Dr. Faranak Hatami | Computational Chemistry | Best Researcher Award

Dr. Faranak Hatami | Computational Chemistry | Best Researcher Award

Dr. Faranak Hatami , Computational Chemistry , PhD at University of massachuessetes Lowell, United States

Faranak Hatami (Fara) is a dedicated physicist and researcher specializing in molecular dynamics simulations, machine learning, and nuclear materials science. Currently pursuing her Ph.D. in Physics at the University of Massachusetts Lowell, she focuses on transport property analysis and multi-objective optimization for molecular systems like Tri-Butyl-Phosphate (TBP). Faranak holds two master’s degrees—one in Physics from UMASS Lowell, where she explored force fields for TBP, and another in Nuclear Engineering from Shahid Beheshti University, where she investigated radiation damage in metals. With a robust background in computational physics, AI, and advanced simulation tools, she has authored multiple publications across nuclear materials and computational chemistry. Her teaching experience spans both the U.S. and Iran, reflecting her passion for education. Beyond academia, she completed a research internship at the University of Montreal. Faranak’s work bridges fundamental physics and practical applications, contributing innovative insights to the fields of material science and chemical engineering.

Professional Profile : 

Google Scholar 

Summary of Suitability for Award:

Faranak Hatami is a highly suitable candidate for a “Best Researcher Award”. She demonstrates exceptional multidisciplinary expertise spanning physics, molecular dynamics, machine learning, and nuclear materials science. Her Ph.D. work at UMASS Lowell innovatively combines atomic-scale simulations with AI to optimize force field parameters for Tri-Butyl-Phosphate, addressing both fundamental science and practical applications.  She has authored several impactful publications in reputable journals and preprints, covering diverse topics from radiation damage in metals to machine learning models predicting thermodynamic properties. Her research portfolio includes complex computational modeling, multi-objective optimization, and advanced materials analysis. Additionally, Faranak’s teaching record and successful research internship in Canada reflect her commitment to knowledge dissemination and international collaboration. Her ability to merge computational physics with machine learning showcases originality and forward-thinking, key attributes for top research honors. Faranak Hatami embodies the qualities of a best researcher: scientific rigor, innovative thinking, multidisciplinary skillset, and impactful publications. Her contributions significantly advance computational methods in physical sciences and engineering, making her a strong and deserving candidate for a “Best Researcher Award”.

🎓Education:

 Faranak Hatami is completing her Ph.D. in Physics at the University of Massachusetts Lowell (2021–2025), with her thesis focused on transport property analysis and optimization of force field parameters for Tri-Butyl-Phosphate (TBP), combining atomic-scale simulations with machine learning. Prior to this, she earned her M.Sc. in Physics from the same university in 2023, where she conducted a comparative study of force fields for liquid TBP using molecular dynamics. Earlier, she obtained her M.Sc. in Nuclear Engineering from Shahid Beheshti University in Iran (2016), where she examined radiation damage effects on zirconium and iron grain boundaries through simulations. Her academic journey began with a B.S. in Electrical Engineering from Kurdistan University in 2013. Throughout her studies, Faranak has integrated advanced computational methods, AI, and experimental data analysis, building a multidisciplinary foundation that connects physics, materials science, and engineering disciplines.

🏢Work Experience:

Faranak Hatami brings diverse experience across research, teaching, and technical projects. At UMASS Lowell, she serves as a Teaching Assistant in Physics while pursuing her Ph.D., guiding students through complex concepts. Previously, she lectured on Computational Methods and Statistical Methods and Physics courses at Shahid Beheshti University between 2014 and 2018. Her research career includes an internship at the University of Montreal (2019–2021), exploring hydrogen’s effects on iron grain boundaries using the kinetic activation relaxation technique (k-ART). Faranak has led significant academic projects spanning molecular dynamics simulations, multi-objective optimization, and machine learning applications in material science. She has deep expertise in computational tools such as LAMMPS, MCNP, VASP, and Python-based AI frameworks. Her work reflects a unique blend of fundamental physics research, practical problem-solving, and advanced data analysis, contributing to fields like chemical engineering, nuclear materials, and computational modeling.

🏅Awards: 

 Faranak Hatami has built an impressive research portfolio during her academic career, reflected in multiple publications and conference presentations. While specific named awards were not explicitly listed in her profile, her contributions have earned her recognition through invited presentations such as at the AIChE Annual Meeting, showcasing her expertise in molecular dynamics simulations and force field optimization. Completing dual M.Sc. degrees in Physics and Nuclear Engineering highlights her dedication and academic excellence. Her selection as a research intern at the University of Montreal, working on advanced computational studies in materials science, further underscores her capability and esteem in her field. Through her multidisciplinary approach integrating AI, molecular modeling, and nuclear materials science, she stands out as a rising scholar contributing valuable insights to computational physics and chemical engineering. As she advances her Ph.D., she is poised for further accolades in research innovation and scientific community engagement.

🔬Research Focus:

 Faranak Hatami focuses her research on the intersection of molecular dynamics simulations, machine learning, and materials science. Her Ph.D. work centers on analyzing transport properties and optimizing force field parameters for Tri-Butyl-Phosphate (TBP) using multi-objective optimization algorithms like NSGA-II/III. She applies molecular dynamics to predict critical thermodynamic and transport properties, integrating neural networks for parameter tuning. Additionally, she explores AI-based classification of microscopy and atomic-scale images, blending physics with cutting-edge data science. Faranak’s earlier research in nuclear engineering examined radiation damage in metals such as zirconium and nickel, utilizing techniques like climbing image nudged elastic band (CI-NEB) for defect analysis. She’s also investigated hydration free energies, grain boundary behaviors, and primary knock-on atom (PKA) spectra in irradiated materials. Her work bridges computational physics with practical engineering challenges, advancing predictive models and simulation methods to better understand complex molecular and material systems.

Publication Top Notes:

Comparative Analysis of Machine Learning Models for Predicting Viscosity in Tri-n-Butyl Phosphate Mixtures Using Experimental Data

Citations: 6

Quantification of Methane Hydration Energy Through Free Energy Perturbation Method

Comparison of Different Machine Learning Approaches to Predict Viscosity of Tri-n-Butyl Phosphate Mixtures Using Experimental Data

Citations: 3

Properties of Tri-Butyl-Phosphate from Polarizable Force Field MD Simulations

Citations: 1

A Revision of Classical Force Fields for Tri-N-Butyl Phosphate Molecular Dynamics Simulations

Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study

Citations: 34

An energetic and kinetic investigation of the role of different atomic grain boundaries in healing radiation damage in nickel

Citations: 31

Dr. Qunfeng Luo | Organic Chemistry | Best Researcher Award

Dr. Qunfeng Luo | Organic Chemistry | Best Researcher Award

Dr. Qunfeng Luo , Organic Chemistry ,  Nanchang University, China

Dr. Qunfeng Luo is a dedicated Lecturer at the School of Basic Medical Sciences, Nanchang University, China. With a robust background in organic synthesis and protein chemistry, his research explores innovative approaches in peptide/protein modification and bioorthogonal chemistry. Dr. Luo has made notable contributions to the development of multifunctional bioconjugation reagents and mitochondrion-targeting molecules, with publications featured in top-tier journals like Nature Communications and Organic Letters. He earned his Ph.D. from Nanjing University and has held research positions at prestigious institutions, including Northwestern Polytechnical University. Dr. Luo also brings industry experience from Pharmaron (Ningbo) New Pharmaceutical Technology Co., Ltd. His work bridges chemical biology and therapeutic discovery, particularly focusing on functional biomolecule engineering and natural active ingredient target identification. A proactive researcher with an ORCID profile, he continues to advance translational biomedical science through interdisciplinary innovations.

Professional Profile : 

Orcid

Scopus

Summary of Suitability for Award:

Dr. Luo has demonstrated a solid and progressive academic background, holding a Ph.D. from Nanjing University and postdoctoral experience in both academia and industry. His education from top Chinese institutions equips him with a multidisciplinary foundation in biomedical and pharmaceutical sciences.His research has been published in top-tier journals such as Nature Communications, Organic Letters, and RSC Advances. Notably, his 2019 Nature Communications paper was highlighted in Synfacts, indicating significant recognition in the global scientific community. Dr. Luo’s work spans organic synthesis, peptide/protein modification, mitochondrion-targeting agents, and bioorthogonal chemistry. Dr. Luo has maintained a consistent output of quality research with a clear upward trajectory in the complexity and impact of his work. His continued research activity, mentorship, and involvement in academia strengthen his candidacy. Dr. Qunfeng Luo is a highly suitable candidate for the “Best Researcher Award”. His impactful publications, innovative methodologies in chemical biology, and contributions to targeted therapeutics and diagnostics reflect the qualities sought in a top-tier researcher. His unique blend of academic excellence, industrial insight, and interdisciplinary work makes him not only a prolific scientist but also a future leader in biomedical research. Recognizing Dr. Luo with this award would be both timely and well-deserved.

🎓Education:

Dr. Qunfeng Luo’s academic journey reflects a strong foundation in medical and pharmaceutical sciences. He began his higher education at Harbin Medical University (2005.9–2010.6), where he gained essential knowledge in medical sciences. Building upon this, he pursued a master’s degree at China Pharmaceutical University (2011.9–2014.6), developing a solid base in drug design and bioactive compound synthesis. Driven by a keen interest in chemical biology and therapeutic research, he advanced to Nanjing University (2014.9–2018.12) for his doctoral studies. There, he specialized in organic synthesis and protein/peptide bioconjugation techniques, which laid the groundwork for his current research in bio orthogonal chemistry and target identification. This comprehensive academic training, combining medical, pharmaceutical, and chemical expertise, enables Dr. Luo to contribute significantly to multidisciplinary biomedical research.

🏢Work Experience:

Dr. Qunfeng Luo has held diverse academic and industry positions, enriching his expertise in biomedical sciences. He began his professional journey at Pharmaron (Ningbo) New Pharmaceutical Technology Co., Ltd. (2019.3–2019.9), gaining valuable experience in pharmaceutical R&D. He then transitioned to academia as a research fellow at Northwestern Polytechnical University (2019.9–2020.10), focusing on bioorganic chemistry and molecular modification. Since October 2020, he has served as a Lecturer at the School of Basic Medical Sciences, Nanchang University, where he leads research in peptide modification, mitochondrion-targeting molecules, and functional bioconjugation reagents. Dr. Luo’s balanced experience across academia and industry fosters a translational approach to his research, bridging synthetic chemistry and medical application. His current academic role involves not only high-impact research but also mentoring students and contributing to the university’s biomedical education initiatives.

🏅Awards: 

While specific honors were not detailed, Dr. Qunfeng Luo’s research achievements speak volumes of his recognition in the scientific community. His 2019 Nature Communications publication was highlighted in Synfacts, indicating significant impact in the field of synthetic and chemical biology. Publishing in top-tier journals like Organic Letters and RSC Advances also reflects the high regard in which his work is held. As a young scholar with an innovative portfolio in bioorthogonal chemistry, peptide/protein modification, and mitochondrion-targeting agents, Dr. Luo is well-positioned for future awards and funding opportunities. His diverse background, including experience in pharmaceutical R&D and academia, contributes to his growing influence in biomedical research. As he continues to contribute to high-impact projects and interdisciplinary science, further accolades are expected.

🔬Research Focus:

Dr. Qunfeng Luo’s research lies at the intersection of organic chemistry and biomedical sciences. His primary interests include organic synthesis, peptide and protein modification, and bioorthogonal chemistry—innovative fields that enable precise molecular labeling and therapeutic design. A major focus of his work is developing heterobifunctional cross-linkers that facilitate selective bioconjugation, peptide stapling, and mitochondrial targeting. He also explores target identification of natural active ingredients, contributing to drug discovery and understanding bioactivity mechanisms. His recent publications reveal an emphasis on multifunctional bioconjugation reagents with broad applications in diagnostics and targeted therapies. The integration of small molecule design with functional biomolecules positions his research within both fundamental and translational biomedical innovation. Through interdisciplinary collaborations and advanced chemical techniques, Dr. Luo’s work contributes to the development of precision tools for chemical biology and therapeutic interventions.

Publication Top Notes:

1. Heterobifunctional Cross-Linker with Dinitroimidazole and Azide Modules for Protein and Oligonucleotide Functionalization

2. Heterobifunctional Cross-Linker with Dinitroimidazole and N-Hydroxysuccinimide Ester Motifs for Protein Functionalization and Cysteine–Lysine Peptide Stapling

3. Combination Therapies against COVID-19

4. Dichloroacetophenone Derivatives: A Class of Bioconjugation Reagents for Disulfide Bridging

5. Dinitroimidazoles as Bifunctional Bioconjugation Reagents for Protein Functionalization and Peptide Macrocyclization

6. Recent Advances in Enone and NO-Releasing Derivatives of Oleanolic Acid with Anti-cancer Activity

 

 

Mrs. Katsiaryna Khainskaya | Polymer Chemistry | Best Researcher Award

Mrs. Katsiaryna Khainskaya | Polymer Chemistry | Best Researcher Award

Mrs. Katsiaryna Khainskaya , Polymer Chemistry , Junior researcher at Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, Belarus

Katsiaryna Khainskaya 🇧🇾 is a dynamic Junior Researcher at the Institute of Chemistry of New Materials, National Academy of Sciences of Belarus. With a strong foundation in chemistry and nanotechnology, she specializes in synthesizing polysaccharide derivatives with phenolic acids for advanced biomedical applications. Fluent in Russian and Belarusian, and proficient in English, she brings interdisciplinary expertise to the development of functional materials for drug delivery. She is skilled in atomic force microscopy, dynamic light scattering, spectrophotometry, and colloidal chemistry. Her active participation in international conferences and collaborative research projects highlights her global scientific engagement. A member of the Council of Young Scientists, she contributes to innovations in biopolymer-based materials and encapsulation techniques. Her recent work includes the development of multifunctional wound-healing agents and nanocomposites with synergistic antibacterial effects. Passionate, analytical, and dedicated, Katsiaryna is emerging as a promising scientist in the fields of nanobiomaterials and nanochemistry.

Professional Profile :         

Orcid 

Summary of Suitability for Award:

Katsiaryna Khainskaya, a promising junior researcher at the Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, has demonstrated a deep commitment to advancing nanobiomaterials and polysaccharide-based functional systems. Her research combines interdisciplinary expertise in nanotechnology, colloidal chemistry, radiation chemistry, and biomedicine. She has contributed to several innovative projects involving chitosan derivatives, silver nanoparticles, and mucoadhesive systems for drug delivery and wound healing. . She has actively participated in international conferences, received a research diploma, and is involved in multiple ongoing projects aimed at developing smart, sustainable biomedical materials. Her technical skills span AFM, DLS, lyophilization, and spectroscopy, evidencing strong laboratory proficiency. Katsiaryna Khainskaya is a highly suitable candidate for the “Best Researcher Awards”. Despite being early in her career, her research demonstrates innovation, interdisciplinarity, and societal relevance. Her contributions to nanobiomaterials and biomedical polymers are not only academically sound but hold translational potential for healthcare applications. She exemplifies the qualities of a rising scientific leader and merits recognition for her impactful and forward-thinking research.

🎓Education:

Katsiaryna earned her degree in Chemistry from Belarusian State University (2018–2023), with a specialization in radiation chemistry and environmental sciences.  Her academic training covered a comprehensive range of subjects including inorganic, organic, analytical, and physical chemistry, alongside advanced topics such as nanochemistry, dosimetry, colloidal chemistry, and radiation safety. Her thesis focused on the “Preparation and properties of complexes based on alginate-Ag nanocomposites with enrofloxacin,” combining nanotechnology and pharmacology. She also undertook specialized professional development, including a certificate program on radioactive waste processing (Rosatom Technical Academy, 2021) and a 2024 seminar on mucoadhesive chitosan nanoparticles at the Institute of High Molecular Compounds, St. Petersburg.  Her interdisciplinary education has equipped her with the necessary theoretical and technical skills to contribute to the development of innovative drug delivery systems and advanced materials for biomedical and environmental applications.

🏢Work Experience:

Katsiaryna Khainskaya began her research career as a Trainee Junior Researcher at the Institute of Chemistry of New Materials of the NAS of Belarus in April 2023, quickly progressing to Junior Researcher by August 2023.Her core responsibilities include the synthesis of polysaccharide derivatives and their functional characterization using techniques such as AFM, optical microscopy, and electrophoretic mobility. She has hands-on experience in developing colloidal systems with silver nanoparticles for drug delivery and encapsulation of biologically active substances. As a member of the Council of Young Scientists, she also engages in research planning and youth science promotion. Her projects span antibiotic nanocomposites for aquaculture, antioxidant-rich biopolymer carriers, and mucoadhesive biomedical coatings. She has presented her work at international conferences in Spain, Russia, and across Belarus and Tajikistan. Her dedication and rapid growth reflect a strong commitment to scientific excellence and interdisciplinary collaboration.

🏅Awards: 

Katsiaryna has received multiple recognitions for her scientific contributions  In January 2025, she secured 3rd place in the “Young Scientist of the IChNM of NAS of Belarus” competition. She earned a professional development certificate from Rosatom Technical Academy in radioactive waste treatment (2021)  and has participated in several prestigious conferences and training events. Notable among them are her presentation at the 13th International Colloids Conference in Spain (2024)  and her active participation in youth science forums, such as “Youth in Science” (2023, 2024) and the School of Chemists of the CIS in Dushanbe (2023).She also took part in Belarus State Technological University’s 89th faculty conference (2025), showcasing smart multilayer biomedical coatings. Each recognition reflects her active engagement with contemporary chemical research and her growing reputation in the field of functional nanobiomaterials and nanotechnology.

🔬Research Focus:

Katsiaryna’s research is centered on the synthesis and application of polysaccharide-based nanomaterials, particularly chitosan and alginate derivatives. Her work focuses on combining these biopolymers with phenolic acids and silver nanoparticles to create functional materials with enhanced antioxidant, antimicrobial, and drug delivery capabilities. She has developed systems for encapsulating biologically active compounds to improve their stability and targeted delivery, contributing to innovative wound healing and antibacterial treatments.  Her current projects include multilayer mucoadhesive patches for oral diseases, encapsulated chlorophyll systems, and antimicrobial nanocomposites for aquaculture. She’s also involved in industrial collaborations, such as the development of holographic foil materials.  Her interdisciplinary approach integrates chemistry, nanotechnology, and biology, aiming to create next-generation biofunctional materials for environmental, medical, and pharmaceutical applications. Her contributions are paving the way for biopolymer innovations in healthcare and sustainable material science.

Publication Top Notes:

1. Chitosan-Gallic Acid Conjugate with Enhanced Functional Properties and Synergistic Wound Healing Effect

2. Study of the Interaction Between Biogenic Alginate-Ag Nanoparticles and Enrofloxacin: Combinatory Antibacterial Effect and Nanocomposite Formation