition
Citations: 77

Prof. Driss Chebabe | Organic synthesis | Best Researcher Award

Prof. Driss Chebabe | Organic synthesis | Best Researcher Award

Prof. Driss Chebabe , Moulay Ismail University of Meknes, Faculty of Sciences and Technics, Errachidia, Morocco , Morocco

Dr. Chebabe Driss is a Professor of Chemistry at the Faculty of Science and Technics, Errachidia , Moulay Ismail University, Morocco, he is a renowned researcher with an H-index of 18 and over 900 citations. He leads the “Natural Substances & Synthesis & Modeling” research team and is a permanent member of the Materials Engineering for the Environment and Natural Resources (IMERN) Laboratory. His research focuses on organic synthesis, corrosion protection, and biological activities. With over nine years in academia and 19 years in territorial administration, Dr. Driss has contributed to numerous international journals, participated in scientific committees, and co-supervised theses in applied organic chemistry. Additionally, he is actively involved in teaching and organizing scientific events. Dr. Chebabe  dedication to chemistry, innovation, and education has made him a distinguished figure in his field.

Professional Profile

Orcid

Scopus

Summary of Suitability for Award:

Dr. Chebabe Driss is a highly accomplished researcher in the field of chemistry, with significant contributions in organic synthesis, corrosion protection, and biological activity. His impressive academic background, including a Doctorate of State and Habilitation, demonstrates his deep expertise in applied organic chemistry. Dr. Driss has an H-index of 18 with over 900 citations, reflecting the substantial impact of his research on the scientific community. His innovative work on eco-friendly corrosion inhibitors and biologically active compounds highlights his commitment to addressing real-world challenges using sustainable approaches. Dr. Chebabe Driss exemplifies the qualities of an outstanding researcher, combining innovation, impact, and mentorship. His academic achievements, research output, and dedication to advancing chemistry make him a deserving candidate for the “Best Researcher Awards.” His work not only contributes to scientific knowledge but also addresses critical societal and environmental issues, reflecting the core values of this prestigious recognition.

🎓Education:

Dr. Chebabe Driss has a comprehensive academic background in chemistry. He earned his Bachelor of Science in Chemistry from Ibn Tofail University, Kenitra, followed by a Certificate of Advanced Studies (CEA) in Organic Chemistry. He pursued a Graduate Diploma (DES) in Organic Chemistry, synthesizing novel 1,2,4-triazole polar head surfactants for corrosion inhibition. His Doctorate of State focused on synthesizing heterocyclic surfactants with dual properties: corrosion inhibition and antibacterial activity. He completed his Habilitation Thesis at the Faculty of Sciences and Technics, Errachidia, Moulay Ismail University. Throughout his education, Dr. Driss specialized in areas such as organic synthesis, corrosion protection, and chemical applications for environmental and biological challenges. These academic achievements have laid the foundation for his research and teaching endeavors, demonstrating his commitment to advancing the field of chemistry.

🏢Work Experience:

Dr. Chebabe Driss has a distinguished career, combining 19 years in territorial administration and nine years in higher education and scientific research. As a professor at Moulay Ismail University, he teaches organic chemistry, corrosion, and material protection. He leads the “Natural Substances & Synthesis & Modeling” research team and is a core member of the IMERN Laboratory. Dr. Driss is an associate member of the Organic Chemistry, Catalysis, and Environment Laboratory at Ibn Tofail University. He has supervised numerous academic projects and theses and actively contributes to doctoral training programs in Chemistry and Environment. Dr. Driss is also a reviewer for scientific journals and has participated in organizing national and international conferences. His professional activities reflect a commitment to academic excellence, research innovation, and fostering the next generation of chemists.

🏅Awards: 

Dr. Chebabe Driss has received numerous accolades, including membership in the prestigious “Who’s Who in the World” 2009 edition. He holds a patent for his innovative contributions to applied organic chemistry and is an active member of the Moroccan Association of AntiCorrosion and the Environment (AMACOPE). Dr. Driss’s recognition stems from his exceptional research in corrosion protection, organic synthesis, and biological activities. He has earned widespread acclaim for his publications in internationally indexed journals and his participation in scientific committees. Additionally, Dr. Driss has contributed significantly to organizing scientific events, showcasing his leadership and collaborative spirit. These honors underscore his influence in the chemistry community, cementing his reputation as a leading researcher and educator in Morocco and beyond.

🔬Research Focus:

Dr. Chebabe Driss’s research spans three primary axes: organic synthesis, corrosion protection, and biological activity. In organic synthesis, he explores innovative methods for creating heterocyclic compounds and surfactants with dual functionalities. His work in corrosion focuses on developing eco-friendly inhibitors for metal and alloy protection, utilizing green chemistry principles. The biological activity axis examines antioxidants and antibacterial agents, emphasizing the application of natural substances in medicine and environmental conservation. Dr. Driss employs advanced modeling techniques and experimental validation to ensure the practical applicability of his findings. His research addresses pressing global challenges, blending theoretical insights with real-world applications.

Publication Top Notes:

1. Prediction by DFT and synthesis of new xanthene derivatives

Authors: El Mesky, M., Zgueni, H., Rhazi, Y., Chebabe, D., Mabrouk, E.H.

Citations: 0

Year: 2024

Journal: Journal of Molecular Structure

2. The intelligence way of economical synthesis strategies of an N-alkylcarbazole

Authors: Jabha, M., Mesky, M.E., Zgueni, H., Znini, M., Oubair, A.

Citations: 0

Year: 2024

Journal: Structural Chemistry

3. Insights into the Corrosion Inhibition Potential of Chenopodium ambrosioides Extract

Authors: Benzbiria, N., Echihi, S., Thoume, A., Azzi, M., Zertoubi, M.

Citations: 2

Year: 2024

Journal: Journal of Bio- and Tribo-Corrosion

4. Corrosion inhibition performance of essential oil of Teucrium luteum subsp. flavovirens

Authors: Ou-ani, O., Ansari, A., Oucheikh, L., Mabrouk, E., Hammouti, B.

Citations: 0

Year: 2024

Journal: Journal of Dispersion Science and Technology

5. Inhibiting power of 4-amino,5-phenyl-1,2,4-triazole,3-thione

Authors: Biari, A., Dermaj, A., Doubi, M., Benmekki, S., Shaim, A.

Citations: 1

Year: 2024

Journal: Moroccan Journal of Chemistry

6. Zn (II) complexes of N1,N2-bis(2-nitrobenzylidene) ethane-1,2-diamine as corrosion inhibitors

Authors: Hailam, B., Galai, M., Chebabe, D., Fahim, M., Touhami, M.E.

Citations: 1

Year: 2024

Journal: Moroccan Journal of Chemistry

7. Anticorrosion property of new resin epoxy derived from phosphorus

Authors: Abbout, S., Hsissou, R., Louiza, O., Chebabe, D., Hajjaji, N.

Citations: 6

Year: 2023

Journal: Journal of Molecular Structure

8. Corrosion Inhibition of Carbon Steel in 1 M HCl by Carbendazim

Authors: Zgueni, H., El Mesky, M., Amri, N., Oubair, A., Chebabe, D.

Citations: 1

Year: 2023

Journal: Analytical and Bioanalytical Electrochemistry

9. Synthesis of a Non-toxic Organic Ionic Liquid Triazole Derivative

Authors: Biari, A., Dermaj, A., Doubi, M., Shaim, A., Hajjaji, N.

Citations: 2

Year: 2023

Journal: Tropical Journal of Natural Product Research

10. Corrosion inhibition using pyrazole pyrimidine derivative

Authors: Echihi, S., Benzbiria, N., Beraich, M., Warad, I., Zarrouk, A.

Citations: 9

Year: 2023

Journal: Chemical Data Collections

 

 

 

 

 

Mr. Getu Gizaw | Organic Chemistry | Best Researcher Award

Mr. Getu Gizaw | Organic Chemistry | Best Researcher Award

Mr. Getu Gizaw, Jimma University, Ethiopia

Getu Gizaw is a dedicated Ph.D. candidate in Human Nutrition at the University of Copenhagen, Denmark, and Jimma University, Ethiopia. With over a decade of experience in public health nutrition, he has made significant contributions to maternal and child health, focusing on addressing undernutrition and improving nutritional outcomes in emergency and developmental contexts. Starting as a public health officer in 2010, he managed critical community-based programs, including severe acute malnutrition interventions. Since joining Jimma University in 2015, he has served as an academic, mentor, and researcher, publishing over 15 peer-reviewed articles. His expertise extends to managing large-scale studies, including randomized controlled trials, program evaluations, and impactful collaborations with organizations like UNICEF and Action Against Hunger. Driven by a passion for sustainable health solutions, Mr. Gizaw’s work reflects his commitment to improving lives through nutrition research and education.

Professional Profile

Orcid

Scopus

Summary of Suitability for Award:

Mr. Getu Gizaw is highly qualified for the Best Researcher Award based on his extensive academic background, professional experience, and impactful contributions to public health and nutrition research. His Ph.D. candidacy in Human Nutrition, combined with his MSc and BSc from Jimma University, demonstrates his strong academic foundation. With over 13 years of experience in both research and teaching, he has played a pivotal role in advancing maternal and child health through high-quality research. His leadership in coordinating complex studies, including randomized controlled trials on acute malnutrition, and his collaboration with renowned organizations like UNICEF, Action Against Hunger, and the Ministry of Health, underscore his research capabilities and influence. His extensive publication record, with over 15 articles in peer-reviewed journals, along with his consultancy work, reflect his commitment to addressing critical public health challenges.

🎓Education:

Mr. Getu Gizaw holds an impressive academic portfolio with multiple degrees from esteemed institutions. He is a Ph.D. candidate in Human Nutrition through a double-degree program at the University of Copenhagen, Denmark, and Jimma University, Ethiopia. He earned his MSc in Human Nutrition from Jimma University in 2015, where he excelled in his thesis research. Additionally, he holds a BA in Business Management (2020) and a BSc in Public Health (2010), both from Jimma University. His academic journey is characterized by a multidisciplinary approach that combines nutrition, public health, and management, equipping him with a comprehensive perspective on tackling public health challenges. This strong educational foundation has supported his impactful research, teaching, and consulting work in maternal and child nutrition.

🏢Work Experience:

With over 13 years of diverse experience, Mr. Getu Gizaw has made significant contributions to public health and nutrition. He began his career in 2010 as a public health officer at Dilela Health Center, managing under-five clinics, acute malnutrition programs, and HIV services. In 2015, he joined Jimma University as an academic staff member, lecturing on human nutrition and supervising postgraduate research. Promoted to Assistant Professor in 2021, he has led groundbreaking research projects on maternal and child nutrition, including an individually randomized controlled trial with UNICEF and Action Against Hunger. As a consultant, he has collaborated with organizations like UNICEF and the Ministry of Health, excelling in program evaluations, data analysis, and project management. His expertise spans qualitative and quantitative research, operational studies, and program impact assessments.

🏅Awards: 

Mr. Getu Gizaw has received accolades for his academic and professional excellence. His MSc thesis at Jimma University was awarded an “Excellent” rating, highlighting his dedication to impactful research. He has been recognized for his leadership in groundbreaking projects, such as a UNICEF-led trial that influenced national acute malnutrition guidelines. He has been a valued member of Jimma University’s promotion committee and the Teachers’ Association since 2020, reflecting his commitment to institutional development. Additionally, his consultancy work with organizations like UNICEF and Action Against Hunger has earned him respect and appreciation. With more than 15 peer-reviewed articles to his name, his contributions to maternal and child nutrition research have solidified his reputation as an influential public health professional.

🔬Research Focus:

Mr. Getu Gizaw’s research primarily centers on maternal and child nutrition, focusing on undernutrition, program evaluation, and cost-effectiveness analysis of health interventions. His work addresses critical public health challenges, including managing severe acute malnutrition in emergency and developmental contexts. Notable projects include an individually randomized controlled trial on simplified malnutrition management, impacting national policy. He has also explored digital health innovations to support sexual and reproductive health, employing a mobile app in a quasi-experimental study. His expertise extends to operational research, designing randomized controlled trials, and managing large datasets from national surveys and clinical trials. Through collaborations with stakeholders like UNICEF and Action Against Hunger, his research has practical implications for improving nutrition and health outcomes in vulnerable populations.

Publication Top Notes:

“The median time to stopover exclusive breastfeeding among employed and unemployed mothers of infants aged 6–12 months in Ethiopia, 2019”

Authors: Adugnaw, E., Gizaw, G., Girma, M., Chanie, S.S., Chanie, E.S.

Journal: Scientific Reports

Volume/Issue/Pages: 13(1), 6259

Citations: 2

Year: 2023

“Growth and Body Composition 5 y After Treatment for Severe Acute Malnutrition: A 5-y Prospective Matched Cohort Study in Ethiopian Children”

Authors: Gizaw, G., Bahwere, P., Argaw, A., Collins, S., Girma, T.

Journal: American Journal of Clinical Nutrition

Volume/Issue/Pages: 118(5), pp. 1029–1041

Citations: 3

Year: 2023

“Time to recovery and its predictors among children aged 6–59 months with severe acute malnutrition admitted to outpatient therapeutic program in Southwest Ethiopia: retrospective cohort study”

Authors: Wondie, S.G., Zinab, B., Gizaw, G., Tamrat, M.

Journal: BMC Pediatrics

Volume/Issue/Pages: 22(1), 157

Citations: 4

Year: 2022

“The morbidity burden from emergency conditions in Jimma city, Southwest Ethiopia”

Authors: Amme, S., Shemsi, S., Lippi, M., Legese, S., Mould-Millman, N.-K.

Journal: International Emergency Nursing

Volume/Issue/Pages: 55, 100874

Citations: 0

Year: 2021

“Evaluation of anthropometric indices for screening hypertension among employees of Mizan Tepi University, Southwestern Ethiopia”

Authors: Dereje, R., Hassen, K., Gizaw, G.

Journal: Integrated Blood Pressure Control

Volume/Issue/Pages: 14, pp. 99–111

Citations: 11

Year: 2021

“Time to cure and predictors of recovery among children aged 6–59 months with severe acute malnutrition admitted in Jimma University Medical Center, Southwest Ethiopia: A retrospective cohort study”

Authors: Kabthymer, R.H., Gizaw, G., Belachew, T.

Journal: Clinical Epidemiology

Volume/Issue/Pages: 12, pp. 1149–1159

Citations: 8

Year: 2020

“Prevalence of Anemia and Associated Factors among Secondary School Adolescent Girls in Jimma Town, Oromia Regional State, Southwest Ethiopia”

Authors: Fentie, K., Wakayo, T., Gizaw, G.

Journal: Anemia

Volume/Issue/Pages: 2020, 5043646

Citations: 13

Year: 2020

“Dual Burden of Malnutrition among Adolescents of Smallholder Coffee Farming Households of Jimma Zone, Southwest Ethiopia”

Authors: Hassen, K., Gizaw, G., Belachew, T.

Journal: Food and Nutrition Bulletin

Volume/Issue/Pages: 38(2), pp. 196–208

Citations: 11

Year: 2017

 

 

 

 

 

Assist. Prof. Dr. Mohammad Taghi Nazeri | Organic Chemistry | Best Researcher Award

Assist. Prof. Dr. Mohammad Taghi Nazeri | Organic Chemistry | Best Researcher Award

Assist. Prof. Dr. Mohammad Taghi Nazeri , Shahid Beheshti University, Iran

Dr. Mohammad Taghi Nazeri, born in Qazvin, Iran, is a distinguished faculty member at Shahid Beheshti University, Tehran. He earned his Ph.D. under the mentorship of Prof. Ahmad Shaabani, followed by a postdoctoral fellowship in the same research group. With a robust academic portfolio, he focuses on the synthesis of bioactive compounds, multicomponent reactions, and material functionalization. Dr. Nazeri has authored over 40 impactful papers and reviews, showcasing his expertise in organic chemistry. His innovative approaches to green chemistry and sustainable synthesis have garnered recognition in the scientific community, contributing significantly to advancements in pseudopeptidic and heterocyclic chemistry.

Professional Profile:

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Mohammad Taghi Nazeri exemplifies the qualities of an outstanding researcher, making him a strong candidate for the “Best Researcher Awards.” With a focus on sustainable synthesis and green chemistry, Dr. Nazeri has significantly advanced the field of organic chemistry, particularly in isocyanide-based multicomponent reactions and pseudopeptidic compound synthesis. His innovative methodologies emphasize eco-friendly processes, reflecting a commitment to addressing global sustainability challenges.Dr. Nazeri’s exceptional research achievements, innovative methodologies, and contributions to advancing sustainable chemistry establish him as a deserving recipient of the “Best Researcher Awards.” His work not only enriches the academic community but also addresses pressing environmental and societal challenges, making him an exemplary model of scientific excellence and impactful research.

🎓Education:

Dr. Nazeri completed his M.Sc. in organic chemistry at Tehran University, where he cultivated his foundational expertise in chemical sciences. He pursued his Ph.D. at Shahid Beheshti University, specializing in advanced multicomponent reactions and pseudopeptidic compounds under the guidance of Prof. Ahmad Shaabani. His doctoral work revolved around designing efficient, sustainable synthetic pathways for bioactive heterocycles. Building upon this, Dr. Nazeri undertook a postdoctoral fellowship at Shahid Beheshti University, further refining his expertise in green chemistry and material functionalization. His educational journey reflects a commitment to developing innovative solutions for complex synthetic challenges, integrating sustainability and efficiency.

🏢Work Experience:

Dr. Nazeri began his academic career with extensive research in isocyanide-based multicomponent reactions, focusing on the synthesis of heterocyclic compounds and pseudopeptides. After earning his Ph.D., he joined Prof. Ahmad Shaabani’s research group for postdoctoral studies, emphasizing sustainable chemistry. Since 2022, he has been a faculty member at Shahid Beheshti University, where he teaches, mentors students, and leads groundbreaking research projects. His contributions include developing eco-friendly synthetic methodologies and functionalizing materials for applications in green catalysis and CO₂ fixation. With over 40 publications, Dr. Nazeri’s experience showcases his innovative approach to organic chemistry and materials science.

🏅Awards: 

Dr. Nazeri has received widespread recognition for his contributions to organic chemistry. His awards highlight excellence in green chemistry and multicomponent reactions, showcasing his innovative approach to sustainable synthesis. His postdoctoral fellowship, under the esteemed guidance of Prof. Ahmad Shaabani, reflects his exceptional research capabilities. Dr. Nazeri’s work has earned accolades from the scientific community, underscoring his commitment to advancing eco-friendly methodologies. His role as a faculty member at Shahid Beheshti University further attests to his impact in shaping the next generation of researchers in organic chemistry.

🔬Research Focus:

Dr. Nazeri’s research interests include the design and synthesis of bioactive compounds through novel multicomponent reactions, with a particular emphasis on pseudopeptidic and heterocyclic scaffolds. He explores sustainable methods for the functionalization and modification of materials, employing green chemistry principles. His work focuses on isocyanide-based reactions in water, aiming to create efficient synthetic routes for medicinally relevant compounds. Dr. Nazeri also investigates applications in CO₂ fixation and antibacterial nanocomposites, contributing to eco-friendly advancements in materials science. His research bridges organic synthesis, green catalysis, and material functionalization for sustainable development.

Publication Top Notes:

5-Amino-pyrazoles: potent reagents in organic and medicinal synthesis

Authors: A. Shaabani, M.T. Nazeri, R. Afshari

Citations: 78

Year: 2019

Multicomponent reactions as a potent tool for the synthesis of benzodiazepines

Authors: H. Farhid, V. Khodkari, M.T. Nazeri, S. Javanbakht, A. Shaabani

Citations: 67

Year: 2021

Cyclic imines in Ugi and Ugi-type reactions

Authors: M.T. Nazeri, H. Farhid, R. Mohammadian, A. Shaabani

Citations: 57

Year: 2020

Deep eutectic solvent as a highly efficient reaction media for the one-pot synthesis of benzo-fused seven-membered heterocycles

Authors: A. Shaabani, S.E. Hooshmand, M.T. Nazeri, R. Afshari, S. Ghasemi

Citations: 46

Year: 2016

Green one-pot synthesis of multicomponent-crosslinked carboxymethyl cellulose as a safe carrier for the gentamicin oral delivery

Authors: S. Javanbakht, M.T. Nazeri, A. Shaabani, M. Ghorbani

Citations: 40

Year: 2020

5-aminopyrazole-conjugated gelatin hydrogel: A controlled 5-fluorouracil delivery system for rectal administration

Authors: M.T. Nazeri, S. Javanbakht, A. Shaabani, M. Ghorbani

Citations: 38

Year: 2020

An efficient one-pot, regio-and stereoselective synthesis of novel pentacyclic-fused pyrano[3,2,c] chromenone or quinolinone benzosultone derivatives in water

Authors: M. Ghandi, M.T. Nazeri, M. Kubicki

Citations: 35

Year: 2013

Multi‐component reaction‐functionalized chitosan complexed with copper nanoparticles: An efficient catalyst toward A3 coupling and click reactions in water

Authors: A. Shaabani, M. Shadi, R. Mohammadian, S. Javanbakht, M.T. Nazeri

Citations: 34

Year: 2019

Isocyanide-based multicomponent reactions in water: Advanced green tools for the synthesis of heterocyclic compounds

Authors: T. Nasiriani, S. Javanbakht, M.T. Nazeri, H. Farhid, V. Khodkari, A. Shaabani

Citations: 33

Year: 2022

Synthesis of polysubstituted pyrroles via isocyanide-based multicomponent reactions as an efficient synthesis tool

Authors: M.T. Nazeri, A. Shaabani

Citations: 32

Year: 2021

 

 

 

 

Prof. Kurosh Rad-Moghadam | Organic Chemistry Award | Best Researcher Award

Prof. Kurosh Rad-Moghadam | Organic Chemistry Award | Best Researcher Award

Prof. Kurosh Rad-Moghadam, University of Guilan , Iran 

Prof. Kurosh Rad-Moghadam is an esteemed Professor of Organic Chemistry at the University of Guilan, Iran. With a foundation in pure and organic chemistry, he completed his BSc, MSc, and PhD at Shahid Beheshti University, Tehran, focusing on multicomponent syntheses and quinazoline derivatives. Joining the University of Guilan , Prof. Rad-Moghadam has since established himself as a leader in organic synthesis, specializing in advanced NMR spectroscopy, polymer chemistry, and nanotechnology. He has supervised over 60 MSc and PhD theses, guiding pioneering research on bioderived nanocomposites, ionic liquids, and deep eutectic solvents. His innovative contributions include developing sustainable methods in organic synthesis and bio-inspired eutectic melts, contributing significantly to eco-friendly chemical processes. With numerous publications in reputed journals, Prof. Rad-Moghadam continues to advance the frontiers of green chemistry and materials science.

Professional Profile: 

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Kurosh Rad-Moghadam demonstrates a remarkable profile of sustained research excellence in organic and pharmaceutical chemistry, which aligns strongly with the criteria for a “Best Researcher Award.” With an h-index of 23 and over 1,500 citations, Dr. Rad-Moghadam’s impact is evident in his innovative research contributions. His pioneering work in organic synthesis, particularly involving bioderived nanocomposites, ionic liquids, and deep eutectic solvents, has advanced sustainable chemistry methods and green solvent alternatives. His published work, represented in high-impact journals, showcases groundbreaking advancements in the synthesis and catalytic applications of ionic liquids, positioning him as a leading researcher in green chemistry.

🎓Education:

Prof. Rad-Moghadam’s academic journey began with a BSc in Pure Chemistry, followed by an MSc and PhD in Organic Chemistry at Shahid Beheshti University, Tehran. His MSc dissertation explored pseudo Mannich-type multicomponent synthesis, a versatile approach in organic chemistry. Building upon this, his PhD research delved into quinazoline derivatives, a class of compounds with pharmaceutical potential. These studies provided him with a robust understanding of organic synthesis principles and innovative approaches to multicomponent reactions. His educational background enabled him to excel in complex areas like bioderived nanocomposites and green chemistry. Through post-graduate studies, he developed expertise in areas pivotal to modern organic chemistry, including advanced NMR spectroscopy and sustainable polymer chemistry, which continue to shape his research endeavors at the University of Guilan.

🏢Work Experience:

With over two decades of teaching and research experience, Prof. Rad-Moghadam has been a central figure at the University of Guilan . He has supervised more than 40 MSc and 20 PhD theses, focusing on bioderived nanocomposites and ionic liquids, with ongoing guidance for 10 PhD and 7 MSc students. His consultancy for a polyurethane adhesive production company exemplifies his engagement in industry-relevant research, particularly in advanced materials. His teaching spans advanced organic synthesis, polymer nanotechnology, and spectroscopy, equipping students with crucial skills for research and industry. His innovative projects have gained international recognition, making him a sought-after researcher in green chemistry. Prof. Rad-Moghadam also actively contributes to scientific communities, furthering the application of eco-friendly chemicals and ionic liquids in organic synthesis.

🏅Awards:

Prof. Rad-Moghadam has received multiple accolades for his pioneering contributions to green chemistry and advanced organic synthesis. Recognized for his innovative work on ionic liquids and bioderived nanocomposites, he has established a reputation as a key figure in sustainable chemistry. His publications in high-impact journals highlight his research’s significance, leading to over 1,500 citations and an h-index of 23, reflecting the impact of his work within the scientific community. He was invited to contribute to the prestigious “Green Solvents II” volume, showcasing his expertise in sustainable solvents and ionic liquids. Prof. Rad-Moghadam’s dedication to education and research excellence has earned him respect as both a mentor and a scientist, positioning him as a leader in advancing green chemistry applications globally.

🔬Research Focus:

Prof. Rad-Moghadam’s research primarily explores eco-friendly synthetic methodologies, focusing on the design and application of bioderived nanocomposites, ionic liquids, and deep eutectic solvents. He has pioneered the use of bio-based materials to enhance the chemical and physical properties of nanoparticles, facilitating advancements in nanotechnology and sustainable materials science. His studies on ionic liquids have introduced novel catalytic properties, opening pathways for energy-efficient synthesis of organic compounds. His development of bioderived eutectic melts with unique thermal properties has potential applications in temperature-sensitive devices and selective synthesis in biosystems. With a strong commitment to green chemistry, his work addresses the environmental impact of traditional chemical processes, promoting renewable resources and reducing chemical waste. His research contributes significantly to sustainable practices in organic synthesis, offering innovative solutions for eco-friendly chemistry.

Publication Top Notes:

  1.  Starch mediates and cements densely magnetite-coating of talc, giving an efficient nano-catalyst for three-component synthesis of imidazo[1,2-c]quinazolines
    Citations: 2
  2.  Deep eutectic melt of betaine and trichloroacetic acid; its anomalous thermal behavior and green promotion effect in selective synthesis of benzimidazoles
    Citations: 1
  3.  A New Bioactive Thiazolidinone-based Azo Dye for Naked-eye Colorimetric Detection of Cyanide Ions
  4. Finely Dispersed Fe3O4 and Ag Nanoparticles Adhered by Starch Nano-layers: an Efficient Catalyst for the Synthesis of Pyrano[2,3-d]Pyrimidines
    Citations: 1
  5.  Ethyl 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate in the smiles rearrangement reaction: straightforward synthesis of amino acid derived quinolin-2(1H)-one enamines

 

 

 

 

Prof . Dmitry Dar’in | Organic Chemistry Award | Best Researcher Award

Prof . Dmitry Dar’in | Organic Chemistry Award | Best Researcher Award

Prof . Dmitry Dar’in  , Saint Petersburg State University, Institute of Chemistry, Russia 

Prof. Dmitry Dar’in is a distinguished chemist at the Institute of Chemistry, Saint Petersburg State University, with over 20 years of academic and research expertise. He is widely recognized for his work in heterocyclic chemistry and organic synthesis, actively supervising more than 20 graduate students. Prof. Dar’in has significantly advanced research in the synthesis of polysubstituted lactams and diazo compounds, expanding the boundaries of diazo chemistry and multicomponent reactions. With a robust publication record, including 236 Scopus-indexed articles, he has made remarkable contributions to targeted protein degradation, antitubercular agents, and trace amine-associated receptor studies. His dedication to scientific collaboration is evident in his partnerships with top international researchers, including Prof. Ewgenij Proschak, Prof. Saeed Balalaie, and Dr. Marcus D. Hartmann. He also serves as a Guest Editor for the journal Molecules on the “Diazo Chemistry” special issue. Prof. Dar’in is an influential figure in modern chemistry, continually driving innovation and education.

Professional Profile:

Scopus

Orcid

Summary of Suitability for Award:

Prof. Dmitry Dar’in is exceptionally suited for the “Best Researcher Award” due to his impactful contributions to the fields of diazo chemistry, heterocyclic compounds, and multicomponent reactions. With over 20 years of experience and an extensive portfolio of 236 Scopus-indexed publications, his work has significantly influenced organic synthesis, particularly in developing innovative methodologies for diazo compound synthesis in aqueous media and expanding the Castagnoli-Cushman reaction’s applications. His high citation index (h-index of 23) reflects the relevance and quality of his research contributions, demonstrating a consistent commitment to advancing chemical science.

🎓Education:

Prof. Dmitry Dar’in has pursued an extensive educational journey focused on chemistry, culminating in his expertise in heterocyclic compounds and organic synthesis. He completed his initial studies at a reputed university, where he laid a strong foundation in chemical theory and application. Further advancing his knowledge, Prof. Dar’in specialized in heterocyclic and diazo chemistry, undertaking advanced research projects and collaborative studies that have become foundational to his career. His formal education was complemented by ongoing research, allowing him to gain hands-on experience with complex chemical reactions and synthesis methodologies. Prof. Dar’in has continued his professional development through interactions with prominent research groups worldwide, which have enriched his teaching and research endeavors. His education paved the way for his current role as a professor and researcher, where he imparts deep knowledge in organic synthesis and continues to explore innovative approaches in chemistry.

🏢Work Experience:

With over two decades of experience in academic and applied research, Prof. Dmitry Dar’in has established himself as a leader in heterocyclic chemistry and diazo compound synthesis. He teaches advanced courses on heterocyclic chemistry and organic synthesis at Saint Petersburg State University, where he has also supervised over 20 graduate theses, guiding students in cutting-edge research methodologies. Prof. Dar’in’s experience spans multiple successful projects, including five current research endeavors and two consultancy projects for industry partners. His expertise is further reflected in his role as Guest Editor for Molecules, where he oversees specialized issues on diazo chemistry. Prof. Dar’in has extensive international collaboration experience, working closely with esteemed scientists like Prof. Ewgenij Proschak and Prof. Saeed Balalaie. His global engagements and dedication to advancing chemistry research continue to influence modern synthetic methods and applications, particularly in medicinal chemistry and targeted protein degradation.

🏅Awards:

Prof. Dmitry Dar’in has received several prestigious awards in recognition of his innovative contributions to chemistry, particularly in the areas of heterocyclic compounds and diazo chemistry. His groundbreaking work has earned him the respect of both academic and industrial circles, where his methods for synthesizing diazo compounds in aqueous environments and his contributions to the Castagnoli-Cushman reaction have been particularly celebrated. His scholarly excellence is also recognized through his editorial role for Molecules, showcasing his influence in shaping modern research directions. In addition to these honors, Prof. Dar’in has been acknowledged for his collaborative work with international research leaders, reflecting his commitment to global scientific advancement. His contributions to the field, both in education and research, have earned him nominations for top-tier awards such as the Best Researcher Award, emphasizing his stature as a leading scientist in organic synthesis and multicomponent reactions.

🔬Research Focus:

Prof. Dmitry Dar’in’s research primarily explores diazo chemistry, heterocyclic compounds, and multicomponent reactions. He has pioneered efficient synthesis methods for diazo compounds, especially diazo metanesulfonamides, and has introduced aqueous medium diazo transfer techniques, which have expanded the practical applications of these compounds. His work with polysubstituted lactams through the Castagnoli-Cushman reaction has unlocked new pathways for using cyclic anhydrides and imine-type reagents. Prof. Dar’in’s research also delves into targeted protein degradation, trace amine-associated receptors, and antitubercular agents, making substantial strides in medicinal chemistry. His innovative approaches to synthesizing five- and six-membered diazo heterocycles have opened avenues for further exploration in core functionalization and heterocyclic frameworks. Prof. Dar’in’s research remains at the forefront of organic chemistry, impacting both theoretical knowledge and practical applications in pharmaceutical sciences.

Publication Top Notes:

  • Title: Synthesis of cyclic sulfamides via one-pot alkylation/aza-Michael cascade reaction
  • Title: Coinage (Au, Ag, Cu) metal-catalyzed (3 + 2) annulation of α-aminoketones and electron-deficient alkynes as a route to 3-EWG-substituted pyrroles
    • Citations: 1
  • Title: Diazo Tetramic Acids Provide Access to Natural-Like Spirocyclic Δα,β-Butenolides through Rh(II)-Catalyzed O-H Insertion/Base-Promoted Cyclization
    • Citations: 6
  • Title: The synthesis of 1-oxa-9-azaspiro[5.5]undecane derivatives and optimization of antituberculosis activity thereof
  • Title: Phosphorescent Cyclometalated Palladium(II) and Platinum(II) Complexes Derived from Diaminocarbene Precursors

 

 

 

Evgeny Tretyakov | Organic Chemistry | Best Researcher Award

Prof Dr. Evgeny Tretyakov| Organic Chemistry | Best Researcher Award

Professor at N. D. Zelinsky Institute of Organic Chemistry, Russia

Prof. Evgeny Tretyakov is a distinguished chemist specializing in organic chemistry and molecular magnetism. Born on March 26, 1968, in Novosibirsk, Russia, he has dedicated his career to advancing the fields of organic radicals, high-spin molecules, and chemical ecology. His contributions to these areas are supported by his extensive research, numerous publications, and leadership roles in both academic and ecological initiatives.

Author Metrics

Scopus Profile

ORCID Profile

Prof. Tretyakov has achieved significant recognition in the scientific community. With a total of 3,454 citations across 1,896 documents and an h-index of 29, his research has made a considerable impact in the fields of organic chemistry and molecular magnetism. His high citation count and h-index reflect the influence and relevance of his work in these disciplines.

Education

Prof. Tretyakov’s educational background includes a Master’s Degree in Organic Chemistry from Novosibirsk State University (June 1992). He furthered his studies with a PhD from the Institute of Chemical Kinetics and Combustion, Novosibirsk, in November 1997. His academic journey continued with a Doctor of Science degree in 2009, followed by a professorship at the Institute of Organic Chemistry, Moscow, in July 2009. This solid educational foundation has been crucial in shaping his expertise and research career.

Research Focus

Prof. Tretyakov’s research focuses on organic chemistry and molecular magnetism. His work includes the synthesis of organic radicals and polyradicals, the design of high-spin organic systems, and the creation of magnetically active heterospin complexes. Additionally, he investigates the synthesis of fluorinated heterocycles and quinones. His contributions to chemical ecology include studying persistent organic pollutants and participating in international environmental programs such as the Stockholm Convention and the Arctic Contaminants Action Program.

Professional Journey

Prof. Tretyakov’s professional journey includes key positions in various prestigious institutions. He currently serves as the Deputy Director and Head of the Laboratory of Heterocyclic Compounds at the N. D. Zelinsky Institute of Organic Chemistry. His previous roles include Deputy Director at the Novosibirsk Institute of Organic Chemistry and Head of the Laboratory of Studying Nucleophilic and Radical Ion Reactions. His experience also includes visiting professorships at Max Planck Institute for Polymer Research and Osaka City University, reflecting his international collaboration and influence.

Honors & Awards

Prof. Tretyakov has been recognized with several prestigious awards and honors. These include the State Prize for Young Scientists, awards from the International Science and Education Development Foundation, and the Lavrentiev’s Award of SB RAS. He has also received accolades from the Russian Science Support Foundation and the Presidium SB RAS. These awards highlight his exceptional contributions to scientific research and his leadership in advancing his field.

Publications Noted & Contributions

Prof. Tretyakov has authored and co-authored over 250 scientific publications. Some notable works include studies on the role of paramagnetic ligands in magneto-structural anomalies, light-induced magnetostructural anomalies, and photoswitching in molecular magnets. His research has been published in leading journals such as Inorganic Chemistry, Journal of the American Chemical Society, and Angewandte Chemie, showcasing his significant contributions to the scientific literature.

Synthesis and Photoinduced Behavior of DPP-Anchored Nitronyl Nitroxides: A Multifaceted Approach

  • Journal: RSC Advances
  • Publication Date: 2024
  • DOI: 10.1039/D4RA00916A
  • Contributors: Evgeny Tretyakov, Dmitry Gorbunov, Nina Gritsan, Ashok Keerthi, Martin Baumgarten, Dieter Schollmeyer, Mikhail Ivanov, Anna Sergeeva, Matvey Fedin
  • Summary: This paper explores the synthesis and photoinduced behavior of diphenylphosphine (DPP)-anchored nitronyl nitroxides. The study presents a multifaceted approach to understanding how these compounds behave under light exposure, revealing insights into their photochemical properties and potential applications.

Polyfluorophenyl-Substituted Blatter Radicals: Synthesis and Structure–Property Correlations

  • Journal: Crystal Growth & Design
  • Publication Date: July 3, 2024
  • DOI: 10.1021/acs.cgd.4c00537
  • Contributors: Dmitry Gulyaev, Andrey Serykh, Dmitry Gorbunov, Nina Gritsan, Anna Akyeva, Mikhail Syroeshkin, Galina Romanenko, Evgeny Tretyakov
  • Summary: This article focuses on the synthesis of polyfluorophenyl-substituted Blatter radicals and examines the structure–property relationships of these compounds. The study provides detailed correlations between the molecular structure of the radicals and their physical properties, contributing to the understanding of their behavior and potential uses.

Halogen Bonding as a Supramolecular Modulator of Crystal Packing and Exchange Interactions in Nitronyl Nitroxides

  • Journal: Crystal Growth & Design
  • Publication Date: March 6, 2024
  • DOI: 10.1021/acs.cgd.3c01442
  • Contributors: Pavel V. Petunin, Evgeny V. Tretyakov, Matvey K. Shurikov, Daria E. Votkina, Galina V. Romanenko, Alexey A. Dmitriev, Nina P. Gritsan, Daniil M. Ivanov, Rosa M. Gomila, Antonio Frontera et al.
  • Summary: This research investigates how halogen bonding can modulate crystal packing and exchange interactions in nitronyl nitroxides. The study highlights the role of halogen bonds in influencing the supramolecular organization and magnetic properties of these materials, offering new perspectives on their structural and functional modulation.

A Nitronyl Nitroxide‐Substituted Benzotriazinyl Tetraradical**

  • Journal: Chemistry – A European Journal
  • Publication Date: February 7, 2024
  • DOI: 10.1002/chem.202303456
  • Contributors: Evgeny V. Tretyakov, Igor A. Zayakin, Alexey A. Dmitriev, Matvey V. Fedin, Galina V. Romanenko, Artem S. Bogomyakov, Anna Ya. Akyeva, Mikhail A. Syroeshkin, Naoki Yoshioka, Nina P. Gritsan
  • Summary: This paper reports on the synthesis and properties of a tetraradical compound featuring a nitronyl nitroxide-substituted benzotriazinyl core. The study discusses the electronic structure, magnetic properties, and potential applications of this novel tetraradical, providing insights into its unique behavior and characteristics.

Self-Assembly of Iodoacetylenyl-Substituted Nitronyl Nitroxides via Halogen Bonding

  • Journal: CrystEngComm
  • Publication Date: 2023
  • DOI: 10.1039/D3CE00735A
  • Contributors: Matvey K. Shurikov, Evgeny V. Tretyakov, Pavel V. Petunin, Darya E. Votkina, Galina V. Romanenko, Artem S. Bogomyakov, Sergi Burguera, Antonio Frontera, Vadim Yu. Kukushkin, Pavel S. Postnikov
  • Summary: This article explores the self-assembly of iodoacetylenyl-substituted nitronyl nitroxides through halogen bonding. It presents a detailed analysis of how these interactions influence the formation and organization of molecular assemblies, shedding light on the role of halogen bonding in supramolecular chemistry.

Research Timeline

Prof. Tretyakov’s research timeline spans several decades, with significant contributions starting from his early work in the Institute of Chemical Kinetics and Combustion to his current roles at the N. D. Zelinsky Institute of Organic Chemistry. His research projects have been supported by various grants and fellowships, including those from the Russian Foundation for Basic Research and the Centre National de la Recherche Scientifique. His ongoing research projects focus on areas such as molecular magnets and graphene nanostructures.

Collaborations and Projects

Throughout his career, Prof. Tretyakov has collaborated with leading scientists and institutions worldwide. His projects include the development of switchable molecular magnets, spin-labeled derivatives, and functionalized graphene nanostructures. These projects are supported by various international and national funding bodies, reflecting his strong network and collaborative approach in advancing chemical research.

Strengths of the Best Researcher Award

High Citation Impact: Prof. Tretyakov’s impressive citation metrics (3,454 citations and an h-index of 29) highlight the significant influence and broad recognition of his work in organic chemistry and molecular magnetism.

Diverse Research Focus: His research spans multiple important areas including organic radicals, high-spin molecules, chemical ecology, and molecular magnetism. This diversity showcases his ability to address complex scientific challenges from various perspectives.

Prestigious Publications: Prof. Tretyakov has published extensively in high-impact journals like Inorganic Chemistry, Journal of the American Chemical Society, and Angewandte Chemie. His work on topics such as photoinduced behavior and halogen bonding underscores his contributions to advancing knowledge in his fields.

International Collaboration: His collaborations with esteemed institutions and scientists worldwide (e.g., Max Planck Institute, Osaka City University) reflect his global recognition and the international relevance of his research.

Significant Awards and Honors: The recognition Prof. Tretyakov has received, including the State Prize for Young Scientists and the Lavrentiev’s Award, highlights his outstanding contributions and leadership in scientific research and ecological initiatives.

Areas for Improvement

Broadened Outreach: Although Prof. Tretyakov has made significant contributions to scientific research, increasing outreach through public engagement and science communication could further enhance the visibility and impact of his work outside academic circles.

Interdisciplinary Integration: While his work is diverse, there could be further opportunities to integrate findings from his research on chemical ecology with his studies in molecular magnetism, potentially leading to novel interdisciplinary applications.

Expanded Research Funding: Diversifying the sources and types of funding for his research could provide additional resources and support for exploring new and innovative areas within his field.

Increased Focus on Emerging Trends: Staying ahead of emerging trends in organic chemistry and molecular magnetism, such as advancements in computational methods or new materials, could help maintain his research’s cutting-edge status.

Mentorship and Training: Enhancing efforts in mentoring young scientists and fostering new talent in the field could ensure the continued growth and evolution of research in his areas of expertise.

Conclusion

Prof. Evgeny Tretyakov’s receipt of the Best Researcher Award is a testament to his exceptional contributions to organic chemistry and molecular magnetism. His extensive research, significant publication record, high citation impact, and international collaborations underscore his prominent role in advancing scientific knowledge. While there are areas for potential improvement, such as increasing public outreach and integrating interdisciplinary approaches, his achievements reflect a highly impactful and influential career. Continued focus on emerging trends and mentorship will further enhance his contributions and sustain his position at the forefront of scientific research.