Dr. PRANABA Nayak | Analytical Chemistry | Best Researcher Award

Dr. PRANABA Nayak | Analytical Chemistry | Best Researcher Award

Dr. PRANABA Nayak , Analytical Chemistry ,  Scientific Officer at Tata Institute of Fundamental Research, India

Dr. Pranaba K. Nayak is a Scientific Officer at the Tata Institute of Fundamental Research (TIFR), Mumbai, with over two decades of experience in nuclear and analytical chemistry, and astroparticle physics. He earned his Ph.D. from Utkal University in 2003, later serving at Kalasalingam University before joining TIFR in 2005 as a Senior Postdoctoral Fellow in the GRAPES-3 cosmic-ray experiment. His interdisciplinary research has led to over 75 peer-reviewed publications and significant discoveries, including gamma-ray flux shifts during solar eclipses and thunderstorm-related phenomena. He collaborates with 30+ national and international institutes and serves on editorial and scientific committees globally. An active mentor and scholar, Dr. Nayak has contributed to more than 50 book chapters and reviewed over 75 manuscripts. His work has been recognized for its impact on solar physics, atmospheric science, and nuclear astrophysics.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Pranaba K. Nayak is a highly accomplished researcher whose career spans over two decades of impactful work in astro particle physics, nuclear chemistry, and analytical techniques. His contributions to the internationally recognized GRAPES-3 cosmic-ray experiment at TIFR have led to several groundbreaking discoveries, such as the variation in cosmic gamma-ray flux during solar eclipses and record-setting atmospheric potential measurements. With 75+ peer-reviewed publications, 50+ book chapters, and extensive international collaborations with over 30 institutes worldwide, he has consistently demonstrated research excellence, innovation, and leadership. His h-index of 20 and i10-index of 28 reflect the scientific community’s recognition of his work. In addition, Dr. Nayak has actively mentored young scientists and contributed as a reviewer and editorial board member, strengthening scientific discourse in his field. Dr. Pranaba K. Nayak is eminently suitable for the “Best Researcher Award”. His sustained research output, pioneering discoveries, interdisciplinary reach, and international collaborations make him a deserving candidate whose contributions have significantly advanced both theoretical and applied aspects of high-energy physics and analytical sciences.

🎓Education:

Dr. Nayak holds a Ph.D. in Experimental Nuclear and Analytical Chemistry from Utkal University (2003). His doctoral research, guided by mentors from Anna University, Chennai, spanned nuclear, analytical, and solid-state chemistry. This strong academic foundation laid the groundwork for his transition into astroparticle physics and cosmic-ray studies. Prior to his Ph.D., he pursued postgraduate and undergraduate studies in chemistry, with a focus on nuclear instrumentation and environmental radiochemistry. His educational path blended theoretical insight with hands-on experimentation, equipping him with the tools necessary for high-impact interdisciplinary research. His continuing engagement with educational institutions, including mentoring young researchers and Ph.D. scholars, exemplifies his commitment to fostering scientific excellence. He frequently delivers lectures and training modules in cosmic ray physics and analytical techniques, contributing to capacity-building in India and abroad.

🏢Work Experience:

Dr. Pranaba K. Nayak began his professional journey as a faculty member at Kalasalingam University, focusing on nuclear and analytical chemistry. In 2005, he joined TIFR’s High Energy Physics Department as a Senior Postdoctoral Fellow and has since become a Scientific Officer, contributing extensively to the GRAPES-3 cosmic-ray experiment at Ooty. His work spans gamma-ray burst detection, cosmic-ray modulation, environmental radioactivity, and atmospheric physics. He has developed novel spectral analysis techniques and coordinated large-scale collaborations with over 30 institutions globally, including IITs, SINP, and partners in Japan, Europe, and Saudi Arabia. His interdisciplinary projects have addressed thunderstorm-related high-energy events and geomagnetic field studies. He also mentors students, reviews scientific manuscripts, and contributes to international committees. His role in advancing experimental techniques and fostering global scientific partnerships has made him a respected figure in high-energy astrophysics and nuclear research communities.

🏅Awards: 

Dr. Nayak has received widespread recognition for his pioneering work in cosmic-ray physics and analytical chemistry. His discovery of gamma-ray flux shifts during the 2009 total solar eclipse gained international acclaim and highlighted his ability to integrate astrophysics with atmospheric science. He has been an invited reviewer for over 75 manuscripts, primarily for the journal Talanta, showcasing his expertise in analytical chemistry. His scientific excellence earned him a position on the Scientific Committee of the Annual International Congress on Nanoscience & Nanotechnology (2025, Oxford, UK). He is also a life member of prestigious scientific organizations, including the Indian Society for Atomic & Molecular Physics, Indian Physics Association, Indian Association for Nuclear Chemist & Allied Sciences, and Indian Society for Technical Education. These accolades affirm his leadership and innovation in research, education, and scientific outreach.

🔬Research Focus:

Dr. Pranaba K. Nayak’s research centers on the intersection of experimental nuclear chemistry, analytical techniques, and astroparticle physics. At the heart of his work lies the GRAPES-3 cosmic-ray experiment, where he investigates high-energy phenomena such as cosmic-ray modulation, gamma-ray flux variations, and muon bursts during thunderstorms and solar eclipses. His contributions have led to significant insights into solar-terrestrial interactions, atmospheric electricity, and transient geomagnetic events. He has also developed novel analytical methods for monitoring environmental radioactivity, integrating advanced spectrometry with field-based cosmic-ray detection systems. His research uniquely bridges space physics with earth-based observations, advancing our understanding of cosmic particle behavior under extreme atmospheric conditions. Through collaborations with over 30 national and international institutions, Dr. Nayak continues to lead interdisciplinary studies that link nuclear processes with astrophysical and atmospheric phenomena, thereby contributing to global efforts in understanding high-energy cosmic environments and their terrestrial effects.

Publication Top Notes:

Title: Synthesis and characterization of cadmium ferrite
Citations: 76

Title: Forbush decreases and turbulence levels at coronal mass ejection fronts
Citations: 65

Title: Measurement of the Electrical Properties of a Thundercloud Through Muon Imaging by the GRAPES-3 Experiment
Citations: 51

Title: Energy dispersive X-ray fluorescence analysis of gallstones
Citations: 46

Title: Measurement of some EAS properties using new scintillator detectors developed for the GRAPES-3 experiment
Citations: 42

Title: PIXE & XRD analysis of nanocrystals of Fe, Ni and Fe₂O₃
Citations: 35

Title: External particle-induced X-ray emission
Citations: 35

Title: Elemental analysis of anti-diabetic medicinal plants using energy dispersive X-ray fluorescence technique
Citations: 34

Title: 57Fe Mössbauer and EDXRF studies on three representative banded iron formations (BIFs) of Orissa, India
Citations: 32

Title: A study of the γ-ray flux during the total solar eclipse of 1 August 2008 at Novosibirsk, Russia
Citations: 28

Title: Fast Fourier transform to measure pressure coefficient of muons in the GRAPES-3 experiment
Citations: 27

Assoc. Prof. Dr. Xiaoming Zhang | Physical Chemistry | Women Researcher Award

Assoc. Prof. Dr. Xiaoming Zhang | Physical Chemistry | Women Researcher Award

Assoc. Prof. Dr. Xiaoming Zhang , Physical Chemistry , Minzu University of China , China

Dr. Zhang Xiaoming is an Associate Professor in Physical Chemistry at the College of Science, Minzu University of China. She specializes in functional self-assembly and interfacial physics of nanomaterials for applications in energy batteries, photocatalytic water splitting, and ultra-high-resolution imaging. She earned her Ph.D. from the Institute of Chemistry, Chinese Academy of Sciences in 2007. Dr. Zhang has held postdoctoral positions at Keio University (Japan), Dublin City University (Ireland), and the National Center for Nanoscience and Technology (China). She has published over 60 SCI-indexed papers and led multiple national and municipal research projects. Her work bridges fundamental nanoscience with real-world applications in energy and biotechnology. She is actively involved in editorial boards and academic committees and has received several teaching and research awards. She also mentors postgraduate and international postdoctoral researchers, contributing to global scientific exchange.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Zhang holds a Ph.D. in Physical Chemistry from the prestigious Institute of Chemistry, Chinese Academy of Sciences, with additional advanced training from globally recognized institutions such as Keio University (Japan) and Dublin City University (Ireland). She has published over 60 SCI-indexed papers as first or corresponding author, indicating her leading role in innovative research. Her work on nanomaterials, interfacial physics, and applications in energy storage, photocatalysis, and super-resolution imaging is both interdisciplinary and of high societal relevance. Dr. Zhang is the Principal Investigator for a major National Natural Science Foundation of China project and has led/co-led several national and international research initiatives, including talent introduction and key development programs. She is a Master’s and Ph.D. supervisor, actively mentoring both domestic and international researchers, especially women and underrepresented groups, thus contributing to capacity building and gender equity in science. Dr. Zhang Xiaoming embodies the ideal profile for the “Women Researcher Award”—a dynamic scientist who excels in cutting-edge research, mentors the next generation, contributes to international scientific dialogue, and advances gender representation in science. Her contributions not only enrich the scientific community but also serve as a role model for aspiring women researchers globally. Awarding her would recognize and further empower women’s leadership in science and technology.

🎓Education:

Dr. Zhang Xiaoming completed her Ph.D. in Physical Chemistry (2007) at the Institute of Chemistry, Chinese Academy of Sciences under the supervision of Prof. Junbai Li. She earned her M.Sc. in Physical Chemistry (2004) from Shandong Normal University, mentored by Prof. Zexin Wang, where she began her research into molecular self-assembly. Prior to that, she obtained her B.Sc. in Chemistry (2001) from the same university. Her education laid the foundation for her interdisciplinary approach, combining chemistry, nanotechnology, and physics. Through her studies, she developed a deep understanding of surface chemistry, interfacial interactions, and bio-functionalization, which now underpin her research on nanomaterial design for energy and biomedical applications.

🏢Work Experience:

Dr. Zhang has extensive academic and industrial experience. Since 2017, she has served as an Associate Professor at Minzu University of China. Before that, she was Deputy General Manager and Senior Engineer at the American Bentley Company (Beijing) from 2015 to 2017. Her academic journey includes postdoctoral positions at Keio University (Japan, 2007–2008), Dublin City University (Ireland, 2010–2012), and the National Center for Nanoscience and Technology, China (2012–2015). This international research exposure has shaped her cross-disciplinary expertise in nanoscience, interfacial physics, and functional materials. She has been actively involved in major national-level research projects and contributes to graduate education and talent training initiatives.

🏅Awards: 

Dr. Zhang has received numerous awards for her academic, research, and teaching excellence. These include the 2025 Outstanding Individual in Undergraduate Recruitment Publicity and 2024 Outstanding Work Performance awards from Minzu University. She earned Second Prize in the 2024 Education and Teaching Innovation Competition and several awards for teaching excellence, including the First Prize in the 11th Teaching Competition and the Best Teaching Demonstration Award (2018). Her research was internationally recognized with the IRCSET EMPOWER Fellowship (2010) in Ireland. She has also been honored as an Outstanding Instructor and Outstanding Communist Party Member and continues to be a highly active contributor in national education evaluations and academic forums.

🔬Research Focus:

Dr. Zhang’s research focuses on functional nanomaterials, particularly their self-assembly, bio-functionalization, and interfacial physics. Her goal is to harness these properties for energy storage, photocatalytic water splitting, and ultra-high resolution fluorescence imaging. Her interdisciplinary approach blends chemistry, nanotechnology, and biology. She investigates how nanostructures form and behave at interfaces, which is key to improving battery performance and catalytic efficiency. One of her recent projects explores the co-assembly of glucagon-like peptide GLP-1 with lipopeptides, using super-resolution fluorescence microscopy to visualize intracellular transport. She also studies the epitaxial growth of GeSn alloys for use in mid-infrared photodetectors, expanding her expertise into semiconductor applications.

Publication Top Notes:

1. High-performance ethanol detection achieved by WO₃/Co₃O₄ composite heterojunctions with synergistic p-n junction features

2. Probing Peptide Assembly and Interaction via High-Resolution Imaging Techniques: A Mini Review.

3. Engineering of peptide assemblies for adaptable protein delivery to achieve efficient intracellular biocatalysis

4. Manganese doped tailored cobalt sulfide as an accelerated catalyst for oxygen evolution reaction

5. Solution-processed, ultrasensitive, high current density vertical phototransistor using porous carbon nanotube electrode

6. Dramatic increase in SWIR detection for GeSn strip detector with graphene hybrid structure

7. A review on III–V compound semiconductor short wave infrared avalanche photodiodes

8. Two-dimensional antimony selenide (Sb₂Se₃) nanosheets prepared by hydrothermal method for visible-light photodetectors

9. Fabrication of graphene: CdSe quantum dots/CdS nanorod heterojunction photodetector and role of graphene to enhance the photoresponsive characteristics

10. One-Step Synthesis of SiOx@Graphene Composite Material by a Hydrothermal Method for Lithium-Ion Battery Anodes

 

Dr. Siyao Chen | Materials Chemistry | Best Researcher Award

Dr. Siyao Chen | Materials Chemistry | Best Researcher Award

Dr. Siyao Chen , Materials Chemistry , Senior research assistant at City University of Hong Kong , Hong Kong

Dr. Siyao Chen is a Senior Research Assistant at the City University of Hong Kong, specializing in additive manufacturing and polymer-derived ceramics. With an impressive track record in advanced material research, Dr. Chen has published 11 SCI-indexed papers, including two ESI highly cited works, amassing over 610 citations. He serves as an invited editor for Frontiers in Electronics and actively contributes as a peer reviewer for prestigious journals such as Aerospace Science and Technology and the Journal of the European Ceramic Society. His research has made significant strides in 3D/4D ceramic printing, smart sensors, and semiconductor applications. In addition to academic achievements, Dr. Chen has worked on two major research projects, collaborated on four industry consultancies, and is listed as an inventor on three patents. A rising figure in materials science, Dr. Chen’s work integrates cutting-edge technology with real-world applications, contributing meaningfully to the development of intelligent ceramic systems.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Chen has published 11 SCI-indexed papers, including 2 ESI highly cited works, demonstrating high-impact contributions. One of these papers has gathered over 610 citations, a remarkable achievement for an early-career researcher. His work in additive manufacturing, polymer-derived ceramics, and intelligent electronics is not only innovative but also addresses complex, high-tech engineering challenges. These fields are critical in both academic and industrial applications. He serves as an invited editor for Frontiers in Electronics and is a reviewer for top-tier journals like Aerospace Science and Technology and Journal of the European Ceramic Society, indicating recognition by peers in his domain. With 3 patents, 4 consultancy projects, and 2 ongoing research projects, Dr. Chen demonstrates both academic excellence and practical application, bridging the gap between theory and industry. Dr. Siyao Chen’s research excellence, demonstrated by high-impact publications, innovation through patents, editorial and peer-review contributions, and cross-disciplinary industrial collaborations, clearly qualify him as an exceptional candidate for the “Best Researcher Award.” His academic rigor and applied innovation mark him as a rising leader in materials science and engineering research.

🎓Education:

Dr. Siyao Chen earned his doctoral degree from City University of Hong Kong, where he laid the foundation for his expertise in additive manufacturing and ceramic. His academic training emphasized interdisciplinary knowledge at the intersection of materials engineering, mechanical design, and electronic systems. During his time at CityU, Dr. Chen developed critical skills in vat photopolymerization, polymer-derived ceramic processing, and microstructural design of smart ceramics. His graduate research focused on fabricating high-performance ceramic sensors and coatings using 3D/4D printing methods. Throughout his education, he was actively involved in publishing high-impact articles and contributing to collaborative research teams. His studies not only strengthened his theoretical foundation but also fostered practical lab experience, laying the groundwork for his continued academic and industrial research. The combination of rigorous education and hands-on innovation shaped Dr. Chen’s academic identity and enabled him to push boundaries in the field of intelligent ceramic-based electronics.

🏢Work Experience:

Dr. Siyao Chen currently works as a Senior Research Assistant at the City University of Hong Kong, where he leads multiple research efforts in the field of additive manufacturing and ceramic electronics. Over the years, he has contributed to both academic and industrial projects, participating in four consultancy collaborations and leading two significant research endeavors. He has also acted as a project coordinator for the development of smart ceramic sensors, coating systems, and semiconductor devices. His work includes guiding junior researchers, managing experimental workflows, and contributing to grant applications. Dr. Chen serves as a peer reviewer for several SCI-indexed journals and as an invited editor for Frontiers in Electronics, showcasing his academic authority. His multi-disciplinary experience, spanning ceramics, polymer chemistry, and semiconductor devices, equips him to work across diverse research environments. His consistent performance and hands-on innovation have made him a valuable member of the advanced materials research community.

🏅Awards: 

Although early in his career, Dr. Siyao Chen has achieved notable recognition in his field. He is the recipient of multiple citations in high-impact journals, including two ESI Highly Cited Papers — a significant mark of influence and excellence in scholarly research. His publication in Materials Science and Engineering: R: Reports alone has gathered over 550 citations. Additionally, he was invited to join the editorial board of Frontiers in Electronics, a testament to his research integrity and subject matter expertise. His role as a reviewer for high-tier journals such as the Journal of the European Ceramic Society and Aerospace Science and Technology also highlights his academic credibility. Dr. Chen’s patent contributions and collaboration in industrial projects demonstrate the practical impact of his work. With a growing reputation in the materials science community, he is an emerging leader in ceramic additive manufacturing and intelligent electronics.

🔬Research Focus:

Dr. Chen’s primary research interests lie in additive manufacturing, polymer-derived ceramics, and semiconductor applications. He focuses on the design and processing of smart ceramic materials using 3D/4D printing technologies. His work bridges traditional ceramics with modern electronics, enabling innovations in reconfigurable structures, temperature sensors, and electromagnetic devices. A key area of interest is the development of lightweight, high-performance ceramics with tunable properties, particularly for sensing, actuation, and aerospace applications. His recent projects explore vat photopolymerization for SiCN and SiBCN-based ceramics, real-time material behavior modeling, and coating technologies for extreme environments. He is also involved in stimuli-responsive material systems, contributing to the advancement of intelligent electronics. His interdisciplinary research integrates materials engineering, electronic design, and digital fabrication, offering scalable and programmable material solutions for future smart systems. By combining structural innovation with electronic functionality, Dr. Chen aims to reshape how materials are conceived and manufactured.

Publication Top Notes:

Title: Additive manufacturing of structural materials
Citations: 572

Title: Lightweight and geometrically complex ceramics derived from 4D printed shape memory precursor with reconfigurability and programmability for sensing and actuation applications
Citations: 43

Title: Fabrication of polymer-derived SiBCN ceramic temperature sensor with excellent sensing performance
Citations: 17

Title: Fabrication of electrical semi-conductive SiCN ceramics by vat photopolymerization
Citations: 8

Title: 3D/4D additive–subtractive manufacturing of heterogeneous ceramics
Citations: 5

Title: Temperature and frequency dependent conductive behavior study on polymer-derived SiBCN ceramics
Citations: 3

Title: Novel anti-oxidation coating prepared by polymer-derived ceramic for harsh environments up to 1200°C
Citations: 2

Title: Real-time Bayesian model calibration method for C/SiC mechanical behavior considering model bias
Citations: 1

Title: Recent advances in stimuli-responsive materials for intelligent electronics

Title: Oxidation behavior of TiB2 from 600–1400°C considering microstructure evolution, oxidation kinetics, and mechanisms

Title: Evolution of dielectric properties of SiBCN ceramics and its derived wireless passive temperature sensor application