Dr. Siyao Chen | Materials Chemistry | Best Researcher Award

Dr. Siyao Chen | Materials Chemistry | Best Researcher Award

Dr. Siyao Chen , Materials Chemistry , Senior research assistant at City University of Hong Kong , Hong Kong

Dr. Siyao Chen is a Senior Research Assistant at the City University of Hong Kong, specializing in additive manufacturing and polymer-derived ceramics. With an impressive track record in advanced material research, Dr. Chen has published 11 SCI-indexed papers, including two ESI highly cited works, amassing over 610 citations. He serves as an invited editor for Frontiers in Electronics and actively contributes as a peer reviewer for prestigious journals such as Aerospace Science and Technology and the Journal of the European Ceramic Society. His research has made significant strides in 3D/4D ceramic printing, smart sensors, and semiconductor applications. In addition to academic achievements, Dr. Chen has worked on two major research projects, collaborated on four industry consultancies, and is listed as an inventor on three patents. A rising figure in materials science, Dr. Chen’s work integrates cutting-edge technology with real-world applications, contributing meaningfully to the development of intelligent ceramic systems.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Chen has published 11 SCI-indexed papers, including 2 ESI highly cited works, demonstrating high-impact contributions. One of these papers has gathered over 610 citations, a remarkable achievement for an early-career researcher. His work in additive manufacturing, polymer-derived ceramics, and intelligent electronics is not only innovative but also addresses complex, high-tech engineering challenges. These fields are critical in both academic and industrial applications. He serves as an invited editor for Frontiers in Electronics and is a reviewer for top-tier journals like Aerospace Science and Technology and Journal of the European Ceramic Society, indicating recognition by peers in his domain. With 3 patents, 4 consultancy projects, and 2 ongoing research projects, Dr. Chen demonstrates both academic excellence and practical application, bridging the gap between theory and industry. Dr. Siyao Chen’s research excellence, demonstrated by high-impact publications, innovation through patents, editorial and peer-review contributions, and cross-disciplinary industrial collaborations, clearly qualify him as an exceptional candidate for the “Best Researcher Award.” His academic rigor and applied innovation mark him as a rising leader in materials science and engineering research.

🎓Education:

Dr. Siyao Chen earned his doctoral degree from City University of Hong Kong, where he laid the foundation for his expertise in additive manufacturing and ceramic. His academic training emphasized interdisciplinary knowledge at the intersection of materials engineering, mechanical design, and electronic systems. During his time at CityU, Dr. Chen developed critical skills in vat photopolymerization, polymer-derived ceramic processing, and microstructural design of smart ceramics. His graduate research focused on fabricating high-performance ceramic sensors and coatings using 3D/4D printing methods. Throughout his education, he was actively involved in publishing high-impact articles and contributing to collaborative research teams. His studies not only strengthened his theoretical foundation but also fostered practical lab experience, laying the groundwork for his continued academic and industrial research. The combination of rigorous education and hands-on innovation shaped Dr. Chen’s academic identity and enabled him to push boundaries in the field of intelligent ceramic-based electronics.

🏢Work Experience:

Dr. Siyao Chen currently works as a Senior Research Assistant at the City University of Hong Kong, where he leads multiple research efforts in the field of additive manufacturing and ceramic electronics. Over the years, he has contributed to both academic and industrial projects, participating in four consultancy collaborations and leading two significant research endeavors. He has also acted as a project coordinator for the development of smart ceramic sensors, coating systems, and semiconductor devices. His work includes guiding junior researchers, managing experimental workflows, and contributing to grant applications. Dr. Chen serves as a peer reviewer for several SCI-indexed journals and as an invited editor for Frontiers in Electronics, showcasing his academic authority. His multi-disciplinary experience, spanning ceramics, polymer chemistry, and semiconductor devices, equips him to work across diverse research environments. His consistent performance and hands-on innovation have made him a valuable member of the advanced materials research community.

🏅Awards: 

Although early in his career, Dr. Siyao Chen has achieved notable recognition in his field. He is the recipient of multiple citations in high-impact journals, including two ESI Highly Cited Papers — a significant mark of influence and excellence in scholarly research. His publication in Materials Science and Engineering: R: Reports alone has gathered over 550 citations. Additionally, he was invited to join the editorial board of Frontiers in Electronics, a testament to his research integrity and subject matter expertise. His role as a reviewer for high-tier journals such as the Journal of the European Ceramic Society and Aerospace Science and Technology also highlights his academic credibility. Dr. Chen’s patent contributions and collaboration in industrial projects demonstrate the practical impact of his work. With a growing reputation in the materials science community, he is an emerging leader in ceramic additive manufacturing and intelligent electronics.

🔬Research Focus:

Dr. Chen’s primary research interests lie in additive manufacturing, polymer-derived ceramics, and semiconductor applications. He focuses on the design and processing of smart ceramic materials using 3D/4D printing technologies. His work bridges traditional ceramics with modern electronics, enabling innovations in reconfigurable structures, temperature sensors, and electromagnetic devices. A key area of interest is the development of lightweight, high-performance ceramics with tunable properties, particularly for sensing, actuation, and aerospace applications. His recent projects explore vat photopolymerization for SiCN and SiBCN-based ceramics, real-time material behavior modeling, and coating technologies for extreme environments. He is also involved in stimuli-responsive material systems, contributing to the advancement of intelligent electronics. His interdisciplinary research integrates materials engineering, electronic design, and digital fabrication, offering scalable and programmable material solutions for future smart systems. By combining structural innovation with electronic functionality, Dr. Chen aims to reshape how materials are conceived and manufactured.

Publication Top Notes:

Title: Additive manufacturing of structural materials
Citations: 572

Title: Lightweight and geometrically complex ceramics derived from 4D printed shape memory precursor with reconfigurability and programmability for sensing and actuation applications
Citations: 43

Title: Fabrication of polymer-derived SiBCN ceramic temperature sensor with excellent sensing performance
Citations: 17

Title: Fabrication of electrical semi-conductive SiCN ceramics by vat photopolymerization
Citations: 8

Title: 3D/4D additive–subtractive manufacturing of heterogeneous ceramics
Citations: 5

Title: Temperature and frequency dependent conductive behavior study on polymer-derived SiBCN ceramics
Citations: 3

Title: Novel anti-oxidation coating prepared by polymer-derived ceramic for harsh environments up to 1200°C
Citations: 2

Title: Real-time Bayesian model calibration method for C/SiC mechanical behavior considering model bias
Citations: 1

Title: Recent advances in stimuli-responsive materials for intelligent electronics

Title: Oxidation behavior of TiB2 from 600–1400°C considering microstructure evolution, oxidation kinetics, and mechanisms

Title: Evolution of dielectric properties of SiBCN ceramics and its derived wireless passive temperature sensor application

Assist. Prof. Dr. Arman Zarebidaki | Materials Chemistry | Best Researcher Award

Assist. Prof. Dr. Arman Zarebidaki | Materials Chemistry | Best Researcher Award

Assist. Prof. Dr. Arman Zarebidaki | Materials Chemistry | Assistant professor at Amirkabir University of Technology , Iran

Dr. Arman Zarebidaki is an Assistant Professor and Head of the Corrosion Engineering and Material Protection Group at Amirkabir University of Technology (Tehran Polytechnic), Bandarabbas Campus, Iran. With a strong background in materials engineering, electrochemistry, and surface engineering, his research focuses on advanced coatings for corrosion protection, hydrogen evolution, and oxygen evolution reactions. He has extensive experience in electrochemical techniques such as polarization methods, voltammetry, and impedance spectroscopy. Dr. Zarebidaki has supervised over 25 master’s theses and has authored multiple high-impact journal articles. He holds three national patents in corrosion prevention and is recognized for his contributions to sustainable energy technologies and industrial material protection.

Professional Profile :                       

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Arman Zarebidaki is a highly accomplished researcher in materials science, electrochemistry, and surface engineering, making him an exceptional candidate for the “Best Researcher Award”. His research spans crucial areas such as corrosion protection, electrocatalysis, and advanced coating technologies, which have significant industrial and environmental applications. His high-impact publications, extensive teaching experience, and contributions to innovative material protection methods demonstrate his leadership in the field. He has also secured three national patents, reflecting his ability to translate research into practical solutions. Recognized as the Top Researcher in Hormozgan Province (2023) and a Distinguished Researcher at Azad University (2015), his accolades further establish his excellence in scientific innovation. Dr. Zarebidaki’s outstanding research in corrosion-resistant coatings, electrochemical energy applications, and material durability makes him a strong contender for the “Best Researcher Award”. His work not only advances scientific knowledge but also has direct implications for industry and sustainability, positioning him among the top researchers in his field.

🎓Education:

Dr. Arman Zarebidaki holds a Ph.D. in Metallurgical & Materials Engineering from the University of Tehran (2006–2012), where he investigated the tribo-corrosion behavior of Ni-P electroless coatings with SiC nanoparticles and carbon nanotubes. His doctoral research resulted in multiple high-impact publications. Prior to that, he earned an M.S. in Metallurgical & Materials Engineering from the University of Tehran (2003–2006), focusing on optimizing and characterizing Al/Gr composites produced by in-situ powder metallurgy. His master’s research led to a Q2-ranked ISI publication. He completed his B.S. in Materials Engineering-Industrial Metallurgy at Azad University, Yazd Branch (1998–2003), where he studied surface hardening of cast iron using the TIG process. Throughout his academic journey, he maintained outstanding GPAs and received multiple accolades for his research excellence. His extensive educational background laid the foundation for his expertise in materials engineering, corrosion protection, and advanced electrochemical methods.

🏢Work Experience:

Dr. Arman Zarebidaki is an Assistant Professor at Amirkabir University of Technology, where he has been leading the Corrosion Engineering and Material Protection Group since 2023. He has been actively involved in teaching courses such as oxidation and hot corrosion, corrosion inhibitors, and advanced electrochemistry laboratory techniques. Prior to this, he served as an Assistant Professor at Azad University, Yazd Branch (2008–2014), where he taught advanced electrochemistry, cathodic & anodic protection, and corrosion science. With over 25 master’s theses supervised, he has contributed significantly to the field of corrosion and electrocatalysis . His expertise includes deposition techniques for coatings and nanocomposite materials, corrosion assessments, and electrochemical analysis. He is proficient in methods such as cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. His research extends to nanotube production via anodizing, corrosion inhibition using green inhibitors, and the development of protective coatings for industrial applications.

🏅Awards: 

Dr. Arman Zarebidaki has received several prestigious awards throughout his career. In 2023, he was recognized as the Top Researcher in technical and engineering fields in Hormozgan province. He was also named a Distinguished Researcher by the Deputy of Education and Technology at Islamic Azad University, Yazd Branch, in 2015. His exceptional teaching abilities earned him the Exemplary Professor Award in 2014. Additionally, his Ph.D. thesis was awarded as a Superior Dissertation at the University of Tehran in 2012. As an M.Sc. student, he ranked 1st among 50 peers in the Department of Material Science and Engineering. His contributions to the field of corrosion prevention and control are further highlighted by three national patents, including innovations in self-healing epoxy coatings, corrosion-fatigue assessment apparatus, and electroless coatings for oil and gas steel equipment, demonstrating his commitment to advancing materials engineering and corrosion protection technologies.

🔬Research Focus:

Dr. Arman Zarebidaki’s research centers on materials engineering, electrochemistry, and surface engineering, with a strong emphasis on developing advanced coatings to enhance material durability and performance. His work involves designing metallic, composite, and nanocomposite coatings for industrial applications, particularly for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), aiming to improve the efficiency of electrolysis in hydrogen and oxygen production. He specializes in electrochemical characterization techniques, including polarization methods, linear sweep voltammetry, cyclic polarization, and electrochemical impedance spectroscopy (EIS), to analyze corrosion resistance and material degradation. Additionally, he investigates electrocatalysis mechanisms and surface chemistry to develop sustainable energy solutions. His expertise extends to nanotube production through anodizing, corrosion inhibitors, and smart coatings. His contributions help address global challenges related to energy sustainability, environmental protection, and climate change, making his research pivotal in the advancement of corrosion-resistant and energy-efficient materials.

Publication Top Notes:

Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024–graphite composites produced by in situ powder metallurgy method

Citations: 396

An investigation on effects of heat treatment on corrosion properties of Ni–P electroless nano-coatings

Citations: 166

Effect of surfactant on the fabrication and characterization of Ni-P-CNT composite coatings

Citations: 104

Characterization and corrosion behavior of electroless Ni–P/nano-SiC coating inside the CO2 containing media in the presence of acetic acid

Citations: 96

The effect of sliding speed and amount of loading on friction and wear behavior of Cu–0.65 wt.% Cr alloy

Citations: 47

Microstructure and corrosion behavior of electrodeposited nano-crystalline nickel coating on AZ91 Mg alloy

Citations: 46

Evaluation of corrosion inhibition of mild steel in 3.5 wt% NaCl solution by cerium nitrate

Citations: 43

Electrodeposition and characterization of Co–BN (h) nanocomposite coatings

Citations: 42

An experimental study on stress corrosion behavior of A131/A and A131/AH32 low carbon steels in simulated seawater

Citations: 28

Porosity measurement of electroless Ni–P coatings reinforced by CNT or SiC particles

Citations: 28