Assoc. Prof. Dr. Xiaoming Zhang | Physical Chemistry | Women Researcher Award

Assoc. Prof. Dr. Xiaoming Zhang | Physical Chemistry | Women Researcher Award

Assoc. Prof. Dr. Xiaoming Zhang , Physical Chemistry , Minzu University of China , China

Dr. Zhang Xiaoming is an Associate Professor in Physical Chemistry at the College of Science, Minzu University of China. She specializes in functional self-assembly and interfacial physics of nanomaterials for applications in energy batteries, photocatalytic water splitting, and ultra-high-resolution imaging. She earned her Ph.D. from the Institute of Chemistry, Chinese Academy of Sciences in 2007. Dr. Zhang has held postdoctoral positions at Keio University (Japan), Dublin City University (Ireland), and the National Center for Nanoscience and Technology (China). She has published over 60 SCI-indexed papers and led multiple national and municipal research projects. Her work bridges fundamental nanoscience with real-world applications in energy and biotechnology. She is actively involved in editorial boards and academic committees and has received several teaching and research awards. She also mentors postgraduate and international postdoctoral researchers, contributing to global scientific exchange.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Zhang holds a Ph.D. in Physical Chemistry from the prestigious Institute of Chemistry, Chinese Academy of Sciences, with additional advanced training from globally recognized institutions such as Keio University (Japan) and Dublin City University (Ireland). She has published over 60 SCI-indexed papers as first or corresponding author, indicating her leading role in innovative research. Her work on nanomaterials, interfacial physics, and applications in energy storage, photocatalysis, and super-resolution imaging is both interdisciplinary and of high societal relevance. Dr. Zhang is the Principal Investigator for a major National Natural Science Foundation of China project and has led/co-led several national and international research initiatives, including talent introduction and key development programs. She is a Master’s and Ph.D. supervisor, actively mentoring both domestic and international researchers, especially women and underrepresented groups, thus contributing to capacity building and gender equity in science. Dr. Zhang Xiaoming embodies the ideal profile for the “Women Researcher Award”—a dynamic scientist who excels in cutting-edge research, mentors the next generation, contributes to international scientific dialogue, and advances gender representation in science. Her contributions not only enrich the scientific community but also serve as a role model for aspiring women researchers globally. Awarding her would recognize and further empower women’s leadership in science and technology.

🎓Education:

Dr. Zhang Xiaoming completed her Ph.D. in Physical Chemistry (2007) at the Institute of Chemistry, Chinese Academy of Sciences under the supervision of Prof. Junbai Li. She earned her M.Sc. in Physical Chemistry (2004) from Shandong Normal University, mentored by Prof. Zexin Wang, where she began her research into molecular self-assembly. Prior to that, she obtained her B.Sc. in Chemistry (2001) from the same university. Her education laid the foundation for her interdisciplinary approach, combining chemistry, nanotechnology, and physics. Through her studies, she developed a deep understanding of surface chemistry, interfacial interactions, and bio-functionalization, which now underpin her research on nanomaterial design for energy and biomedical applications.

🏢Work Experience:

Dr. Zhang has extensive academic and industrial experience. Since 2017, she has served as an Associate Professor at Minzu University of China. Before that, she was Deputy General Manager and Senior Engineer at the American Bentley Company (Beijing) from 2015 to 2017. Her academic journey includes postdoctoral positions at Keio University (Japan, 2007–2008), Dublin City University (Ireland, 2010–2012), and the National Center for Nanoscience and Technology, China (2012–2015). This international research exposure has shaped her cross-disciplinary expertise in nanoscience, interfacial physics, and functional materials. She has been actively involved in major national-level research projects and contributes to graduate education and talent training initiatives.

🏅Awards: 

Dr. Zhang has received numerous awards for her academic, research, and teaching excellence. These include the 2025 Outstanding Individual in Undergraduate Recruitment Publicity and 2024 Outstanding Work Performance awards from Minzu University. She earned Second Prize in the 2024 Education and Teaching Innovation Competition and several awards for teaching excellence, including the First Prize in the 11th Teaching Competition and the Best Teaching Demonstration Award (2018). Her research was internationally recognized with the IRCSET EMPOWER Fellowship (2010) in Ireland. She has also been honored as an Outstanding Instructor and Outstanding Communist Party Member and continues to be a highly active contributor in national education evaluations and academic forums.

🔬Research Focus:

Dr. Zhang’s research focuses on functional nanomaterials, particularly their self-assembly, bio-functionalization, and interfacial physics. Her goal is to harness these properties for energy storage, photocatalytic water splitting, and ultra-high resolution fluorescence imaging. Her interdisciplinary approach blends chemistry, nanotechnology, and biology. She investigates how nanostructures form and behave at interfaces, which is key to improving battery performance and catalytic efficiency. One of her recent projects explores the co-assembly of glucagon-like peptide GLP-1 with lipopeptides, using super-resolution fluorescence microscopy to visualize intracellular transport. She also studies the epitaxial growth of GeSn alloys for use in mid-infrared photodetectors, expanding her expertise into semiconductor applications.

Publication Top Notes:

1. High-performance ethanol detection achieved by WO₃/Co₃O₄ composite heterojunctions with synergistic p-n junction features

2. Probing Peptide Assembly and Interaction via High-Resolution Imaging Techniques: A Mini Review.

3. Engineering of peptide assemblies for adaptable protein delivery to achieve efficient intracellular biocatalysis

4. Manganese doped tailored cobalt sulfide as an accelerated catalyst for oxygen evolution reaction

5. Solution-processed, ultrasensitive, high current density vertical phototransistor using porous carbon nanotube electrode

6. Dramatic increase in SWIR detection for GeSn strip detector with graphene hybrid structure

7. A review on III–V compound semiconductor short wave infrared avalanche photodiodes

8. Two-dimensional antimony selenide (Sb₂Se₃) nanosheets prepared by hydrothermal method for visible-light photodetectors

9. Fabrication of graphene: CdSe quantum dots/CdS nanorod heterojunction photodetector and role of graphene to enhance the photoresponsive characteristics

10. One-Step Synthesis of SiOx@Graphene Composite Material by a Hydrothermal Method for Lithium-Ion Battery Anodes

 

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki , Environmental Chemistry , Jan Evangelista Purkyne University , Czech Republic

Dr. Karim Al Souki is a postdoctoral researcher and assistant professor at the Faculty of Environment, Jan Evangelista Purkyne University (UJEP), Czechia. With a Ph.D. in Earth and Universe Sciences from Lille 1 University, France, his academic journey reflects a strong foundation in plant biology and environmental sciences. Dr. Al Souki’s research spans phytoremediation, bioremediation, biochar utilization, and climate change mitigation through sustainable phytotechnology. He is a key contributor to international projects funded by NATO, Erasmus+, and Interreg, focusing on ecosystem restoration, water management, and environmental biotechnology. As an educator, he has taught courses across Europe on subjects such as environmental biotechnology, phytotechnology, and bio-economy. Dr. Al Souki’s interdisciplinary approach blends ecological theory with applied environmental solutions, making significant contributions to marginal land restoration and water pollution mitigation. His work promotes sustainability, ecological awareness, and environmental resilience through innovation and education.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

With a Ph.D. in Earth and Universe Sciences from Lille 1 University (France), and two Master’s degrees in Phyto-ecology and Plant Biology from Lebanese University, Dr. Karim Al Souki demonstrates a solid and multidisciplinary academic foundation. Dr. Karim Al Souki  leads and contributes to cutting-edge projects on phytoremediation, biochar technology, and environmental biotechnology—directly addressing climate change, pollution mitigation, and sustainable soil management. His research covers analytical techniques (FTIR, TGA, stable isotopes, DNA extraction), linking practical fieldwork with lab-based precision, ensuring both academic rigor and societal relevance. His role as project supervisor in initiatives like IDEAL and NATO-SPS illustrates leadership in shaping future environmental policies and technologies. Dr. Karim Al Souki is an ideal candidate for the “Best Researcher Award”, given his consistent, interdisciplinary contributions to environmental sciences. His research directly supports global sustainability goals through practical, innovative, and scalable solutions. Furthermore, his educational outreach, cross-border collaborations, and commitment to solving real-world ecological problems distinguish him as a researcher of international repute. This award would recognize and further empower his impactful scientific journey.

🎓Education:

Dr. Al Souki pursued his academic studies in biology and environmental sciences. He earned his Bachelor’s degree in General Biology (2008–2010), followed by a Master 1 in Plant Biology and Environment (2010–2011), and a Master 2 in Phyto-ecology, Resources, and Security Applications (2011–2012), all from Lebanese University, Lebanon. He then completed his Ph.D. in Earth and Universe Sciences at LGCgE, ISA-Lille, Lille 1 University of Sciences and Technologies, France (2014–2017). His academic foundation combines ecological sciences, environmental applications, and molecular understanding of plant-soil interactions. This educational pathway equipped him with the necessary tools to integrate ecological theory with practical environmental solutions. His training in Europe and the Middle East enabled him to adopt a multidisciplinary perspective and work in cross-cultural academic and research environments. His education has laid the groundwork for his specialization in environmental biotechnology, phytoremediation, and biochar applications.

🏢Work Experience:

Since October 2018, Dr. Karim Al Souki has been serving as a Post-doctoral researcher and Assistant Professor at UJEP, Czechia, where he teaches and conducts advanced research in environmental sciences. His prior experience includes teaching roles at ESME Sudria (France) and private institutions in Lille, where he lectured in phytoecology, molecular biology, and environmental science. He has supervised and contributed to numerous EU- and NATO-funded projects related to phytotechnology, biochar, soil-plant interactions, and wastewater treatment. His pedagogical contributions span multiple European universities and platforms, such as Erasmus, COIL, and ISA-Lille. He has taught subjects including Bioremediation, Bio-economy, Environmental Biotechnology, and Climate Change. Dr. Al Souki’s interdisciplinary teaching and research experience enable him to link theoretical knowledge with field-based applications, fostering student engagement and scientific problem-solving skills relevant to contemporary ecological challenges.

🏅Awards: 

Dr. Karim Al Souki has been recognized for his impactful research and cross-border educational initiatives. He is the Principal Investigator or Supervisor on several prestigious projects funded by international agencies such as NATO Science for Peace and Security Programme, Interreg (IDEAL project), and Erasmus+, highlighting his leadership in environmental science and sustainability education. He received the UJEP Internal Grant Agency funding multiple times (2021–2023), supporting his innovative work on biochar and Miscanthus x giganteus in soil restoration. He was awarded the Usti nad Labem region grant for young researchers for his study on quinoa in polluted soils. His consistent success in securing competitive research grants attests to the scientific merit and societal relevance of his projects. These accolades recognize his commitment to ecosystem services, educational outreach, and environmental restoration, and affirm his role as a rising figure in applied environmental sciences and international academic collaboration.

🔬Research Focus:

Dr. Al Souki’s research centers on phytotechnology, bioremediation, biochar characterization, and ecosystem service enhancement in marginal and contaminated soils. He specializes in using Miscanthus x giganteus and quinoa to rehabilitate former military lands and toxic-element-polluted environments. His research integrates stable isotope analysis, DNA-based microbial community profiling, and plant physiological assessments to explore rhizospheric interactions, nutrient cycling, and carbon sequestration. His work on biochar, especially its physico-chemical and ecotoxicological properties, supports sustainable agricultural and water reuse practices. His active projects include NATO-funded studies on climate change mitigation and EU-supported educational modules for water sustainability in the Elbe/Labe basin. His interdisciplinary approach links environmental microbiology, plant ecophysiology, and green chemistry, targeting real-world environmental problems with practical, nature-based solutions. His goal is to bridge science and education to improve soil health, water quality, and resilience against climate change.

Publication Top Notes:

1. An overview of potentially toxic element pollution in soil around lead–zinc mining areas

2. A comprehensive evaluation of the environmental and health risks associated with the potential utilization of chars produced from tires, electro-waste plastics and biomass

3. Characterizations of ash derived from the crops’ waste biomass for soil improvement and assisted phytoremediation

4. A 6-year review status on soil pollution in coal mining areas from Europe

5. Extracted rapeseed meal biochar combined with digestate as a soil amendment: Effect on lettuce (Lactuca sativa L.) biomass yield and concentration of bioavailable element fraction in the soil

6. Miscanthus x giganteus stress tolerance and phytoremediation capacities in highly diesel contaminated soils

7. The influence of diesel contaminated soil on Miscanthus x giganteus biomass thermal utilization and pyrolysis products composition

8. Evaluation of Miscanthus × giganteus Tolerance to Trace Element Stress: Field Experiment with Soils Possessing Gradient Cd, Pb, and Zn Concentrations

9. Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate

10. Utilization of Biochar for Eliminating Residual Pharmaceuticals from Wastewater Used in Agricultural Irrigation: Application to Ryegrass

 

 

 

 

Mr. Peng Zhang | Materials Chemistry | Best Researcher Award

Mr. Peng Zhang | Materials Chemistry | Best Researcher Award

Mr. Peng Zhang , Materials Chemistry, College of Mechanical Engineering, Anhui University of Technology, China

Peng Zhang is a dedicated tutor at the College of Mechanical Engineering, Anhui University of Technology. He earned his doctorate in Aerospace Manufacturing Engineering from the prestigious Nanjing University of Aeronautics and Astronautics. His early professional journey includes serving as a technician in a military aircraft assembly plant, which laid the foundation for his hands-on expertise in precision forming technologies. He has led several horizontal and vertical research projects and focuses on high-performance precision forming of light alloys and advanced aluminum-lithium composites. Peng Zhang has published over 10 papers in SCI-indexed journals as a first or corresponding author and holds two invention patents and one software copyright. His commitment to student mentorship is evidenced by his back-to-back recognition as “Excellent Instructor” during the 2022–2024 academic years.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Mr. Peng Zhang exhibits a compelling research profile that makes him a strong candidate for the “Best Researcher Award”. He holds a Ph.D. in Aerospace Manufacturing Engineering and is currently a tutor and project leader at the College of Mechanical Engineering, Anhui University of Technology. His research focuses on high-performance precision forming of light alloys, particularly Al-Li aerospace alloys, their fatigue behavior, and protective surface coatings. His interdisciplinary research directly contributes to aerospace innovation, industrial efficiency, and materials durability, aligning with key global technological priorities. His blend of practical application, innovation, and mentorship excellence makes him highly suitable for this recognition. Yes, Mr. Peng Zhang is highly suitable for the Best Researcher Award. His impactful, application-driven research in mechanical and aerospace materials, proven leadership in national-level projects, and consistent scholarly output reflect a researcher of high caliber. His achievements demonstrate not only innovation but also real-world relevance, positioning him as an emerging leader in mechanical engineering research.

🎓Education:

Peng Zhang obtained his Doctorate in Aerospace Manufacturing Engineering from Nanjing University of Aeronautics and Astronautics, a leading institution in aerospace innovation in China. His academic training focused on advanced forming technologies, metal processing, and material behavior under extreme conditions, equipping him with deep theoretical insight and practical expertise in mechanical and materials engineering. Prior to his doctoral studies, he completed his undergraduate and master’s degrees in mechanical engineering-related disciplines, building a strong foundation in mechanical design, thermal sciences, and manufacturing techniques. His academic career has emphasized applied research with industry relevance, particularly in the area of metal forming, alloy development, and surface coating technologies. His educational background bridges the gap between academic excellence and industrial application, preparing him to mentor students effectively and conduct high-impact research.

🏢Work Experience:

Peng Zhang began his career as a technician in a military aircraft assembly plant, gaining hands-on exposure to the complexities of aerospace-grade manufacturing. This experience fueled his academic pursuit in aerospace manufacturing, culminating in a doctorate and current role as a tutor and researcher at Anhui University of Technology. He is actively involved in several ongoing and completed research projects related to hot forming, high-cycle fatigue resistance, cryogenic steel processing, and optoelectronic service monitoring systems. As the principal investigator on multiple projects, he has successfully combined theoretical knowledge with practical engineering to improve industrial forming precision and product performance. He brings both technical depth and instructional experience, as demonstrated by his recognition as an “Excellent Instructor” in two consecutive academic years. His work straddles both teaching and research, enriching the academic environment and contributing to industrial advancements.

🏅Awards: 

Peng Zhang has been recognized for his academic and instructional excellence, receiving the “Excellent Instructor” award in the 2022–2023 and 2023–2024 academic years at Anhui University of Technology. These honors reflect his commitment to mentorship, student development, and pedagogical excellence. His research achievements, including more than 10 SCI publications, 2 invention patents, and a software copyright, showcase his innovative contributions to material forming and failure behavior. As a project leader, he has consistently secured funding for advanced research in hot forming technologies, high-precision alloy treatment, and optoelectronic monitoring systems. His awards validate both his teaching capabilities and research leadership, marking him as a rising figure in the mechanical and aerospace materials domain. He is highly regarded by peers and students alike, and his work continues to have a meaningful impact both within the university and in applied engineering industries.

🔬Research Focus:

Peng Zhang’s research focuses on high-performance precision forming of light alloys such as aluminum-lithium (Al-Li) alloys, which are widely used in aerospace applications. He specializes in synchronous quenching hot forming—a novel approach that simultaneously enhances forming accuracy and mechanical performance. His work also delves into the high-cycle fatigue resistance and service failure behavior of advanced alloys, essential for structural integrity in aviation. Additionally, Peng is exploring surface engineering, including superhydrophobic protective coatings for aviation alloys, aiming to improve corrosion resistance and durability. His ongoing projects include studies on cryogenic steel head forming, optoelectronic real-time monitoring systems, and electrically assisted forming technologies, positioning him at the cutting-edge intersection of materials science, mechanical design, and industrial application. Through his integrative research, he contributes significantly to advancements in next-generation manufacturing processes and smart engineering systems.

Publication Top Notes:

1.Title: Effect of the Hot Forming with the Synchronous Quenching Process on Forming Accuracy and Microstructure of the 2A97 Al-Li Alloy
Authors: Peng Zhang, Anqiang Zhu, Yuchuan Lei, Huiting Wang, Benqi Jiao
2.Title: Effect of the Hot Forming with Synchronous Quenching Process on High Cycle Fatigue Properties of the 2A97 Al-Li Alloy
Authors: Peng Zhang, Anqiang Zhu, Huiting Wang, Qifeng Niu, Jiangtao Qi
Citations: 5 (as of May 2025)

Assoc. Prof. Dr. Hexin Zhang | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Hexin Zhang | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Hexin Zhang , Materials Chemistry ,  Harbin Engineering University, China

Dr. Hexin Zhang is an Associate Professor and Doctoral Supervisor at the School of Materials Science and Chemical Engineering, Harbin Engineering University. She holds a Doctorate in Engineering and has developed a robust academic profile in high-temperature materials and additive manufacturing. With over 60 peer-reviewed SCI-indexed publications and five invention patents, Dr. Zhang’s work significantly contributes to the field of advanced alloys and composite materials. She has successfully led numerous prestigious projects funded by the National Natural Science Foundation of China and other provincial and institutional bodies. As a guest editor for Metals and a senior member of the Chinese Society of Composite Materials, she plays an influential role in shaping research directions. Her ongoing projects involve cutting-edge research in nano-TiC reinforced molybdenum-based superalloys. Her leadership extends to military-grade materials research, and she currently spearheads a multi-million-yuan defense technology initiative with wide application potential in marine gas turbines.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Hexin Zhang is an Associate Professor and Doctoral Supervisor at Harbin Engineering University. She holds a Doctorate in Engineering and has extensive expertise in high-temperature composite materials, superalloys, and additive manufacturing—fields of critical importance in advanced materials research.With over 60 SCI-indexed publications, 5 invention patents, and 2 authored monographs, Dr. Zhang has demonstrated consistent and significant contributions to materials science. Her work addresses both fundamental science and industrial application challenges, particularly in marine gas turbines.She serves as Guest Editor for the journal Metals, is a Senior Member of the Chinese Society for Composite Materials, and holds leadership roles in multiple national professional organizations.Dr. Hexin Zhang’s exceptional track record in high-impact research, leadership in national-level projects, patent portfolio, and editorial and professional service make her a standout candidate for the “Best Researcher Award.” Her contributions align well with the award’s objective of honoring researchers who exhibit innovation, leadership, and societal impact through their work.

🎓Education:

Dr. Hexin Zhang pursued her Doctorate in Engineering with a specialization in materials science, focusing on the mechanical behavior and processing of high-temperature alloys. Her academic training emphasized advanced manufacturing techniques including additive manufacturing (AM) and laser-based fabrication technologies. Her graduate work laid the foundation for exploring novel metal matrix composites and developing expertise in microstructural analysis, thermal stability, and mechanical performance enhancement under extreme conditions. She was trained in a multidisciplinary environment, combining theoretical materials science with practical engineering and thermodynamic modeling. As a part of her academic journey, she engaged in collaborative lab work, conference presentations, and published extensively in SCI-indexed journals, honing both technical skills and academic writing. Her formal education and consistent excellence have positioned her as a specialist in nickel-based and molybdenum-based superalloys, enabling her to tackle real-world challenges in aerospace and marine turbine applications.

🏢Work Experience:

Dr. Zhang currently serves as Associate Professor and Doctoral Supervisor at Harbin Engineering University. With extensive experience leading and contributing to key research projects, she has spearheaded over ten major scientific initiatives, including two funded by the National Natural Science Foundation of China and one basic research project targeting the processing of molybdenum-based materials. She has published over 60 high-impact SCI papers, secured 5 national patents, and authored 2 technical monographs. As the principal investigator of a military-focused project supported by the Central Military Commission, she managed a 2-million-yuan segment of a larger 7.5-million-yuan initiative. In addition to her research contributions, she serves as a guest editor for the journal Metals and has held important roles in several academic committees. Her hands-on expertise covers nano-reinforced materials, additive manufacturing, and failure analysis under thermo-mechanical fatigue.

🏅Awards: 

Dr. Hexin Zhang has received multiple accolades for her contributions to materials science and engineering. She has been honored with competitive research grants from the National Natural Science Foundation of China, a testament to her innovative work in the field. She also serves in distinguished capacities including Senior Member of the Chinese Society of Composite Materials and Director of the Ecological Civilization Branch of the China Association of Higher Education. In recognition of her academic leadership and commitment to advancing materials research, she was appointed as a Member of the Materials Gene Engineering Expert Committee of the National Materials and Devices Scientists Think Tank. Additionally, her editorial role for Metals highlights her influence in peer-reviewed publishing. Her work in defense applications of high-temperature materials has further earned her distinction in government and institutional circles.

🔬Research Focus:

Dr. Zhang’s research focuses on the design, processing, and performance of nickel-based and molybdenum-based super alloys, especially for high-temperature and corrosive environments. She specializes in additive manufacturing techniques, particularly laser selective melting and nano-TiC reinforcement, to enhance mechanical strength and thermal resistance. Her investigations include thermo-mechanical fatigue, oxidation resistance, and hot corrosion mechanisms, crucial for the development of next-generation aerospace and marine turbine materials. A highlight of her work is the innovation in laser forming of Mo-based superalloys, solving issues like brittle fracture at room temperature. Her projects, including those funded by the Central Military Commission, involve cutting-edge structural materials aimed at military propulsion systems. Dr. Zhang also integrates computational modeling and experimental validation to understand microstructural evolution and failure modes under extreme conditions.

Publication Top Notes:

1. Impact of Secondary γ’ Precipitate on the High-Temperature Creep Properties of DD6 Alloy

2. Microstructural Evolution and Its Effect on Tensile Properties of 10Cr-2W-3Co Martensitic Steel During Thermal Exposure

3. Microstructure Evolution and Mechanical Properties of Ti-6Al-4V Alloy Fabricated by Directed Energy Deposition Assisted with Dual Ultrasonic Vibration

Citations: 2

4. Effect of Powder Particle Size on the Microscopic Morphology and Mechanical Properties of 316L Stainless Steel Hollow Spheres

5. Study on Hot-Compressive Deformation Behavior and Microstructure Evolution of 12Cr10Co3MoWVNbNB Martensitic Steel

6. Lattice Disorder Driving the Electron Migration from Tetracycline to TiO₂ via Ligand-to-Metal Charge Transfer to Generate Superoxide Radical

Citations: 2

7. Hydrangea-like MnO₂@Sulfur-Doped Porous Carbon Spheres with High Packing Density for High-Performance Supercapacitor

Citations:

8. La Doped-Fe₂(MoO₄)₃ with the Synergistic Effect Between Fe²⁺/Fe³⁺ Cycling and Oxygen Vacancies Enhances the Electrocatalytic Synthesizing NH₃

9. Influence of Aging Heat Treatment on Microstructure and Mechanical Properties of a Novel Polycrystalline Ni₃Al-Based Intermetallic Alloy

Citations:

Prof. Reine NEHME | Analytical Chemistry | Best Researcher Award

Prof. Reine NEHME | Analytical Chemistry | Best Researcher Award

Prof. Reine NEHME, Analytical Chemistry , Head of analytical team at University of Orléans, ICOA UMR7311, France

Prof. Reine Nehmé is a renowned French scientist and Professor of Analytical Sciences at the University of Orléans, where she leads the “Analytical Strategies, Affinities and Bioactives” team at ICOA. With over 15 years of academic and research experience, she specializes in advanced separation techniques, bioanalysis, and microfluidics. She is deeply involved in both teaching and scientific governance—serving on multiple university and national scientific committees. Prof. Nehmé also contributes to scientific advancement as a supervisor of numerous Ph.D. and post-doctoral researchers and by coordinating key national research projects funded by ANR and regional bodies. Her prolific contributions to analytical chemistry are reflected in her numerous publications, particularly in the areas of enzymatic assays, capillary electrophoresis, and bioactive compound analysis. With a strong leadership role in Afsep and her involvement in high-level academic administration, she is recognized as a leading figure in analytical chemistry in France and Europe.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Nehmé holds a Ph.D. in Analytical Chemistry from the University of Montpellier (2008) and an HDR (Accreditation toSupervise Research) from the University of Orléans (2016). Her academic background demonstrates deep expertise and a commitment to high-level scientific scholarship. As a professor and group leader at ICOA, University of Orléans, she leads the “Analytical Strategies, Affinities and Bioactives” team, driving impactful research in analytical sciences, especially in bioanalysis, separative techniques, capillary electrophoresis, microfluidics, and mass spectrometry. Prof. Nehmé is deputy treasurer and a management committee member of the Capillary Electrophoresis Group of Afsep. She holds leadership roles at her university and is actively engaged in curriculum design, evaluation panels, and scientific committees. Prof. Reine Nehmé exemplifies the ideal profile for a “Best Researcher Award”: a high-impact scientist, strategic research leader, dedicated educator, and committed scientific community member. Her strong publication record, funded projects, mentoring, and institutional service collectively highlight her as a trailblazer in analytical chemistry. She fully deserves recognition through such a prestigious award.

🎓Education:

Prof. Reine Nehmé earned her Ph.D. in Analytical Chemistry from the University of Montpellier in 2008, following her Master’s degree (Master 2) in the same field from the same institution in 2005. Demonstrating her continued academic excellence and expertise, she received her Habilitation to Supervise Research (HDR) from the University of Orléans in 2016. This qualification represents the highest academic degree in France and reflects her capacity to independently lead doctoral research and large-scale scientific projects. Her academic training laid a robust foundation in analytical methodologies, chromatographic techniques, and advanced spectroscopy. These qualifications have enabled her to contribute extensively to the development of innovative analytical tools and methods in environmental, biological, and pharmaceutical research. Her educational background not only established her scientific depth but also positioned her to take on leadership and mentoring roles across both academic and research platforms.

🏢Work Experience:

Prof. Nehmé began her academic journey at the University of Orléans in 2008 as a Temporary Teaching and Research Assistant (ATER). She advanced to Associate Professor in 2009 and was promoted to Professor in 2019. Over the years, she has held multiple leadership roles, including Head of the Analytical Chemistry Department and Coordinator of the Professional License program in Chemistry at IUT Chimie d’Orléans. She has been a member of the laboratory’s scientific council since 2017, and also serves on the Commission of Disciplinary Experts. As an active educator, she teaches a range of courses in analytical sciences including electrochemistry, chromatography, mass spectrometry, and microfluidics. In research, she has successfully supervised 6 Ph.D. students (2 ongoing) and multiple post-doctoral and master’s interns. Her contributions extend to national committees such as Afsep’s CE group, where she has served as Deputy Treasurer since 2021.

🏅Awards: 

While specific awards are not explicitly listed, Prof. Reine Nehmé’s honors are evidenced by her numerous leadership and elected roles. She received the Habilitation to Supervise Research (HDR), a distinguished recognition in France for scholarly excellence. Her long-standing position on the scientific council of the ICOA laboratory and as a Commission Expert in disciplinary affairs at the University of Orléans speaks to her academic credibility. She was elected to the Management Committee of the CE group of Afsep in 2017 and appointed as Deputy Treasurer in 2021, underlining national recognition by her peers. She has consistently been entrusted with leadership in nationally funded research programs by ANR and regional agencies, confirming her scientific standing and project leadership ability. Her active role in supervising doctoral candidates and international collaborations further affirms her status as a respected figure in analytical sciences.

🔬Research Focus:

Prof. Nehmé’s research centers on analytical sciences, particularly in capillary electrophoresis, mass spectrometry, and microscale thermophoresis for studying molecular interactions. Her projects frequently explore bioanalysis, enzyme kinetics, and natural product evaluation. She leads or participates in numerous ANR-funded projects, including stapled peptide design, bioremediation via micromycetes, and enzyme behavior in crowded synthetic environments. A significant part of her work involves developing lab-on-a-chip (LoC) platforms for investigating target-ligand interactions at the single-cell level. She has also contributed to the miniaturization of enzymatic assays, passive sampling techniques for water analysis, and electrochemical sensors for environmental monitoring. Prof. Nehmé integrates separation sciences with biology and materials chemistry, bridging analytical method development with real-world biological and environmental challenges. Her interdisciplinary research fosters innovations in diagnostics, therapeutic monitoring, and ecological risk assessment, marking her as a pioneer in translating analytical chemistry into functional tools for bioactive discovery and environmental stewardship.

Publication Top Notes:

1. Using CE to Confirm the Activity of Fluorescent miRFP670-LIMK1 Protein Produced for MST Assays Directly in Cell Lysate

2. The Antimicrobial Activity of ETD151 Defensin is Dictated by the Presence of Glycosphingolipids in the Targeted Organisms

3. Glycolipid and Lipopeptide Biosurfactants: Structural Classes and Characterization—Rhamnolipids as a Model

4. Nutraceutical and Cosmetic Applications of Bioactive Compounds of Saffron (Crocus Sativus L.) Stigmas and Its By-products

5. Antioxidant and Anti-lipase Capacities from the Extracts Obtained from Two Invasive Plants: Ambrosia artemisiifolia and Solidago canadensis

6. Nutraceutical Capacities of Extracts from the Invasive Plants Ambrosia artemisiifolia and Solidago canadensis

7. Screening and Evaluation of Dermo-Cosmetic Activities of the Invasive Plant Species Polygonum cuspidatum

8. Biosurfactant-Producing Mucor Strains: Selection, Screening, and Chemical Characterization

9. Capillary Electrophoresis for Enzyme-Based Studies: Applications to Lipases and Kinases

10. Correction to: Reproducibility and Accuracy of Microscale Thermophoresis in the NanoTemper Monolith: A Multi Laboratory Benchmark Study

11. Design, Synthesis and SAR in 2,4,7-Trisubstituted Pyrido[3,2-d]Pyrimidine Series as Novel PI3K/mTOR Inhibitors

 

 

Assist. Prof. Dr. Changtong YANG | Medicinal Chemistry | Best Researcher Award

Assist. Prof. Dr. Changtong YANG | Medicinal Chemistry | Best Researcher Award

Assist. Prof. Dr. Changtong YANG , Medicinal Chemistry,  Radiochemist/Chemist at Singapore General Hospital, Singapore

Dr. Chang-Tong Yang is a renowned radiochemist based in Singapore, specializing in radiopharmaceuticals and molecular imaging. He currently serves as an Assistant Professor in the Radiological Science Academic Clinical Programme at Duke-NUS Medical School and as a Radiochemist at Singapore General Hospital. With over two decades of experience, Dr. Yang has made significant contributions to the development of nuclear imaging probes and radiolabeled therapeutics. His research career spans prestigious institutions, including Nanyang Technological University and A*STAR. Dr. Yang is internationally recognized for advancing nanomaterial probes and novel radiolabeling strategies. He has authored impactful publications in top-tier journals, reflecting his innovation in theranostics, radiochemistry, and nanomedicine. With a strong background in academic and clinical research, Dr. Yang continues to shape the future of molecular imaging for personalized medicine. His global education and interdisciplinary expertise make him a leading figure in translational radiochemistry research.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Chang-Tong Yang exemplifies the qualities of a “Best Researcher Award” recipient. His innovative contributions to radiochemistry and molecular imaging, combined with a strong publication record, interdisciplinary leadership, and global training, establish him as a trailblazer in translational medical research. His work is not only scientifically rigorous but also clinically impactful, directly advancing the field of nuclear medicine. Therefore, he is highly recommended for recognition as a top-tier researcher deserving of this award.

🎓Education:

Dr. Chang-Tong Yang received his Ph.D. in Chemistry from the National University of Singapore (1998–2002), where he laid the foundation for his career in radiochemistry. He further enhanced his expertise with postdoctoral fellowships at three prestigious U.S. institutions: University of Iowa (2003–2005), University of Michigan (2005–2006), and Purdue University (2006–2007), focusing on chemistry and health sciences. These formative years provided Dr. Yang with a multidisciplinary perspective in synthetic chemistry, radiopharmaceutical development, and imaging sciences. His international training exposed him to cutting-edge methodologies and collaborative projects across biomedical research, which he has since translated into innovative imaging solutions. The combination of rigorous education and hands-on research across these top institutions shaped his ability to bridge fundamental science with clinical applications, particularly in nuclear medicine and molecular imaging.

🏢Work Experience:

Dr. Chang-Tong Yang brings extensive professional experience across both academic and clinical research settings. He is currently an Assistant Professor at Duke-NUS Medical School (2020–present) under the Radiological Science ACP, focusing on radiopharmaceutical sciences. Concurrently, he serves as a Radiochemist at Singapore General Hospital (2018–present) in the Department of Nuclear Medicine & Molecular Imaging, where he translates research into clinical practice. Prior to that, he worked as a Senior Scientist at Nanyang Technological University (2014–2018), contributing to molecular imaging initiatives within the Lee Kong Chian School of Medicine. He also held a Senior Scientist role at A*STAR’s Singapore Bio-Imaging Consortium (2007–2014), leading various radiochemistry research programs. Across these roles, Dr. Yang has developed and validated imaging agents, optimized radiolabeling techniques, and led translational studies that impact diagnostic imaging and therapeutic strategies. His multidisciplinary engagements underscore his pivotal role in bridging chemistry and medicine.

🏅Awards: 

While specific awards are not listed in the available data, Dr. Chang-Tong Yang’s extensive contributions to radiopharmaceuticals and molecular imaging reflect a highly respected and impactful career. His appointments at top institutions such as Duke-NUS, A*STAR, and Singapore General Hospital indicate peer recognition and institutional trust. His publications in reputed journals such as Molecules, Nanomaterials, and Drug Discovery Today highlight his standing in the scientific community. His ongoing leadership roles and collaboration with clinicians further underscore professional acknowledgment of his expertise. Dr. Yang’s selection for multiple postdoctoral positions at prestigious U.S. institutions—University of Iowa, University of Michigan, and Purdue University—suggests early recognition of his academic promise. His interdisciplinary contributions to nuclear medicine, nanotechnology, and molecular imaging may have earned him internal institutional awards, research grants, and invitations to present at scientific forums, which commonly accompany such roles.

🔬Research Focus:

Dr. Chang-Tong Yang’s research is centered on radiopharmaceutical science, with a strong emphasis on the development of molecular imaging probes and radiolabeled nanomaterials for diagnostic and therapeutic applications. His expertise lies in designing novel radioisotope-labeled compounds for use in nuclear medicine imaging techniques such as PET and SPECT, targeting cancer and other pathological conditions. He is particularly interested in enhancing the in vivo behavior of nanomaterial-based agents, improving tumor targeting, retention, and safety. Dr. Yang also explores the biocompatibility and stability of these probes, including how formulation and labeling protocols influence their function. His translational work bridges laboratory innovations with clinical imaging requirements, enabling personalized diagnostics and theranostic approaches. Furthermore, he investigates radiochemical compatibility in clinical settings, such as the mixing of imaging agents with contrast media, which supports safe and effective imaging protocols. His work integrates chemistry, imaging, and clinical practice seamlessly.

Publication Top Notes:

1. pH-Induced In Situ Aggregation of Cu₂₋ₓSe-POED with Extended Tumor Retention for Enhanced Chemodynamic/Photothermal Therapy

2. Standard Radio-Iodine Labeling Protocols Impaired the Functional Integrity of Mesenchymal Stem/Stromal Cell Exosomes

3. Radiolabeled Liposomes for Nuclear Imaging Probes

4. Radiochemical Feasibility of Mixing of 99mTc-MAA and 90Y-Microspheres with Omnipaque Contrast

5. Nanomaterial Probes for Nuclear Imaging

6. Positron Emission Tomographic Imaging in Drug Discovery

7. An In Vivo Study of a Rat Fluid-Percussion-Induced Traumatic Brain Injury Model with [11C]PBR28 and [18F]flumazenil PET Imaging

8. Gadolinium-Based Bimodal Probes to Enhance T1-Weighted Magnetic Resonance/Optical Imaging

9. Activatable Cell-Penetrating Peptide Conjugated Polymeric Nanoparticles with Gd-Chelation and Aggregation-Induced Emission for Bimodal MR and Fluorescence Imaging of Tumors

10. Dealing with PET Radiometabolites

11. PET-MR and SPECT-MR Multimodality Probes