Dr. Vemula Madhavi | Environmental Chemistry | Women Researcher Award

Dr. Vemula Madhavi | Environmental Chemistry | Women Researcher Award

Dr. Vemula Madhavi , Environmental Chemistry , Assistant Professor at BVRIT HYDERABAD College of Engineering for Women, India

Dr. S. Madhavi V is an accomplished chemist with a Ph.D. from Sri Venkateswara University, Tirupati, India. She has cultivated a solid academic and research career focused on nanomaterials, environmental remediation, and analytical chemistry. Currently serving as an Assistant Professor at BVRIT Hyderabad, Dr. Madhavi brings more than 15 years of teaching and research experience. Her work includes a granted Indian patent and multiple high-impact publications in reputed journals. She has also secured funding for research under TEQIP-III, JNTUH. With an h-index of 11 and over 500 citations, her contributions to green synthesis and environmental nanotechnology are widely recognized. A passionate educator and innovator, she continually strives to bridge the gap between research and societal application, especially in the field of water purification using sustainable materials.

Professional Profile : 

Google Scholar

Orcid 

Scopus 

Summary of Suitability for Award:

Dr. S. Madhavi V is highly suitable for the “Women Researcher Award” due to her significant and sustained contributions to the field of chemistry, particularly in nanotechnology and environmental applications. She has over 15 years of combined research and teaching experience, a granted Indian patent on sustainable water purification using graphene oxide from rice husk, and a funded research project under TEQIP-III on green nanomaterials for wastewater treatment. Her scholarly impact includes 540+ citations, h-index of 11, and 12+ research publications in high-impact journals spanning areas such as nanocomposites, MOFs, biomarker sensors, and agricultural nanotechnology. She integrates innovative eco-friendly methodologies in her work and demonstrates leadership as an academic and researcher. Dr. Madhavi has also contributed to science education through multiple academic positions, helping foster the next generation of chemists. Dr. S. Madhavi V embodies the spirit and excellence celebrated by the “Women Researcher Award”. Her impactful research, interdisciplinary approach, and commitment to sustainable science position her as a leading woman in the chemical sciences. Her achievements in patenting, publishing, and funded research underscore her excellence and innovation. She is not only an accomplished scientist but also a role model for aspiring women researchers in India and beyond.

🎓Education:

Dr. Madhavi V pursued her academic journey at Sri Venkateswara University, Tirupati, where she earned her Ph.D. in Chemistry in 2014. Her research was grounded in environmental and materials chemistry, focusing on the synthesis and application of nanomaterials for remediation. She holds an M.Sc. in Chemistry (2008) with a stellar score of 78.9%, and a B.Sc. in Mathematics, Physics, and Chemistry (2006) with an impressive 84%. Her earlier education includes Intermediate (2003) with 90% and SSC (2001) with 88%, showcasing consistent academic excellence throughout. These solid foundations in science and mathematics equipped her with critical analytical skills, enabling her to explore interdisciplinary challenges across chemistry and environmental science. Her academic progression reflects a deep commitment to learning, teaching, and developing sustainable scientific innovations.

🏢Work Experience:

Dr. Madhavi V began her academic career as an Academic Consultant in Chemistry at Yogi Vemana University (2008–2009). She then served as an Assistant Professor at Annamacharya Engineering College, Tirupati (2009–2010), and a Teaching Assistant at S.V. University (2010–2013). Her pedagogical contributions continued at CMRIT, Hyderabad (2013–2014), before joining BVRITH Hyderabad in 2014, where she continues to inspire students. Over 15 years, she has demonstrated excellence in curriculum delivery, research supervision, and innovation-driven education. Her interdisciplinary teaching spans general chemistry, environmental science, nanotechnology, and green chemistry. She has also guided students in research-based learning, integrating academic content with practical applications. Her teaching is marked by a commitment to quality education, fostering critical thinking and sustainable innovation among learners.

🏅Awards: 

Dr. S. Madhavi V has received several honors that underscore her excellence in research and innovation. Notably, she was granted an Indian patent (No. 410482) for her invention titled “Pretreated Rice Husk for Sustainable Graphene Oxide for Adsorptive Removal of Chromium from Water”, which highlights her commitment to sustainable environmental solutions. She also secured a funded research grant under the TEQIP-III collaborative scheme (JNTUH, 2019) for her project focused on synthesizing graphene from agricultural waste for the remediation of heavy metals in wastewater. Her scholarly impact is evidenced by a Google Scholar h-index of 11, i10 index of 11, and over 540 citations, recognizing her influential contributions to nanochemistry and environmental science. She is listed on major research platforms including Scopus, ORCID, and Google Scholar, which reflects her active engagement with the global scientific community. These accolades mark her as a distinguished and impactful woman researcher in the chemical sciences.

🔬Research Focus:

Dr. Madhavi V’s research is centered on green synthesis of nanomaterials, graphene production from biomass, and removal of heavy metals and dyes from wastewater using low-cost adsorbents. Her studies explore the eco-friendly conversion of agricultural waste into high-efficiency nanomaterials, with a focus on water remediation. She is deeply invested in adsorptive technologies, biomass-derived graphene, metal-organic frameworks (MOFs), and environmental sensors. Her work also extends to computational docking of metal complexes, magnetic and optical characterization of ferrites, and controlled release formulations for agricultural sustainability. By integrating sustainable materials science, environmental protection, and analytical techniques, her research contributes significantly to green chemistry and nanotechnology. With a strong inclination toward applications with social and environmental impact, Dr. Madhavi is a dedicated advocate for translating lab-scale innovations into real-world solutions.

Publication Top Notes:

1. Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium

Citations: 221

2. An overview on research trends in remediation of chromium

Citations: 94

3. Remediation of chlorpyrifos-contaminated soils by laboratory-synthesized zero-valent nano iron particles: effect of pH and aluminium salts

Citations: 75

4. Synthesis and spectral characterization of iron-based micro and nanoparticles

Citations: 54

5. Chapter 8 – Recent improvements in the extraction, cleanup and quantification of bioactive flavonoids

Citations: 47

6. A selective and sensitive UPLC–MS/MS approach for trace level quantification of four potential genotoxic impurities in zolmitriptan drug substance

Citations: 36

7. Electrochemical investigations of lipase enzyme activity inhibition by methyl parathion pesticide: voltammetric studies

Citations: 33

8. Conjunctive effect of CMC–zero-valent iron nanoparticles and FYM in the remediation of chromium-contaminated soils

Citations: 30

9. Method development and validation study for quantitative determination of 2-chloromethyl-3,4-dimethoxy pyridine hydrochloride a genotoxic impurity in pantoprazole active …

Citations: 26

10. Liquid chromatography–tandem mass spectrometry method for simultaneous quantification of urapidil and aripiprazole in human plasma and its application to human pharmacokinetic …

Citations: 22

 

Assoc. Prof. Dr. Zoubida TALEB | Green Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Zoubida TALEB | Green Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Zoubida TALEB , Green Chemistry , Djillali Liabes University, Algeria

Dr. Zoubida Taleb is a dedicated researcher and academic in the Department of Chemistry at Djillali Liabes University, Sidi Bel Abbes, Algeria. Affiliated with the Laboratory of Materials & Catalysis (LMC), she has significantly contributed to the fields of analytical chemistry, water quality, catalysis, and polymer chemistry. With a passion for environmental sustainability, her research primarily focuses on wastewater treatment using natural and cost-effective materials. Dr. Taleb earned her doctorate in Applied Physics/Chemistry in 2015 and her habilitation in 2021. She has collaborated on numerous international projects and authored several peer-reviewed publications that address pressing global environmental challenges. She actively shares her work via platforms like ORCID, Google Scholar, and ResearchGate. Known for her dedication to scientific advancement and community impact, Dr. Taleb continues to lead projects that bridge fundamental chemistry with environmental applications.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Taleb’s scientific contributions center around analytical chemistry, wastewater treatment, natural adsorbents, polymer chemistry, and catalysis—all of which are crucial subfields of environmental chemistry. A significant part of her recent research targets removal of pollutants (e.g., phenolic compounds, Diuron, heavy metals) from olive oil mill wastewater, used vegetable oils, and industrial effluents. This aligns directly with global efforts toward sustainable water treatment.  Dr. Taleb has contributed meaningfully to the advancement of environmentally friendly chemical technologies and has collaborated internationally. She bridges chemistry, environmental engineering, and materials science, showcasing interdisciplinary impact—a hallmark of outstanding environmental chemists. Dr. Zoubida Taleb demonstrates exceptional alignment with the objectives of the “Environmental Chemistry Award”. Her research directly addresses global environmental challenges such as water pollution, green remediation techniques, and resource recovery using sustainable, low-cost methods. Her scholarly output, practical impact, and dedication to environmental solutions make her a strong and deserving candidate for this prestigious recognition.

🎓Education:

Dr. Zoubida Taleb’s academic journey began with a Baccalaureate in Natural and Life Sciences (1998) in Sidi Bel Abbes, Algeria. She then pursued her passion for chemistry by obtaining a Higher Education Diploma in Chemistry (2003) from Djillali Liabes University. Building upon this foundation, she earned a Master’s degree in Polymer Chemistry (2009) from Ahmed Ben Bella, Es-Senia University in Oran. Her pursuit of higher research led her back to Djillali Liabes University, where she was awarded a Doctorate in Applied Physics/Chemistry (2015). Demonstrating academic excellence and research leadership, she achieved the Habilitation (2021), the highest university qualification in Algeria. This extensive and focused educational background has equipped Dr. Taleb with robust expertise in chemical sciences, particularly in polymers, catalysis, and environmental applications.

🏢Work Experience:

Dr. Zoubida Taleb has over 15 years of academic and research experience in the field of chemistry. She currently serves as a faculty member in the Department of Chemistry at Djillali Liabes University, where she is also a core member of the Laboratory of Materials & Catalysis (LMC). Her responsibilities include supervising graduate research, conducting innovative projects, and teaching chemistry-related subjects. Dr. Taleb has actively collaborated with national and international researchers, contributing to projects in environmental remediation, adsorption processes, and sustainable materials. She has co-authored numerous high-impact articles and presented her research at various international forums. Her experience spans practical lab work, analytical instrumentation, and interdisciplinary collaboration in areas such as wastewater treatment, polymer chemistry, and surface catalysis. She also mentors students and promotes scientific awareness and innovation within the academic community.

🏅Awards: 

While specific awards are not listed in the provided data, Dr. Zoubida Taleb’s career is marked by significant academic accomplishments and recognition through her research contributions. Earning the Habilitation degree in 2021 reflects her expertise and capacity to supervise doctoral research—an honor reserved for highly accomplished scholars in Algeria. Her active participation in high-impact publications, including international collaborations with European scientists, underlines her global academic reputation. Her work has been published in leading journals such as Chem Engineering, Environmental Analytical Chemistry, and Waste Management & Research, often addressing critical environmental issues through green chemistry. Furthermore, her role in multiple projects on wastewater treatment and the valorization of natural materials highlights her commitment to sustainability and innovation. Continued invitations to co-author with globally renowned researchers are testament to her respected position in the field.

🔬Research Focus:

Dr. Zoubida Taleb’s research integrates chemistry with environmental sustainability, focusing on analytical chemistry, wastewater treatment, natural adsorbents, polymer chemistry, and catalysis. She explores low-cost, efficient techniques such as adsorption and catalytic degradation using Algerian clays, montmorillonite, and activated carbon to remove pollutants from industrial effluents. Her studies address real-world problems like the purification of used vegetable oils, olive mill wastewater treatment, and removal of phenolic compounds and pesticides from water. By emphasizing kinetic modeling and physicochemical characterization, she evaluates the efficiency and mechanisms of adsorption and catalysis. Her interdisciplinary work often combines chemical engineering, material science, and environmental science, promoting sustainable solutions. Collaborations with researchers from Spain, Italy, and France have broadened her impact, making her a key contributor in advancing eco-friendly remediation technologies.

Publication Top Notes:

1. Lead and cadmium removal by adsorption process using hydroxyapatite porous materials

Authors: A. Ramdani, A. Kadeche, M. Adjdir, Z. Taleb, D. Ikhou, S. Taleb, A. Deratani

Citations: 48

2. Mechanism study of metal ion adsorption on porous hydroxyapatite: experiments and modeling

Authors: A. Ramdani, Z. Taleb, A. Guendouzi, A. Kadeche, H. Herbache, A. Mostefai, …

Citations: 13

3. Removal of o-Cresol from aqueous solution using Algerian Na-Clay as adsorbent

Authors: H. Herbache, A. Ramdani, A. Maghni, Z. Taleb, S. Taleb, E. Morallon, …

Citations: 10

4. Electrochemical and In Situ FTIR Study of o-Cresol on Platinum Electrode in Acid Medium

Authors: Z. Taleb, F. Montilla, C. Quijada, E. Morallon, S. Taleb

Citations: 10

5. Physicochemical and microbiological characterisation of olive oil mill wastewater (OMW) from the region of Sidi Bel Abbes (Western Algeria)

Authors: S. Djeziri, Z. Taleb, M. Djellouli, S. Taleb

Citations: 7

6. Catalytic degradation of O‐cresol using H₂O₂ onto Algerian Clay‐Na

Authors: H. Herbache, A. Ramdani, Z. Taleb, R. Ruiz‐Rosas, S. Taleb, E. Morallón, …

Citations: 7

7. Discoloration of contaminated water by an industrial dye: Methylene Blue, by two Algerian bentonites, thermally activated

Authors: I. Feddal, Z. Taleb, A. Ramdani, H. Herbache, S. Taleb

Citations: 7

8. Variation of used vegetable oils’ composition upon treatment with Algerian clays

Authors: A. Serouri, Z. Taleb, A. Mannu, S. Garroni, N. Senes, S. Taleb, S. Brini, …

Citations: 6

9.Temperature and pH influence on Diuron adsorption by Algerian Mont-Na Clay

Authors: S. Tlemsani, Z. Taleb, L. Piraúlt-Roy, S. Taleb

Citations: 5

10. Recycling of used vegetable oils by powder adsorption

Authors: A. Mannu, M.E. Di Pietro, G.L. Petretto, Z. Taleb, A. Serouri, S. Taleb, …

Citations: 5

Assoc. Prof. Dr. Jing Qi | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Jing Qi | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Jing Qi , Environmental Chemistry , Associate Professor at Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Dr. Jing Qi is an Associate Professor at the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, China. Her research specializes in algae removal and secondary pollution control, with a keen interest in the oxidative stress mechanisms in algae, algal-bacterial interactions, and advanced flocculation technologies. She has significantly contributed to national and international water treatment research and has been principal investigator on several projects funded by the National Natural Science Foundation of China. Dr. Qi has authored more than 30 peer-reviewed journal articles and holds eight national invention patents. Her scientific work bridges fundamental algal physiology with applied environmental solutions, aiming to safeguard water quality and reduce health hazards. In her current role, she also contributes to mentoring young researchers and promoting innovations in water purification processes. She is recognized as a rising leader in eco-environmental sciences, with impactful contributions in aquatic environmental chemistry.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Jing Qi, an Associate Professor at the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, demonstrates exceptional research caliber in the field of aquatic environmental science. Her work addresses globally relevant challenges such as algae removal, secondary pollution control, and oxidative stress mechanisms in algae, which have direct applications in water quality improvement and public health protection. Her impressive academic trajectory, including a Ph.D. from RCEES (2017) and rapid advancement to Associate Professor (2021), reflects her strong research capability. Dr. Qi has led multiple national research projects funded by prestigious Chinese agencies, and has made significant scientific contributions through 30+ peer-reviewed publications in high-impact journals like Water Research, Environmental Science & Technology, and Journal of Hazardous Materials. Additionally, she holds eight national invention patents, underscoring her commitment to applied innovation and environmental problem-solving. Dr. Jing Qi is a highly suitable candidate for the “Best Researcher Award” . Her scholarly achievements, patent contributions, and leadership in national environmental projects affirm her as a pioneering scientist whose work significantly contributes to the advancement of sustainable water treatment technologies. She combines scientific excellence, innovation, and real-world impact, making her a compelling choice for this prestigious recognition.

🎓Education:

Dr. Jing Qi earned her Ph.D. in Environmental Science from the prestigious Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, in 2017. Her doctoral research focused on the mechanisms of algae behavior in water treatment processes, particularly the oxidative stress responses and interaction with chemical agents. This work laid the foundation for her ongoing studies on algal metabolism and secondary pollution control in drinking water systems. Prior to her Ph.D., Dr. Qi underwent intensive training in aquatic chemistry, environmental chemistry, and microbiological techniques, which provided her with a robust interdisciplinary foundation. Her academic excellence was consistently evident through her publications even during her early career. The comprehensive education she received at RCEES empowered her with advanced laboratory skills, critical thinking, and an applied approach to addressing China’s pressing water quality challenges, helping her transition smoothly into a research-intensive professional career.

🏢Work Experience:

Dr. Jing Qi began her professional journey as an Assistant Professor at the State Key Laboratory of Environmental Aquatic Chemistry, RCEES, after completing her Ph.D. in 2017. Her early projects focused on optimizing coagulation and oxidation techniques for algal control in raw water. In 2021, she was promoted to Associate Professor, reflecting her consistent contributions to national research projects and high-impact publications. At RCEES, she actively leads interdisciplinary research teams and collaborates with national water management agencies. Dr. Qi’s role encompasses both academic and applied dimensions—ranging from supervising postgraduate students and publishing scholarly work to developing patentable technologies for algae removal. Her involvement in applied environmental chemistry has made her a sought-after expert for improving China’s municipal water treatment processes. Her research group integrates biochemical, ecological, and technological strategies to mitigate algal blooms and associated pollutants in freshwater systems.

🏅Awards: 

Dr. Jing Qi has received multiple commendations for her innovative contributions to environmental science and water treatment. She has been a principal investigator on several prestigious grants from the National Natural Science Foundation of China, supporting her pioneering studies in algal oxidative stress and flocculation enhancement. Her research excellence has earned her awards for technological innovation and patent development within the Chinese Academy of Sciences. Dr. Qi has also been invited to present at national conferences and recognized for excellence in young scientist research forums. Her eight national invention patents on algae control and water purification reflect both scientific novelty and real-world impact. Additionally, several of her papers have been listed as highly cited in their respective journals. These honors underscore her position as a thought leader in aquatic environmental chemistry and a contributor to public health through improved drinking water technologies.

🔬Research Focus:

Dr. Jing Qi’s research primarily addresses the ecological and chemical mechanisms underlying algae removal and secondary pollution control in aquatic systems. Her focus includes the growth regulation and metabolic dynamics of algae in raw water, oxidative stress responses to disinfectants, and the microbial interactions between algae and bacteria. She investigates how algal organic matter contributes to pollution during water treatment and explores techniques such as pre-oxidation, enhanced flocculation, and photocatalysis to mitigate these effects. A distinctive feature of her work is the integration of biochemical analysis with environmental engineering solutions, ensuring both mechanistic understanding and practical application. Dr. Qi also explores microplastic-algae interactions, emerging pollutants, and their impact on trophic dynamics in aquatic food webs. Her interdisciplinary approach—combining microbiology, chemistry, and materials science—provides innovative strategies for sustainable drinking water treatment and eutrophication prevention, contributing directly to national and global environmental quality goals.

Publication Top Notes:

1. Environmental Gradient Changes Shape Multi-Scale Food Web Structures: Impact on Antibiotics Trophic Transfer in a Lake Ecosystem

2. Bipartite Trophic Levels Cannot Resist the Interference of Microplastics: A Case Study of Submerged Macrophytes and Snail

3. Prechlorination of Algae-Laden Water: The Effects of Ammonia on Chlorinated Disinfection Byproduct Formation During Long-Distance Transportation

 

Assist. Prof. Dr. Emilia Paone | Industrial Chemistry | Young Scientist Award

Assist. Prof. Dr. Emilia Paone | Industrial Chemistry | Young Scientist Award

Assist. Prof. Dr. Emilia Paone , Industrial Chemistry , Assistant Professor at Università degli Studi Mediterranea di Reggio Calabria, Italy

Dr. Emilia Paone is a dynamic and forward-thinking Fixed-Term Researcher (RTD-B) at the Università degli Studi Mediterranea di Reggio Calabria, specializing in Industrial Chemistry (SSD: CHIM/07). Born on September 14, 1990, in Reggio Calabria, Italy, she has emerged as a leading young scientist in the field of heterogeneous catalysis for sustainable chemical transformations. Her research pivots on the valorization of waste biomass and plastic residues into high-value chemicals and fuels. With over 41 peer-reviewed international publications, an h-index of 21, and significant international collaborations, Dr. Paone has built a formidable academic presence. She has held multiple national scientific qualifications for associate professorship in both CHIM/04 and CHIM/07. Her global perspective is enriched by research periods in Spain and collaboration with industrial partners. An active voice in green chemistry and environmental sustainability, she is a rising star driving innovation in catalytic materials and waste valorization technologies.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Emilia Paone exemplifies the core qualities sought in a “Young Scientist Award” recipient. With a Ph.D. in Civil, Environmental, and Safety Engineering, she has consistently demonstrated scientific maturity, innovation, and dedication in the realm of green and sustainable chemistry. Her postdoctoral and fixed-term research roles, particularly under national initiatives such as DM 1062/2021 in thematic GREEN areas, highlight her alignment with sustainability and circular economy goals. She has published 41 peer-reviewed papers, authored 2 book chapters, and amassed over 2,000 citations with an h-index of 21, which is remarkable for a young researcher. Her work on heterogeneous catalysis, biomass valorization, and e-waste upcycling contributes meaningfully to global sustainability challenges. She has held international research roles, including ERASMUS+ staff mobility in Spain, showing global engagement and collaborative spirit. Moreover, she has achieved dual National Scientific Qualifications for Associate Professor roles, underscoring her excellence and leadership potential.Dr. Emilia Paone’s proven research excellence, international collaborations, impactful publications, and clear contribution to sustainable technologies make her a strong, deserving, and outstanding candidate for the “Young Scientist Award’. Her work not only meets but exceeds the typical expectations for this recognition, and she stands as a role model for early-career researchers in green and industrial chemistry.

🎓Education:

Dr. Paone earned her Bachelor’s (2009–2013) and Master’s Degrees (2013–2015) in Chemistry from the Università degli Studi di Messina. She then completed her Ph.D. in Civil, Environmental, and Safety Engineering (2015–2018) at the Università degli Studi Mediterranea di Reggio Calabria, specializing in Science and Technology, Materials, and Energy. Her doctoral thesis was titled “Transfer Hydrogenolysis of Lignin and its Derived Aromatic Ethers Promoted by Heterogeneous Bimetallic Pd-Based Catalysts.” She has also completed a qualification exam in chemistry exercise in 2015. Emilia further enhanced her academic training with research internships in both Italy and Spain, including studies on chemical equilibria and potable water analysis. Notably, she has enriched her learning with international research mobility under Erasmus+, and visiting positions in Spain, gaining practical expertise in nanostructured materials, catalysis, and green technologies.

🏢Work Experience:

Dr. Paone currently serves as a Fixed-Term Researcher (RTD-B) at Università degli Studi Mediterranea di Reggio Calabria (since March 2024), focusing on Industrial Chemistry. Previously, she held an RTD-A position (2022–2024) under Italy’s GREEN program (Action IV.6), collaborating with Capua 1880 s.r.l. on sustainable technologies. Earlier, as a postdoctoral researcher (2021), she worked on the environmental sustainability of materials recovered from lithium battery waste. From 2019 to 2021, she worked with the University of Florence and Reggio Calabria on nanostructured materials for detecting metal ions in solutions. During her Ph.D. and internships, she explored lignin valorization and heterogeneous catalysis. Internationally, she served as a Visiting Researcher and Professor at the University of Córdoba, Spain, and as a Ph.D. student researcher in the same institution. Her experience spans academia, industrial collaboration, and international teaching and research exchanges—showcasing both scientific excellence and applied innovation.

🏅Awards: 

Dr. Emilia Paone has achieved significant recognition in the field of sustainable chemistry and heterogeneous catalysis through her impactful research and academic contributions. She holds two prestigious National Scientific Qualifications (Abilitazione Scientifica Nazionale) for the role of Associate Professor—one in Industrial Chemistry (CHIM/04 – 03/C2) awarded in 2023, and another in Principles of Chemistry for Applied Technologies (CHIM/07 – 03/B2) awarded in 2022. These qualifications are a testament to her high scientific standards and professional competence, as evaluated by national committees in Italy. Furthermore, her international engagement and excellence were highlighted when she was selected as a Visiting Researcher and Professor under the ERASMUS+ Staff Mobility program in 2023 at the Universidad de Córdoba, Spain. Her academic visibility is reinforced by her impressive bibliometric indicators, with over 2,000 citations and an h-index of 21, showcasing her growing influence in catalysis, green chemistry, and the valorization of waste to high-value products.

🔬Research Focus:

Dr. Paone’s research is at the cutting edge of green chemistry 🌱, with a core focus on heterogeneous catalysis for the valorization of waste and biomass into value-added products such as bioplastics, biofuels, and fine chemicals. Her work spans the transfer hydrogenolysis of lignin, reductive catalytic upgrading of plastic waste, and photocatalytic degradation of pollutants, contributing to sustainable circular economy models. She has developed MOF-derived, single-atom, and bimetallic Pd-based catalysts that efficiently convert industrial and e-waste streams. She actively collaborates on projects transforming orange peels, PET, polyolefins, and lithium battery residues into useful chemicals via eco-friendly methods. Her interdisciplinary approach combines catalyst design, nanomaterials, environmental remediation, and flow chemistry, with a strong emphasis on industrial scalability and green metrics. Dr. Paone’s research consistently addresses pressing climate and sustainability goals, establishing her as a key player in Europe’s scientific green transition.

Publication Top Notes:

Continuous flow production of γ-valerolactone from methyl-levulinate promoted by MOF-derived Al₂O₃–ZrO₂/C catalysts

Waste-minimized access to diarylamines and triarylamines via Csp²–N coupling under batch and flow conditions

E-Waste Wars: The Catalyst Awakens

Long-Term Preservation of Orange Peel Waste for the Production of Acids and Biogas

Direct Reuse of Spent Lithium-Ion Batteries as an Efficient Heterogeneous Catalyst for the Reductive Upgrading of Biomass-Derived Furfural

The reductive catalytic upcycling of polyolefin plastic waste

Hydrothermal Carbonization as Sustainable Process for the Complete Upgrading of Orange Peel Waste into Value-Added Chemicals and Bio-Carbon Materials

A New Biorefinery Approach for the Full Valorisation of Anchovy Residues: Use of the Sludge Generated during the Extraction of Fish Oil as a Nitrogen Supplement in Anaerobic Digestion

Electrospun Nanofibers and Electrochemical Techniques for the Detection of Heavy Metal Ions.

Self Standing Mats of Blended Polyaniline Produced by Electrospinning

Integral valorization of orange peel waste through optimized ensiling: Lactic acid and bioethanol production

Sustainably Sourced Olive Polyphenols and Omega-3 Marine Lipids: A Synergy Fostering Public Health

 

Dr. Mohamed Abulela | Environmental Chemistry | Best Researcher Award

Dr. Mohamed Abulela | Environmental Chemistry | Best Researcher Award

Dr. Mohamed Abulela | Environmental Chemistry | Assiut university , Egypt

Dr. Mohamed Ahmed Mohamed Abdelazim Abulela is a skilled synthetic organic chemist from Assiut, Egypt, with extensive experience in both academic and industrial research. He serves as a full-time researcher at the Assiut Sugar Industry Technology Research Institute and a part-time lecturer at the Faculty of Science, New Valley Branch, Assiut University. He earned his Ph.D. in Organic Chemistry from Assiut University in 2010, focusing on selenium-containing heterocycles. His postdoctoral fellowship at Saurashtra University, India, enhanced his expertise in X-ray crystallography and selenium chelate synthesis. Dr. Abulela’s work includes the development of environmental chemistry  friendly colorimetric methods, sugar quantification techniques, and biomass modification for adsorption and biofuel applications. His research contributes to sustainable practices in both chemistry and environmental science. With strong English and computer skills, he actively participates in international conferences and collaborative research initiatives.

Professional Profile :         

Orcid 

Summary of Suitability for Award:

Dr. Mohamed Abdelazim Abulela is highly suitable for the “Best Researcher Award”. His innovative methodologies, applied research relevance, and contribution to sustainable technologies in the fields of synthetic organic and environmental chemistry showcase the qualities expected of an awardee. His balanced presence in academia and industry, along with international collaborations and scientific publications, position him as a well-rounded, impactful researcher who deserves formal recognition for his ongoing scientific contributions.

🎓Education:

Dr. Abulela’s academic journey began with a B.Sc. in Chemistry from Assiut University in 1999, graduating with a “Very Good” general grade. He earned his M.Sc. in Organic Chemistry from the same institution in 2005, with a thesis on the synthesis of new triazepines with potential biological activity. Continuing his pursuit of advanced organic synthesis, he completed a Ph.D. in 2010, focused on the synthesis and application of heterocyclic compounds related to selenolopyridine derivatives. His academic excellence and research curiosity led him to a postdoctoral fellowship at Saurashtra University in Rajkot, India (2015–2016), where he specialized in X-ray crystallography and the synthesis of selenium chelates. His robust educational background laid a strong foundation for his career in chemical research, particularly in the design of novel bioactive compounds and green analytical methods. His academic formation reflects a commitment to innovation in synthetic organic and environmental chemistry.

🏢Work Experience:

Dr. Abulela has a diverse research portfolio combining synthetic organic chemistry and industrial bioprocessing. At the Assiut Sugar Industry Technology Research Institute, he has worked extensively on the synthesis of bioactive compounds, particularly triazepines and selenium-based heterocycles and chelates. He has contributed to the development of eco-friendly analytical methods for quantifying reducing sugars and ethanol in fermentation broths using non-toxic materials. His work also includes the valorization of sugarcane bagasse as a bioadsorbent for wastewater treatment and oil removal. He has determined enzymatic activity (invertase, amylase, cellulase) relevant to biofuel production. He played a key role in a national project under Prof. Dr. Abdelaziz A. Said, focused on bagasse modification for adsorptive applications. Alongside his full-time research, he lectures part-time at Assiut University’s New Valley branch, mentoring future chemists. His combined industrial and academic roles make him a valuable asset in applied and sustainable chemical sciences.

🏅Awards: 

While specific awards are not listed in the available profile, Dr. Mohamed Abulela’s achievements reflect his recognized contributions to both academia and applied research. He was selected for a prestigious Postdoctoral Fellowship at Saurashtra University, India (2015–2016), where he contributed to international collaborative projects in drug design and crystallography. His participation in key events like German Science Day (2016) and international pharmacognosy conferences signals his active role in the global scientific community. His publications in indexed, peer-reviewed journals and his involvement in national-level research projects further underscore the recognition of his scientific capabilities. As a lecturer and researcher, he continues to inspire students and contribute significantly to Egypt’s industrial and environmental chemistry sectors. His consistent output, including innovative analytical techniques and eco-friendly applications, speaks to his dedication, earning him respect and distinction within the regional chemical research community.

🔬Research Focus:

Dr. Abulela’s research centers on synthetic organic chemistry with an emphasis on heterocyclic compounds, especially 1,2,4-triazepines and selenium-based molecules, including chelates. His work bridges fundamental synthesis with practical applications in bioactivity, analytical chemistry, and environmental chemistry. He has developed novel colorimetric methods for sugar and ethanol detection using safe, sustainable reagents. His interest in green chemistry is further demonstrated by projects modifying sugarcane bagasse into an effective adsorbent for dyes and oil removal in wastewater treatment. Dr. Abulela also investigates enzyme activity related to biofuel research and explores the use of bio-sorbents for eco-remediation. His expertise extends to X-ray crystallography, allowing for detailed structural characterization of synthesized compounds. By combining synthetic techniques with real-world industrial challenges, his work supports sustainable technological advancements in the sugar industry and beyond. His research contributes meaningfully to cleaner chemical practices and the development of low-cost, efficient solutions in applied chemistry.

Publication Top Notes:

“A Simplified Procedure for Cellulase Filter Paper Assay”

“Self-Colorimetric Determination of Bio-Ethanol Using Permanganate in Fermentation Samples”

“2-Aminoethanaminium 2-(ethoxycarbonyl)-4,6-dinitrophenolate as a Greener Route in Reducing Sugar Quantification”

“Modified Sugarcane Bagasse with Tartaric Acid for Removal of Diazonium Blue from Aqueous Solutions”

“A Simplified Procedures for Cellulase Filter Paper Assay” (Preprint)

 

Dr. Emmanuel Mintah Bonku | Green Chemistry | Sustainable Chemistry Award

Dr. Emmanuel Mintah Bonku | Green Chemistry | Sustainable Chemistry Award

Dr. Emmanuel Mintah Bonku , Shanghai Institute of Materia Medica, CAS , China

Emmanuel Mintah Bonku, PhD, is a dedicated postdoctoral researcher at the Shanghai Institute of Materia Medica, Chinese Academy of Sciences, specializing in green chemistry and sustainable drug development. With a Ph.D. in Medicinal Chemistry from the University of Chinese Academy of Sciences, his research focuses on synthetic methodologies for antiviral drugs, especially in emerging diseases like monkey pox. He developed a groundbreaking synthesis process for tecovirimat, which is undergoing registration in China. Emmanuel has also worked on the synthesis of cariprazine, benzimidazole compounds, and other pharmaceuticals. His achievements have earned him the Excellent International Graduate Award from the Chinese Academy of Sciences in 2024. Passionate about sustainability in the pharmaceutical sector, Emmanuel strives to inspire future generations of scientists with his innovative approach to drug development.

Professional Profile:

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Emmanuel Mintah Bonku, PhD, is highly suitable for the “Sustainable Chemistry Award” based on his exceptional contributions to green and sustainable drug development, particularly in medicinal chemistry. His research focuses on the development of innovative and environmentally friendly synthetic methodologies, notably for antiviral and other life-saving drugs. He has demonstrated excellence in synthesizing antiviral drugs like tecovirimat for monkey pox, optimizing the production process for large-scale application with minimal environmental impact. Emmanuel Mintah Bonku has also worked on biotransformation techniques and green chemistry, striving to make pharmaceutical synthesis more sustainable. Emmanuel Mintah Bonku is an ideal candidate for the “Sustainable Chemistry Award” due to his groundbreaking work in green chemistry and sustainable pharmaceutical development. His innovative research and dedication to promoting sustainability in drug manufacturing make him a strong advocate for environmentally conscious chemistry practices.

🎓Education:

Emmanuel Mintah Bonku holds a Doctor of Philosophy (Ph.D.) in Medicinal Chemistry from the University of Chinese Academy of Sciences (2021-2024), focusing on green and sustainable drug development. He completed a Master of Engineering (M.Eg.) in Chemical Engineering and Technology from Wuhan University of Science and Technology (2018-2021), specializing in biotransformation and sustainable chemistry. Prior to that, he earned a Bachelor of Science (B.Sc.) in Environmental Science, with a focus on ethnobotany, from the University of Cape Coast, Ghana (2012-2017). In addition, Emmanuel holds a certificate in Information Communication and Technology (2012) from All Nations University College, Ghana. His academic background has equipped him with the technical expertise and interdisciplinary knowledge to make significant contributions to medicinal chemistry, particularly in the development of antiviral drugs and sustainable pharmaceutical processes.

🏢Work Experience:

Emmanuel Mintah Bonku is currently a postdoctoral researcher at the Shanghai Institute of Materia Medica, Chinese Academy of Sciences, specializing in sustainable drug development. During his doctoral research, he pioneered novel synthetic methodologies for antiviral drugs, contributing to the development of tecovirimat for monkeypox and cariprazine for schizophrenia. He has also worked extensively on the synthesis of benzimidazole compounds for antihypertensive and anthelmintic applications. In his earlier career, Emmanuel contributed to projects focused on biotransformation and sustainable chemistry while earning his Master’s degree at Wuhan University of Science and Technology. His experience spans academic research, guest reviewing for journals, and collaborative work with international experts in the field. Emmanuel’s role as a researcher involves advanced techniques in medicinal chemistry, drug synthesis, and process optimization, with an emphasis on green and sustainable practices.

🏅Awards: 

Emmanuel Mintah Bonku has been recognized for his outstanding contributions to medicinal chemistry, particularly in the synthesis of antiviral drugs. In 2024, he received the Excellent International Graduate Award from the Chinese Academy of Sciences in recognition of his innovative research on tecovirimat, a key antiviral drug for monkeypox. His achievements in sustainable drug development have positioned him as a leading figure in his field. Emmanuel has also contributed to various projects in the pharmaceutical industry and academia, promoting sustainability in drug development. His work has garnered attention and respect in the scientific community, and he continues to inspire others through his research, publications, and collaborations. As a guest reviewer for journals like Journal of Green Synthesis and Catalysis and Journal of Food Science, he is also recognized for his contributions to the scientific peer-review process. Emmanuel remains committed to advancing the field of green chemistry and pharmaceutical innovation.

🔬Research Focus:

Emmanuel Mintah Bonku’s research focuses on green and sustainable drug development, with a particular emphasis on the synthesis of antiviral drugs. His work is at the intersection of medicinal chemistry and sustainable chemistry, where he develops new synthetic methodologies for emerging infectious diseases, including monkeypox. Emmanuel pioneered a large-scale process for synthesizing tecovirimat, a critical antiviral drug, and has worked on the development of other pharmaceuticals like cariprazine for schizophrenia and benzimidazole compounds for antihypertensive and anthelmintic purposes. He is passionate about improving drug synthesis processes to make them more sustainable, focusing on minimizing environmental impact while maintaining high efficiency and effectiveness. His research also includes process optimization, such as using reactive distillation for drug synthesis. Emmanuel’s work aims to address current challenges in the pharmaceutical industry, particularly the need for greener, more efficient production methods for critical drugs in the global healthcare landscape.

Publication Top Notes:

1. Extraction of Essential Oil from Citrus reticulate Blanco Peel and Its Antibacterial Activity Against Cutibacterium acnes (Formerly Propionibacterium acnes)

Authors: HS Hou, EM Bonku, R Zhai, R Zeng, YL Hou, ZH Yang, C Quan

Year: 2019

Citations: 90

Journal: Heliyon 5(12)

2. An Alkali-Tolerant Carbonyl Reductase from Bacillus subtilis by Gene Mining: Identification and Application

Authors: W Luo, HJ Du, EM Bonku, YL Hou, LL Li, XQ Wang, ZH Yang

Year: 2019

Citations: 8

Journal: Catalysis Letters 149, 2973–2983

3. Extraction of Essential Oil from Citrus reticulate Blanco Peel and Its Antibacterial Activity Against Cutibacterium acnes (Formerly Propionibacterium acnes)

Authors: HS Hou, EM Bonku, R Zhai, R Zeng, YL Hou, ZH Yang, C Quan

Year: 2019

Citations: 7

Journal: Heliyon 5, E02

4. Facile Synthesis of Benzimidazoles via N-Arylamidoxime Cyclization

Authors: H Qin, A Odilov, EM Bonku, F Zhu, T Hu, H Liu, HA Aisa, J Shen

Year: 2022

Citations: 6

Journal: ACS Omega 7(49), 45678–45687

5. Efficient Large-Scale Process for Tecovirimat via Reactive Distillation for the Preparation of Cycloheptatriene

Authors: EM Bonku, H Qin, A Odilov, F Yang, X Xing, X Wang, SD Guma, J Shen

Year: 2023

Citations: 5

Journal: Organic Process Research & Development 27(11), 1984–1991

6. Synergistic Effect and Structure–Property of Bio-Based 1, 6-Hexanediol on Thermal, Mechanical, and Degradation Properties of Biopolymers

Authors: WMK Siegu, LDW Djouonkep, NBS Selabi, EM Bonku, Z Cheng, …

Year: 2023

Citations: 5

Journal: Journal of Polymers and the Environment 31(3), 1144–1159

7. Extraction of Essential Oil from Citrus reticulate

Authors: HS Hou, EM Bonku, R Zhai, R Zeng, YL Hou, ZH Yang, C Quan

Year: 2019

Citations: 5

Journal: Not listed

8. Establishment of a Propolis Ethanolic Extract Self-Microemulsifying Drug Delivery System and Its Antibacterial Activity

Authors: TC Wang, B Appiah, EM Bonku, ZH Yang, L Luo

Year: 2021

Citations: 4

Journal: Biocatalysis and Agricultural Biotechnology 31, 101905

9. Improved and Ligand-Free Copper-Catalyzed Cyclization for an Efficient Synthesis of Benzimidazoles from o-Bromoarylamine and Nitriles

Authors: EM Bonku, H Qin, A Odilov, S Abduahadi, SD Guma, F Yang, F Zhu, …

Year: 2024

Citations: 3

Journal: RSC Advances 14(10), 6906–6916

10. Impurity Study of Tecovirimat

Authors: EM Bonku, H Qin, A Odilov, S Abduahadi, SD Guma, F Yang, X Xing, …

Year: 2024

Citations: 1

Journal: Heliyon 10(9)