Larissa Magalhães de Almeida Melo | Analytical Chemistry | Women Researcher Award

Dr. Larissa Magalhães de Almeida Melo | Analytical Chemistry | Women Researcher Award

Pos doctor at Federal University of the Jequitinhonha and Mucuri Valleys | Brazil

Larissa Magalhães de Almeida Melo is a Brazilian researcher specializing in analytical and forensic chemistry, with an emphasis on electrochemical detection methods for drugs of abuse. She is currently pursuing her Ph.D. at the Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM) under Prof. Dr. Wallans Torres Pio dos Santos. Her doctoral research focuses on developing portable, field-deployable methods for drug screening. In 2024, she undertook a Sandwich Ph.D. program at Manchester Metropolitan University with Prof. Craig Banks, further advancing her work in colorimetric and electrochemical sensors. With over 160 citations and an H-index of 9, Larissa has contributed significantly to high-impact journals in analytical chemistry. She combines her expertise in electrochemical sensing, device fabrication, and forensic toxicology to innovate rapid and cost-effective screening technologies. Her international collaborations and technical contributions highlight her growing influence in modern forensic science and public health monitoring.

Professional Profile

Google Scholar

Orcid

Education 

Larissa Melo’s academic journey demonstrates a progressive dedication to chemistry and engineering. She is currently a Ph.D. fellow (2021–2025) at UFVJM in Brazil, where her research involves the development of portable methods for forensic drug detection. In 2024, she participated in a Sandwich Ph.D. at Manchester Metropolitan University under Prof. Craig Banks. Prior to her doctorate, she earned a Master’s degree in Analytical Chemistry (2019–2021) from UFVJM, where she developed a screening method for synthetic tryptamines. She also completed a Bachelor’s in Chemical Engineering (2018–2023) and another in Science and Technology (2014–2018) at UFVJM. Her foundational education includes a technical course in Electrical Technology (2010–2013) from the Federal Institute of Espírito Santo. This solid multidisciplinary background has equipped her with strong skills in analytical instrumentation, electrochemistry, materials science, and chemical engineering, all of which support her advanced research in forensic applications.

Professional Experience 

Larissa Melo brings strong academic and research experience, particularly in forensic electrochemistry. Her doctoral work (2021–2025) at UFVJM focuses on creating portable devices for the electrochemical detection of synthetic drugs. In 2024, she joined Manchester Metropolitan University under a Sandwich Ph.D. program, working with Prof. Craig Banks on hybrid sensor systems. During her Master’s (2019–2021), she developed a fast electrochemical method for tryptamine detection. She has co-authored over 20 peer-reviewed publications in top journals, often collaborating with multidisciplinary teams on drug screening innovations using screen-printed electrodes, colorimetric methods, and 3D-printed analytical tools. Larissa has also contributed to critical reviews and sensor fabrication methods. Her experience includes technical work with disposable electrodes, boron-doped diamond sensors, and voltammetry. Additionally, she’s actively involved in developing environmentally friendly, field-portable diagnostic tools. Larissa’s practical and collaborative work underscores her capability in applying chemistry to real-world forensic and public health challenges.

Awards and Honors 

While specific awards are not explicitly listed, Larissa Melo’s research impact and international engagements reflect significant academic recognition. She was competitively selected for a Sandwich Ph.D. fellowship at Manchester Metropolitan University (2024), a testament to her research excellence and international collaboration skills. Her publication record includes articles in top-tier journals such as Electrochimica Acta, Talanta, TrAC, and Sensors and Actuators B: Chemical, often as the first or lead author. She has amassed over 165 citations and holds an H-index of 9, highlighting her work’s influence in analytical and forensic chemistry. Larissa’s interdisciplinary research on electrochemical and colorimetric methods for drug detection showcases her contribution to forensic science innovation. Her rapid rise as a productive early-career researcher, mentorship by globally recognized experts like Prof. Wallans dos Santos and Prof. Craig Banks, and verified academic credentials on the Lattes platform further confirm her growing stature in scientific communities.

Research Interests 

Larissa Melo’s research interests center around analytical chemistry, electrochemical sensing, and forensic science. Her work focuses on the development of rapid, portable, and cost-effective electrochemical and colorimetric detection methods for drugs of abuse. She is particularly interested in screen-printed electrodes, boron-doped diamond sensors, and 3D-printed electrochemical cells to detect substances such as synthetic cathinones, cannabinoids, tryptamines, amphetamines, and hallucinogens. Her interdisciplinary approach combines chemical engineering principles, material science, and electroanalysis to improve point-of-care diagnostics. Larissa also explores hybrid detection platforms combining colorimetric and electrochemical signals, enhancing sensitivity and specificity for field-based forensic analysis. She contributes to critical reviews and technical innovations in clinical toxicology, pharmaceutical analysis, and biosensors. Her goal is to make analytical methods more accessible, environmentally friendly, and applicable in real-time settings, such as customs, crime scenes, and emergency rooms.

Publication Top Notes

  1. Portable analytical methods for detecting synthetic cannabinoid receptor agonists: a critical review

  2. A dual colorimetric-electrochemical platform based on bromocresol green for the selective detection of atropine

  3. Selective screening of synthetic cathinones, amphetamines, piperazines, and phenethylamines using voltammetry

  4. Electrochemistry of the synthetic tryptamine 5-MeO-MiPT at glassy carbon and screen-printed electrodes

  5. Novel colorimetric-electrochemical methods for selective identification and quantification of Scopolamine

  6. Use of a lab-made disposable screen-printed sensor with boron-doped diamond for N-ethylpentylone detection

  7. Combined colorimetric and electrochemical screening method for selective detection of MDMA

  8. Electrochemical methods for determination of acetaminophen in biological matrices: a critical review

  9. Selective screening of NBOHs, NBOMes, and LSD using a 3D-Printed electrochemical double cell

  10. Electrochemical detection of mephedrone using a graphene screen-printed electrode

  11. Electrochemical method for detecting synthetic cannabinoids in e-cigarette and biological samples

  12. Chemically deposited boron-doped diamond screen-printed electrodes for manganese detection

  13. Colorimetric-Electrochemical Combined Method for Detection of Drugs in Blotter Papers

  14. SMART 3D-printed electrochemical cell for on-site and forensic analysis

  15. Oxygen plasma-treated graphite sheet electrodes for methamphetamines

  16. Fast screening of MDEA using carbon screen-printed electrode and voltammetry

  17. Electrochemical detection of 1-benzylpiperazine on carbon screen-printed electrode

  18. Screening method for detection of 1-(3-chlorophenyl)piperazine in forensic samples

  19. Selective screening method for MDPT using carbon nanofiber screen-printed electrodes

  20. Detection of LSD in forensic samples using carbon nanotube screen-printed electrodes

  21. Detection of 2C-B using environmentally friendly screen-printed electrodes

  22. Professional biography of Dorothy Hodgkin – Contributions to Chemistry, Biology, and Biochemistry

Conclusion

Larissa Magalhães de Almeida Melo exemplifies the next generation of analytical chemists committed to real-world impact in forensic science. Her research bridges engineering and chemistry to develop innovative, portable, and sustainable methods for drug detection. With international experience, strong academic output, and cross-disciplinary skills, she is well-positioned for leadership in global forensic chemistry research.

 

Prof. Mansoor Anbia | Analytical Chemistry | Best Researcher Award

Prof. Mansoor Anbia | Analytical Chemistry | Best Researcher Award

Prof. Mansoor Anbia ,  Analytical Chemistry , Academician/Research Scholar at Iran university od science and technology , Iran

Prof. Mansoor Anbia is a distinguished Professor of Analytical Chemistry at the Iran University of Science and Technology. He specializes in the synthesis and application of nanomaterials, particularly for environmental monitoring and catalysis. With a Ph.D. in Analytical Chemistry, Prof. Anbia has led 365 research projects, published 249 articles in reputed journals, authored five books, and contributed significantly to industrial consultancy with over 70 projects. His editorial appointments include the Journal of Chemical Reviews and the Asian Journal of Nanoscience and Materials. As president of international chemistry congresses and head of various national committees, he bridges academia and industry with a commitment to applied innovation. Prof. Anbia’s pioneering work on nanostructured materials has gained global recognition, earning him an h-index of 38. Through his research and leadership, he continues to advance scientific understanding and real-world application in nanochemistry and analytical science.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Mansoor Anbia stands out as an exceptionally qualified candidate for the Best Researcher Award due to his prolific academic contributions, innovative research, and leadership in scientific and industrial domains. With 249 publications in high-impact journals, 365 completed or ongoing research projects, and five authored books, his scholarly output is not only vast but also highly influential, evidenced by his citation index (h-index) of 38.  Additionally, Prof. Anbia has bridged academia and industry through 71 consultancy projects and multiple prestigious appointments, including editorial board roles, presidency of international congresses, and national scientific advisory positions. His consistent leadership in national science policy, industrial applications, and interdisciplinary collaborations positions him as a role model for emerging researchers. Prof. Mansoor Anbia is highly suitable for the “Best Researcher Award”. His pioneering work in nanochemistry and analytical science, combined with extensive scholarly output and industrial impact, exemplifies the highest standards of research excellence. He fulfills all major criteria—productivity, innovation, societal relevance, and academic leadership—and thus represents an ideal recipient of this distinguished honor.

🎓Education:

Prof. Mansoor Anbia holds a Ph.D. in Analytical Chemistry with a specialization in nanomaterials. During his doctoral studies, he conducted advanced research on nanostructures and their applications in analytical techniques. He worked closely with a renowned expert in nanotechnology, gaining interdisciplinary expertise across materials science, instrumental analysis, and catalysis. His academic journey focused on developing methods for environmental monitoring, pollutant removal, and industrial process optimization. As a doctoral researcher, he published extensively and served as first author in many high-impact journals. His academic training provided a robust foundation in research design, experimental techniques, and scientific communication. His education also equipped him with advanced skills in synthesis, characterization, and application of porous nanomaterials, shaping his long-term research directions. Prof. Anbia’s academic background remains integral to his ongoing success as a scholar, mentor, and innovator in the field of nanoscience and analytical chemistry.

🏢Work Experience:

Prof. Mansoor Anbia brings decades of experience in academia, industrial consultancy, and scientific leadership. As a Professor of Analytical Chemistry at the Iran University of Science and Technology, he has supervised numerous Ph.D. scholars and led 365 completed or ongoing research projects. With 71 consultancy and industrial collaborations, he has contributed extensively to environmental and industrial applications of nanomaterials. His responsibilities span teaching, research, innovation, and international cooperation. Prof. Anbia also serves in leadership roles: Director of the Oil Industry Relations Office, Head of the Center for Silicon Chemistry Technology, and Chair of national research committees. His editorial involvement and presidency of international congresses further reflect his global engagement. Across his career, he has integrated scientific rigor with practical innovation, contributing significantly to environmental remediation, catalysis, and industrial processes. His career exemplifies a synergy of academic excellence and applied science.

🏅Awards: 

Prof. Mansoor Anbia’s exceptional career has earned him several accolades and prestigious appointments. He is the President of the International Congress of Chemistry and Nanochemistry, reflecting his global stature. He has been a key member of multiple national scientific boards including the Specialized Commission on Basic Sciences, and the Iranian Water and Wastewater Industry Book Review Committee. Prof. Anbia has played a pivotal role in government and industrial policy through his position on the Research Committee of the Iranian Water Resources Management Technology Company. As Head of the Center for Coordination of Silicon and Organosilicon Chemistry Technology, his contributions are widely acknowledged in both academic and industrial circles. These honors affirm his impact on science policy, education, and real-world problem solving. Through his dedication to scientific excellence and interdisciplinary innovation, he continues to influence the future of analytical chemistry and nanotechnology.

🔬Research Focus:

Prof. Mansoor Anbia’s research centers on the synthesis and application of nanostructured and nanoporous materials for environmental and industrial uses. He focuses on developing novel adsorbents and catalysts with enhanced efficiency for the removal of organic and inorganic pollutants from industrial effluents. His work also targets energy and environmental sustainability by engineering nano-based systems applicable in water treatment and industrial plants. He integrates advanced analytical techniques for characterization and performance evaluation of materials. Prof. Anbia’s studies span method development, instrumental analysis, and real-world application, particularly in the oil and petrochemical sectors. His collaborative efforts in interdisciplinary projects strengthen the link between chemistry, environmental science, and industrial engineering. Through innovations in functionalized nanomaterials, his research aims to solve pressing environmental issues while advancing the field of green and analytical chemistry.

Publication Top Notes:

1. Superhydrophobic magnetic melamine sponge modified by flowerlike ZnO and stearic acid using dip coating method for oil and water separation

2. Investigation of sol-gel derived organic-inorganic hybrid coatings based on commercial epoxy resin for improved corrosion resistance of 304 stainless steel

Citations: 1

3. Kinetic and isotherm studies of Cr(VI) adsorption from aqueous media by using a synthetic chitosan-allophane nanocomposite

4. Synergetic effect of heteroatoms doping and functional groups of graphene-chitosan magnetic nanocomposite on enhancement of heavy metal sorption

Citations: 1

5. Chitosan and carboxymethyl cellulose coated on NH₂-UiO-66 for levofloxacin delivery: A comparative study

6. MIL-101(Fe)- and MIL-101(Fe)-NH₂-loaded thin film nanofiltration membranes for removal of fluoxetine hydrochloride from pharmaceutical wastewater

Citations: 1

7. Investigating the catalytic performance of polyoxometalate immobilized on magnetic chitosan in oxidative desulfurization

Citations: 3

8. Modification of melamine and polyurethane sponges with vinyl triethoxysilane-graphene nanocomposite as superhydrophobic absorbents for oil-water separation

9. Machine learning-based prediction and experimental validation of Cr(VI) adsorption capacity of chitosan-based composites

10. Green synthesis of magnetic graphene-like biochar with oxygen vacancies for efficient adsorption and degradation of emerging antivirals from water

Citations: 4

 

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | Best Researcher Award

Dr. SHEKHAR RAPARTHI | Analytical Chemistry | SCIENTIFIC OFFICER/H at NATIONAL CENTER FOR COMPOSITIONAL CHARACTERISATION OF MATERIALS,  India

Shekhar Raparthi is a Scientific Officer / H at the National Centre for Compositional Characterisation of Materials (NCCCM), BARC, Hyderabad. With over three decades of expertise in analytical chemistry, he specializes in trace and ultra-trace characterization of metals, alloys, and high-purity materials. His pioneering work in glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry has significantly advanced compositional analysis. Holding a Ph.D. in Chemistry from JNTU, Hyderabad (2008), he has published extensively in reputed international journals and served as a peer reviewer. Currently leading the ultra-trace analysis section at NCCCM since 2023, he is an esteemed member of India Society for Mass Spectrometry (ISMAS) and Indian Society of Analytical Science (ISAS). His contributions to spectrometric techniques have practical applications in industrial and nuclear material characterization, making him a respected figure in analytical and green chemistry research.

Professional Profile :         

Scopus  

Summary of Suitability for Award:

Dr. Shekhar Raparthi is a highly accomplished researcher specializing in trace and ultra-trace characterization of materials using mass and spectrometric techniques. With over 32 publications in high-impact journals, an h-index of 14, and 631 citations, he has made significant contributions to analytical chemistry. His pioneering research includes the development of infrared spectroscopic methods, glow discharge quadrupole mass spectrometry (GD-QMS), and novel electrolyte cathode discharge atomic emission spectrometric sources. These innovations have advanced material characterization techniques, benefiting the scientific community and industries dealing with high-purity materials, metals, and alloys. Dr. Raparthi’s extensive research contributions, innovative methodologies, and commitment to advancing analytical chemistry make him an ideal candidate for the “Best Researcher Award.” His work has been recognized through numerous international publications, and his role as the head of the ultra-trace analysis section at NCCCM, BARC, further solidifies his impact in the field.

🎓Education:

Shekhar Raparthi pursued his M.Sc. in Chemistry from the University of Hyderabad in 1993, where he developed a strong foundation in analytical chemistry. Following this, he underwent a one-year orientation program at BARC in 1994, gaining specialized training in advanced compositional characterization techniques. His academic journey culminated in a Ph.D. in Chemistry from Jawaharlal Nehru Technological University (JNTU), Hyderabad, in 2008. His doctoral research focused on the development of advanced mass spectrometric methodologies for the ultra-trace analysis of metals and high-purity materials. Over the years, he has continuously expanded his expertise through research, peer-reviewed publications, and participation in international analytical chemistry conferences. His educational background has been instrumental in his ability to innovate in trace and ultra-trace analysis techniques, making significant contributions to the field of analytical chemistry.

🏢Work Experience:

Shekhar Raparthi began his professional career in 1994 as a Scientific Officer/C at NCCCM, BARC, Hyderabad, specializing in the compositional characterization of various materials. Over the past 30 years, he has developed novel analytical methodologies for metals, alloys, and high-purity materials using mass spectrometric and spectroscopic techniques. His expertise includes glow discharge quadrupole mass spectrometry and electrolyte cathode discharge atomic emission spectrometry, contributing to advancements in trace and ultra-trace analysis. His work has been widely recognized, leading to 32 publications in reputed international journals. Since 2023, he has been heading the ultra-trace analysis section at NCCCM, overseeing critical research in compositional characterization. He is also an active peer reviewer for international journals. With extensive experience in spectrometric techniques, Shekhar Raparthi plays a key role in material characterization for nuclear, industrial, and high-tech applications.

🏅Awards: 

Shekhar Raparthi has received several accolades for his significant contributions to analytical chemistry and mass spectrometry. His infrared spectroscopic method for oxygen quantification in TiCl₄ was widely appreciated in the titanium industry, earning him recognition in the field. His research on glow discharge quadrupole mass spectrometry and matrix volatilization methodologies for ultra-trace characterization of high-purity germanium has been published in top international journals, including Analytical Chemistry. His expertise in trace element analysis has made him a valuable asset to BARC and the Indian scientific community. As a distinguished member of ISMAS and ISAS, he actively contributes to the advancement of analytical sciences in India. While he has not listed specific awards, his impactful research, numerous peer-reviewed publications, and leadership in ultra-trace analysis solidify his reputation as a leading scientist in compositional characterization.

🔬Research Focus:

Shekhar Raparthi’s research revolves around trace and ultra-trace characterization of materials using advanced mass spectrometric and spectroscopic techniques. His work plays a crucial role in ensuring the purity and compositional accuracy of metals, alloys, and high-purity materials. He has pioneered glow discharge quadrupole mass spectrometry (GD-QMS) for detecting impurities at ultra-trace levels. Additionally, his development of matrix volatilization methodologies has enhanced the characterization of high-purity germanium, a material critical in semiconductor and radiation detection applications. His innovations in electrolyte cathode discharge atomic emission spectrometry (ECD-AES) have improved the sensitivity and precision of trace element analysis. His research significantly contributes to nuclear, industrial, and advanced material applications, ensuring high accuracy in material compositional studies. As the head of the ultra-trace analysis section at NCCCM, his expertise in **

Publication Top Notes:

In-situ Ti–Ir and ammonium thiocyanate modifiers for improvement of sensitivity of Sc to sub parts per billion levels and its accurate quantification in coal fly ash and red mud by GFAAS

Hydrophobicity induced graphene oxide based dispersive micro solid phase extraction of strontium from seawater and groundwater prior to GFAAS determination

Direct determination of ultra-trace sodium in reactor secondary coolant waters and other waters by electrolyte cathode discharge atomic emission spectrometry

Citation Count: 1

 

Prof. Dr. Mahmoud Omar | Analytical Chemistry | Best Researcher Award

Prof. Dr. Mahmoud Omar | Analytical Chemistry | Best Researcher Award

Prof. Dr. Mahmoud Omar , Faculty of pharmacy, Taibah University , Egypt

Dr. Mahmoud Ahmed Omar Hassan is a distinguished Professor specializing in Pharmacognosy and Pharmaceutical Chemistry. Currently serving at the College of Pharmacy, Taibah University, Saudi Arabia, he brings extensive expertise in analytical chemistry and pharmaceutical sciences. His research emphasizes innovative analytical methods and the determination of pharmaceutical compounds in diverse matrices. With over two decades of teaching and research, Dr. Hassan has significantly contributed to pharmacy education, mentoring students in analytical and pharmaceutical chemistry. He is widely published, with impactful work on spectro fluorimetry, spectrophotometry, chromatography, and voltammetry. His contributions enhance drug quality assurance and pharmaceutical analysis.

Professional Profile

Google Scholar

Scopus

Summary of Suitability for Award:

Dr. Mahmoud Ahmed Omar Hassan is an exemplary candidate for the “Best Researcher Awards” due to his extensive contributions to pharmaceutical analytical chemistry. With over 25 years of experience in academia and research, he has demonstrated unparalleled expertise in developing innovative analytical methods. His research addresses critical challenges in drug analysis, including determination in pharmaceutical formulations and biological fluids, with a strong focus on green chemistry and quality assurance. Dr. Hassan’s prolific publication record includes high-impact articles in peer-reviewed journals, showcasing groundbreaking work in spectrofluorimetry, chromatography, and photoluminescence. He has also been a mentor and educator, teaching advanced courses and shaping future scientists.

🎓Education:

Dr. Mahmoud Ahmed Omar Hassan holds a Ph.D. in Pharmaceutical Sciences (Pharmaceutical Analytical Chemistry) from Minia University, Egypt, completed in 2005. His doctoral research emphasized advanced analytical techniques for pharmaceutical applications. He earned his Master’s degree in Pharmaceutical Sciences (Pharmaceutical Analytical Chemistry) from Assiut University, Egypt, in 1999, focusing on drug analysis and quality control. He began his academic journey with a Bachelor’s degree in Pharmaceutical Sciences from Al-Azhar University, Egypt, in 1994. His comprehensive educational foundation underpins his expertise in analytical chemistry, making him a leader in pharmaceutical education and research.

🏢Work Experience:

Dr. Hassan’s career spans over 25 years in academia and research. He started as a Demonstrator at Al-Azhar University in 1995, progressing to Associate Lecturer by 1999. He joined Minia University in 1999, where he served as an Assistant Professor until 2010, later becoming an Associate Professor (2010–2015) and Professor (2015–2019). In 2019, he joined Taibah University, Saudi Arabia, as a Professor in the Pharmacognosy and Pharmaceutical Chemistry Department, where he teaches pharmaceutical analytical chemistry and technology courses. His vast teaching experience and mentorship have shaped future leaders in pharmaceutical sciences.

🏅Awards: 

Dr. Hassan has been recognized for his contributions to pharmaceutical sciences and education. He received accolades for research excellence at Minia University and was honored at Taibah University for advancing pharmaceutical analysis techniques. His innovative teaching methods and mentorship earned him recognition from students and academic institutions alike. Dr. Hassan’s achievements reflect his dedication to advancing analytical chemistry and his impactful role in enhancing pharmaceutical education and research.

🔬Research Focus:

Dr. Hassan specializes in developing innovative analytical methods for pharmaceutical analysis. His work focuses on determining drugs in pure forms, pharmaceutical formulations, and biological fluids using advanced techniques like spectrofluorimetry, spectrophotometry, voltammetry, and chromatography. He is committed to promoting green analytical chemistry and improving drug quality assurance practices. His research aims to address global challenges in pharmaceutical analysis, ensuring the efficacy and safety of drugs.

Publication Top Notes:

Use of charge-transfer complexation in the spectrophotometric analysis of certain cephalosporins

Authors: GA Saleh, HF Askal, MF Radwan, MA Omar

Citations: 159

Year: 2001

Kinetic spectrofluorimetric determination of certain cephalosporins in human plasma

Authors: MA Omar, OH Abdelmageed, TZ Attia

Citations: 88

Year: 2009

Development and validation of HPLC method for simultaneous determination of amlodipine, valsartan, hydrochlorothiazide in dosage form and spiked human plasma

Authors: EG Samya M, A Osama H, D Sayed M

Citations: 77

Year: 2012

Validated spectrofluorimetric method for determination of selected aminoglycosides

Authors: MA Omar, HM Ahmed, MA Hammad, SM Derayea

Citations: 54

Year: 2015

Development of spectrofluorimetric method for determination of certain aminoglycoside drugs in dosage forms and human plasma through condensation with ninhydrin and phenyl

Authors: MA Omar, MA Hammad, DM Nagy, AA Aly

Citations: 51

Year: 2015

Development and validation of a new spectrofluorimetric method for the determination of some beta-blockers through fluorescence quenching of eosin Y. Application to content

Authors: SM Derayea, MA Omar, MAK Abdel-Lateef, AI Hassan

Citations: 48

Year: 2016

Spectrophotometric and spectrofluorimetric determination of certain diuretics through ternary complex formation with eosin and lead (II)

Authors: MA Omar

Citations: 42

Year: 2010

Kinetic spectrophotometric determination of certain cephalosporins in pharmaceutical formulations

Authors: MA Omar, OH Abdelmageed, TZ Attia

Citations: 37

Year: 2009

Validated spectrophotometric methods for determination of certain aminoglycosides in pharmaceutical formulations

Authors: MA Omar, DM Nagy, MA Hammad, AA Aly

Citations: 35

Year: 2013

Studying the association complex formation of atomoxetine and fluvoxamine with eosin Y and its application in their fluorimetric determination

Authors: SM Derayea, MA Omar, AA Abu-Hassan

Citations: 33

Year: 2018