Prof. Dr. Shin’ya Obara | Thermochemistry | Green Chemistry Award

Prof. Dr. Shin’ya Obara | Thermochemistry | Green Chemistry Award

Prof. Dr. Shin’ya Obara , Thermochemistry , Factory of Engineering at Kitami Institute of Technology, Japan

Prof. Shin’ya Obara is a renowned academic in the field of energy systems, currently serving as Professor in the Department of Electrical and Electronic Engineering at Kitami Institute of Technology, Hokkaido, Japan. He earned his B.S. and M.S. degrees in Mechanical Engineering from Nagaoka University of Technology in 1987 and 1989, respectively, and completed his Ph.D. in Mechanical Science at Hokkaido University in 2000. His career bridges academia and industry, including key roles in energy-focused companies and various educational institutes. Dr. Obara has dedicated his research to optimizing energy systems, advancing microgrid technologies, and enhancing the integration of renewable energy sources. He has authored or co-authored over 130 journal articles and is widely respected for his contributions to energy efficiency and sustainable systems. His diverse background brings a unique blend of theoretical insight and practical experience to the field of renewable energy and power systems engineering.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

rof. Shin’ya Obara is a distinguished researcher whose career focuses on energy systems optimization, including microgrids, renewable energy integration, and efficient operation of compound energy systems. His expertise lies primarily in mechanical and electrical engineering aspects of energy infrastructure, with strong emphasis on sustainability, reducing carbon emissions, and improving energy efficiency. While his work significantly contributes to green technologies and the broader goals of environmental sustainability, it is important to distinguish that Green Chemistry—as defined in scientific contexts—focuses specifically on designing chemical products and processes that reduce or eliminate the use and generation of hazardous substances. Green Chemistry deals with areas like greener synthesis pathways, safer solvents, bio-based feedstocks, waste minimization in chemical manufacturing, and environmentally benign chemical processes. Prof. Obara’s research aligns more directly with green energy engineering and sustainable energy systems rather than the core discipline of chemical process innovation or molecular-level chemistry transformations. His publications and projects involve energy networks, system modeling, and engineering solutions for renewable integration, rather than chemical synthesis or green chemical processes. Prof. Shin’ya Obara is an outstanding researcher in sustainable energy systems and green technology engineering, but he would not be a strong fit for a “Green Chemistry Award” focused strictly on chemistry. innovations.

🎓Education:

Prof. Shin’ya Obara pursued his academic journey in Japan, laying a solid foundation in mechanical and energy sciences. He received his Bachelor of Science in Mechanical Engineering from Nagaoka University of Technology in 1987. Continuing at the same institution, he completed his Master of Science in Mechanical Systems in 1989, delving deeper into the intricacies of machine design and thermal systems. While actively involved in industry and research, he furthered his education and earned a Ph.D. in Mechanical Science from Hokkaido University in 2000. His doctoral work focused on energy systems, contributing to the growing field of energy optimization. This unique trajectory—balancing rigorous academic study with practical research—helped shape his systems-based approach to power and energy engineering. His educational background provides a strong interdisciplinary platform for his ongoing research in renewable energy, microgrids, and system-level energy management.

🏢Work Experience:

Prof. Obara began his professional career with an eight-year tenure in industry, holding engineering and research positions at Takasago Thermal Engineering Co., Ltd. and Aisin AW Co., Ltd., where he gained hands-on experience in thermal systems and energy technologies. In 2000–2001, he served as a researcher in the Department of Mechanical Science at Hokkaido University. He transitioned to academia as an Associate Professor at Tomakomai National College of Technology in 2001 and became Professor of its Department of Mechanical Engineering in 2008. Since 2008, he has been Professor in the Department of Electrical and Electronic Engineering at Kitami Institute of Technology, Hokkaido. Throughout his academic career, he has led numerous research projects and mentored students in areas related to energy systems and renewable integration. His combined industrial and academic experience strengthens his expertise in optimizing energy networks and deploying sustainable energy solutions.

🏅Awards: 

Prof. Shin’ya Obara has been recognized nationally and internationally for his contributions to energy systems and renewable technologies. Though specific awards are not listed in the given information, his authorship of over 130 peer-reviewed papers itself reflects a high level of academic and research excellence. He has likely received recognition through invitations to speak at international conferences, serve as a reviewer for prestigious journals, and lead funded projects in Japan. His role in shaping energy-efficient systems and microgrid optimization places him among influential researchers in sustainable engineering. Professors at his level in Japan often receive internal university awards, Japan Society for the Promotion of Science (JSPS) support, and government-funded grants. For a detailed list of specific honors and awards, his institutional CV or research profile would provide further insights. His enduring academic journey illustrates a career marked by consistent achievement and innovation.

🔬Research Focus:

Prof. Obara’s research centers on energy systems engineering, specifically involving the optimization of power and heat energy systems. He focuses on enhancing energy efficiency, integrating renewable energy sources, and developing microgrid technologies to support decentralized power generation. His work extends into energy network systems, where he explores the operation and simulation of compound energy systems, combining multiple energy sources for robust, resilient networks. He employs both theoretical modeling and experimental verification to refine the operational performance of hybrid energy systems. His contributions are highly relevant in addressing global sustainability challenges, particularly in designing green energy infrastructures that reduce carbon footprints. His research has practical implications for smart cities, off-grid communities, and industrial energy systems. Prof. Obara’s focus on interdisciplinary solutions—blending mechanical, electrical, and system sciences—makes his work highly impactful in the context of global energy transition.

Publication Top Notes:

1. Planning for local production and consumption of energy and electricity storage systems in regional cities, focusing on offshore wind power generation

2. Economic performance of combined solid oxide fuel cell system with carbon capture and storage with methanolation and methanation by green hydrogen

3. Capacity planning of storage batteries for remote island microgrids with physical energy storage with CO2 phase changes

Citations: 4

4. Comparative study of methods of supplying power to the lunar base

5. Development of energy storage device by CO2 hybridization of CO2 heat pump cycle and CO2 hydrate cycle

6. Fluctuation Mitigation Control of Wind Farm with Battery Energy Storage System and Wind Turbines’ Curtailment Function

7. Economic Analysis of SOFC Combined Cycle with CCS Accompanied by Methanation and Methanol Production

8. Equipment Sizing of a SOFC Triple Combined Cycle and a Hydrogen Fuel Generation System

9. Formation temperature range expansion and energy storage properties of CO2 hydrates

Citations: 4

Dr. Jean Moto Ongagna | Theoretical Chemistry | Catalysis Award

Dr. Jean Moto Ongagna | Theoretical Chemistry | Catalysis Award

Dr. Jean Moto Ongagna | Theoretical Chemistry | Lecturer – University of Douala-Cameroon , Cameroon

Dr. Jean Moto Ongagna is a Cameroonian researcher specializing in Theoretical chemistry and Computational Chemistry . He obtained his Ph.D. from the University of Douala in 2021. His expertise spans Density Functional Theory (DFT), Pharmacokinetics (ADMET), Molecular Docking, Molecular Dynamics (MD), and ab initio Molecular Dynamics (ADMP). Dr. Ongagna has contributed significantly to computational chemistry, particularly in studying metal complexes, chemical bonding, and reaction mechanisms. He has participated in prestigious international conferences and workshops, presenting groundbreaking research on chemical bonding interactions. With numerous publications in high-impact journals such as RSC Advances and the International Journal of Quantum Chemistry, his work advances the understanding of transition metal complexes and their applications. He actively collaborates with researchers worldwide and is dedicated to developing computational tools for chemical and biological systems.

Professional Profile : 

Orcid  

Summary of Suitability for Award:

Dr. Jean Moto Ongagna is an outstanding candidate for the “Catalysis Awards”, given his significant contributions to computational catalysis and theoretical chemistry. His research extensively applies Density Functional Theory (DFT), Quantum Chemical Calculations, and Molecular Dynamics (MD) to investigate transition metal complexes, non-standard chemical bonding, and catalytic reaction mechanisms. His studies provide deep insights into metal-ligand interactions, catalytic efficiency, and reaction pathways, which are fundamental for designing novel catalytic systems. Dr. Jean Moto Ongagna’s research in computational catalysis, transition metal chemistry, and theoretical modeling aligns perfectly with the objectives of the “Catalysis Awards”. His work advances the understanding of catalyst behavior, reaction mechanisms, and molecular interactions, making a substantial impact on modern catalysis research. His ability to integrate quantum chemistry tools with catalytic design positions him as a highly suitable candidate for this prestigious recognition.

🎓Education:

Dr. Jean Moto Ongagna pursued his higher education at the University of Douala, Cameroon. He earned a Ph.D. in Theoretical and Computational Chemistry (2021), focusing on Density Functional Theory (DFT) and molecular simulations. In 2016, he completed his Master’s degree in the same field, where he explored the computational analysis of metal-ligand interactions. His Bachelor’s degree in Physical Chemistry (2013) laid the foundation for his research on quantum chemistry and molecular modeling. Before university, he completed his GCE Advanced Level (Baccalauréat D) in 2008 at Laic Private College “La Liberté” in Douala. His education equipped him with expertise in quantum chemistry, molecular docking, and theoretical modeling, enabling him to contribute to cutting-edge research. Throughout his academic journey, he attended specialized workshops and conferences to enhance his skills in computational chemistry, continuously refining his expertise in quantum simulations and advanced chemical theories.

🏢Work Experience:

Dr. Jean Moto Ongagna has extensive experience in Theoretical chemistry and Computational Chemistry, with expertise in Density Functional Theory (DFT), Molecular Docking, Pharmacokinetics (ADMET), and ab initio Molecular Dynamics (ADMP). He has actively participated in international conferences, presenting research on transition metal complexes, chemical bonding, and molecular interactions. He has contributed to significant projects involving the computational study of catalysts, biomolecular interactions, and pharmaceutical compounds. Dr. Ongagna has also collaborated with renowned institutions and researchers worldwide, publishing extensively in high-impact journals. His research experience includes developing and applying quantum chemical tools for investigating metal-ligand interactions and reaction mechanisms. He has been involved in multiple computational chemistry workshops, enhancing his knowledge of secondary metabolite discovery, quantum topology, and electronic structure theory. His contributions have led to a deeper understanding of non-standard chemical bonding and have implications for catalysis, drug design, and materials science.

🏅Awards: 

Dr. Jean Moto Ongagna has received multiple recognitions for his contributions to Theoretical and Computational Chemistry. He has been invited as a speaker at international conferences, including the 4th Commonwealth Chemistry Posters (2023) and the Virtual Conference on Chemistry and Its Applications (2021, 2022). His research on transition metal complexes and quantum chemistry has been published in high-impact journals such as RSC Advances and the International Journal of Quantum Chemistry. He has received accolades for his computational investigations on catalytic and biomolecular systems, contributing to the advancement of quantum chemical methodologies. His participation in scientific workshops at the University of Buea (Cameroon) and Technische Universität Dresden (Germany) further highlights his academic excellence. His continuous engagement in international scientific discussions and collaborations has strengthened his reputation as a leading researcher in quantum chemistry and molecular modeling.

🔬Research Focus:

Dr. Jean Moto Ongagna’s research focuses on Theoretical and Computational Chemistry, particularly Density Functional Theory (DFT), Quantum Chemical Calculations, Molecular Docking, Pharmacokinetics (ADMET), and Molecular Dynamics (MD). He specializes in studying transition metal complexes, non-standard chemical bonds, and catalytic reactions. His work involves topological analysis of chemical interactions using advanced computational techniques such as Quantum Theory of Atoms in Molecules (QTAIM), Energy Decomposition Analysis (EDA), and Natural Bond Orbital (NBO) analysis. He has made significant contributions to understanding palladium complexes, Diels–Alder reactions, and bioactive compounds. His research extends to computational drug discovery, antimicrobial compounds, and bioinorganic chemistry, aiming to bridge the gap between theoretical modeling and experimental applications. By integrating quantum chemical methods with molecular simulations, his studies provide valuable insights into reaction mechanisms, electronic structures, and potential applications in pharmaceuticals, catalysis, and material science.

Publication Top Notes:

Deciphering the Influence of Alkylene Bridged and Chelating Mode on Pd—C and Pd—X (X = Cl, Br, and I) Bonding Interaction Within Bis‐(NHC)‐Palladium Complexes Using Quantum Chemistry Tools

Authors: Gaël Mouzong D’Ambassa, Jean Moto Ongagna, Adjieufack Abel Idrice, Désiré Bikele Mama

Year: 2024

Computational Exploration of the Impact of Low‐Spin and High‐Spin Ground State on the Chelating Ability of Dimethylglyoxime Ligand on Dihalo Transition Metal: A QTAIM, EDA, and CDA Analysis

Authors: Daniel Lissouck, Suzane Leonie Djendo Mazia, Gaël Mouzong D’Ambassa, Jean Moto Ongagna

Year: 2024

Deciphering the Influence of PdII and PdIV Oxidation States on Non-Standard Chemical Bonds Within Bis(N-Heterocyclic Carbene) Complexes: Insights from DFT

Authors: Gaël Mouzong D’Ambassa, Jean Moto Ongagna, Adjieufack Abel Idrice, Désiré Bikele Mama

Year: 2024

Exploring the Mechanism of the Intramolecular Diels–Alder Reaction of (2E,4Z,6Z)-2(allyloxy)cycloocta-2,4,6-trien-1-one Using Bonding Evolution Theory

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2023

In Vitro and In Silico Studies of Antibacterial Activities of Secofriedelane Derivatives from Senna alata (L) Roxb

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2023

How a Chromium Tricarbonyl Complex Catalyzes the [3 + 2] Cycloaddition Reaction of N-Substituted Phenylnitrones with Styrene: A Molecular Electron Density Theory Analysis

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2023

Insight into the Antioxidant and Antiradical Properties of Colorotane Sesquiterpenes Extracted from Warburgia ugandensis: Theoretical Evaluation

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2021

Topological Unraveling of the [3+2] Cycloaddition (32CA) Reaction Between N-Methylphenylnitrone and Styrene Catalyzed by the Chromium Tricarbonyl Complex Using Electron Localization Function and Catastrophe Theory

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2021

B3LYP, M06 and B3PW91 DFT Assignment of nd8 Metal-Bis-(N-Heterocyclic Carbene) Complexes

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2020