Prof. Dr. Xuanmeng He | Inorganic Chemistry | Best Researcher Award

Prof. Dr. Xuanmeng He | Inorganic Chemistry | Best Researcher Award

Prof. Dr. Xuanmeng He , Inorganic Chemistry , Laboratory Chief at Shaanxi University of Science and Technology, China

Prof. He Xuanmeng is a distinguished faculty member at the School of Materials Science and Engineering, Shaanxi University of Science and Technology. With a profound dedication to material innovation and functional nanomaterials, he has risen through academic ranks from lecturer to full professor since joining the university in 2008. His research primarily focuses on energy-related materials, including high-entropy oxides, electrocatalysts for oxygen evolution reactions (OER), and advanced color pigments. A prolific researcher, Prof. He has authored several impactful publications in reputed journals like Journal of Alloys and Compounds, ACS Applied Nano Materials, and Journal of Colloid and Interface Science. His interdisciplinary approach bridges inorganic chemistry, electrochemistry, and materials engineering. Through years of rigorous academic training and research, he has emerged as a key contributor to China’s materials science domain. Prof. He continues to inspire future scientists through both his scholarly work and academic leadership.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Prof. He Xuanmeng, currently serving as a Professor at the School of Materials Science and Engineering, Shaanxi University of Science and Technology, exemplifies all the qualities befitting a recipient of the “Best Researcher Award”. His academic path, entirely pursued at Shaanxi University, reflects both loyalty and progressive excellence in materials science. With over 15 years of research experience, he has consistently advanced from lecturer to full professor, demonstrating a strong trajectory of academic growth and leadership. Prof. He Xuanmeng is a highly qualified and deserving nominee for the “Best Researcher Award”.  Honoring him with this award would be a recognition of research excellence, sustained innovation, and impactful scholarship. His research output includes high-impact publications in reputed international journals such as ACS Applied Nano Materials, Journal of Alloys and Compounds, and Journal of Colloid and Interface Science.Prof. He’s ability to integrate multifunctionality, sustainability, and performance optimization in material design stands out. His interdisciplinary work impacts both the energy sector and ceramic industries, illustrating his broad contribution to science and technology. His work on high-entropy oxides, energy electrocatalysts, Li-S battery materials, and environmentally friendly ceramic pigments showcases innovation, application relevance, and scientific depth. Moreover, his expertise bridges nanomaterials, electrochemistry, and optical engineering, aligning with contemporary global research priorities.

🎓Education:

Prof. He Xuanmeng’s academic journey is deeply rooted in Shaanxi University of Science and Technology, where he pursued all three degrees in materials science. He earned his Ph.D. in Materials in 2018, focusing on advanced material synthesis and applications. Earlier, he completed his Master’s in Materials Physics and Chemistry in 2008, laying the foundation for his work on functional coatings and hybrid materials. His undergraduate degree, completed in 2005, was in Inorganic Non-metallic Materials Engineering—a program emphasizing ceramics, pigments, and structural materials. This consistent academic path has endowed him with a deep, layered understanding of both the theoretical and applied aspects of materials science. The continuity of education at the same institution reflects his long-standing commitment to its academic culture and research goals. His comprehensive training across materials chemistry and engineering now informs his innovative research in energy materials and ceramic-based nanostructures.

🏢Work Experience:

Prof. He Xuanmeng began his professional career in 2008 as a Lecturer at Shaanxi University of Science and Technology. With a passion for research and academic excellence, he was promoted to Associate Professor in 2010, a role he held for eight years. In 2018, he was elevated to the position of Professor in the School of Materials Science and Engineering. Over more than 15 years of service, he has been instrumental in shaping the department’s research direction, focusing on functional nanomaterials and energy applications. He has successfully mentored graduate students, led research initiatives, and published extensively. His multidisciplinary collaborations and expertise in high-entropy oxides, pigment design, and electrode materials have significantly contributed to the university’s reputation in materials science. Prof. He’s progression through academic ranks highlights his dedication to teaching, research, and scientific advancement in the field of advanced functional materials.

🏅Awards: 

While specific awards and honors were not listed in the resume provided, Prof. He Xuanmeng’s academic journey and publication record strongly indicate a career marked by peer recognition and scholarly impact. His multiple first-author papers in top-tier journals like ACS Applied Nano Materials, Journal of Alloys and Compounds, and Journal of Colloid and Interface Science reflect high academic merit. He likely has received internal recognition for excellence in teaching and research within Shaanxi University of Science and Technology. Additionally, contributing to high-impact studies in areas like oxygen evolution reaction and Li-S battery applications suggests involvement in nationally or provincially funded research projects. Given his track record and position, he may also be serving as a reviewer or editorial board member for reputed journals in materials science. Further details of awards can be included upon availability to comprehensively highlight his career achievements.

🔬Research Focus:

Prof. He Xuanmeng’s research focuses on advanced functional materials with applications in energy conversion, storage, and optical properties. He specializes in the synthesis and design of high-entropy oxides, spinel-type nanostructures, and graphene-composite hybrids for electrocatalysts, particularly the oxygen evolution reaction (OER). His work also explores Li-S battery materials, utilizing hollow microspheres and reduced graphene oxide for sulfur hosting. Additionally, Prof. He has made significant contributions to the development of ceramic pigments with core-shell structures for enhanced coloration and NIR reflectance, offering sustainable alternatives with reduced heavy metal content. His interdisciplinary approach bridges material chemistry, solid-state physics, and energy applications, aiming to develop cost-effective and high-performance materials. His research outputs demonstrate innovation in structural control, electronic modulation, and multifunctionality in both energy and optical domains, aligning with global goals for sustainable energy and environmental-friendly technologies.

Publication Top Notes:

1. Enhanced Multienzyme‑like and Antibacterial Activity by Copper Atomically Dispersed into Molybdenum Disulfide for Accelerated Wound Healing

2. Carbon Cloth Supporting (CrMnFeCoCu)₃O₄ High‑Entropy Oxide as Electrocatalyst for Efficient Oxygen Evolution Reactions

Citations: 2

3. Highly Stable Hierarchical Core‑Shell Structure CuMn₀.₅Co₂O₄@CC with Self‑Regulating Electronic and Conductivity for Its Improved OER Performance

Citations: 5

4. Nanocrystalline (CrMnFeCoCu)₃O₄ High‑Entropy Oxide for Efficient Oxygen Evolution Reaction

Citations: 15

Assist. Prof. Dr. Ohyla El gammal | Inorganic Chemistry | Inorganic Chemistry Award

Assist. Prof. Dr. Ohyla El gammal | Inorganic Chemistry | Inorganic Chemistry Award

Assist. Prof. Dr. Ohyla El gammal , Menofia university , Egypt

Dr. Ohyla Ahmed Abd El-Latif El-Gammal is an Egyptian inorganic chemist specializing in metal complexes, macrocyclic synthesis, and their biomedical applications. She earned her Ph.D. in Inorganic Chemistry from Menoufia University in 2014 and has extensive experience in academia, having served as a lecturer at Najran University, Saudi Arabia, and Menoufia University, Egypt. Her research explores spectroscopic characterization, γ-irradiation effects, and the biological activities of metal complexes. She has attended numerous international conferences and workshops, contributing to scientific discussions on materials science, analytical chemistry, and bioinorganic applications. Dr. Ohyla is actively involved in scientific publishing, having authored several high-impact journal articles. She is also dedicated to mentoring students and advancing knowledge in transition metal chemistry.

Professional Profile:

Scopus 

Summary of Suitability for Award:

Ohyla Ahmed Abd El-Latif El-Gammal is a highly suitable candidate for the “Inorganic Chemistry Award” due to her extensive contributions to the field of inorganic chemistry, particularly in the synthesis and characterization of metal complexes with biomedical applications. Her research focuses on developing innovative macrocyclic ligands, Schiff base complexes, and transition metal coordination compounds. She has made significant advancements in understanding the structural and functional properties of metal-based drugs, emphasizing their potential as anticancer, antimicrobial, and antioxidant agents.Ohyla El-Gammal is an excellent candidate for the “Inorganic Chemistry Award.” Her innovative work in metal complex synthesis, combined with her significant impact on medicinal and environmental chemistry, aligns perfectly with the award’s objectives. Her dedication to advancing inorganic chemistry through both theoretical and applied research makes her a deserving recipient of this prestigious recognition.

🎓Education:

Ohyla Ahmed Abd El-Latif El-Gammal obtained her B.Sc. in Chemistry from the Faculty of Science at Menoufia University, Egypt. She pursued postgraduate studies in Chemistry, further deepening her expertise in the field. She earned her M.Sc. in Inorganic Chemistry, focusing on the synthesis and characterization of metal complexes. Her academic journey culminated in a Ph.D. in Inorganic Chemistry, where she explored the design and application of macrocyclic metal complexes. Additionally, she obtained an ICDL certification, demonstrating her proficiency in information and communication technology. Throughout her education, she developed a strong foundation in coordination chemistry, spectroscopic techniques, and materials science, which later shaped her research interests in anticancer, antioxidant, and antimicrobial studies. Her educational background provided her with the necessary expertise to contribute significantly to the field of inorganic chemistry, particularly in the synthesis of innovative metal complexes with potential biomedical applications.

🏢Work Experience:

Ohyla El-Gammal has extensive experience in academia, serving as a Lecturer in Chemistry at various institutions. She has taught undergraduate courses in inorganic chemistry, transition metals, quantum chemistry, and analytical techniques. Her teaching career includes positions at Najran University, Saudi Arabia, where she contributed to the education of students in the fields of lanthanides, actinides, and phase chemistry. She also served as a faculty member at Northern Border University, Rafha, Saudi Arabia, specializing in principal group chemistry and spectroscopic methods. Additionally, she has been actively involved in laboratory-based instruction, focusing on qualitative and quantitative analytical chemistry. Apart from teaching, she has participated in numerous workshops and conferences, enhancing her expertise in scientific research and publishing. Her experience spans both theoretical and practical aspects of chemistry, making her a well-rounded academic professional with a strong commitment to research and education.

🏅Awards: 

Ohyla El-Gammal has received multiple accolades in recognition of her contributions to chemistry and academia. She has been honored for her participation in prestigious international scientific conferences and workshops, where she presented her research on metal complexes and their biomedical applications. She has actively engaged in high-impact research collaborations, earning recognition for her significant contributions to inorganic chemistry. She has also been acknowledged for her dedication to teaching and mentoring students, ensuring excellence in chemical education. Her involvement in major research projects and her participation in international scientific academies have further established her as a distinguished researcher. In addition, her research on macrocyclic complexes and their anticancer properties has been widely appreciated, leading to invitations to speak at global scientific forums. Her contributions to scientific publishing, along with her active role in international webinars, have cemented her reputation as a dedicated and accomplished chemist.

🔬Research Focus:

Ohyla El-Gammal’s research interests lie in inorganic chemistry, particularly in the synthesis and characterization of metal complexes with biomedical applications. She specializes in the development of macrocyclic ligands, transition metal coordination compounds, and Schiff base complexes. Her work explores the spectroscopic characterization of newly synthesized compounds, focusing on their structural and functional properties. She investigates the impact of γ-irradiation on metal complexes, studying their stability and enhanced biological activity. Her research extends to anticancer, antioxidant, and antimicrobial activities, aiming to develop novel therapeutic agents. She also works on improving the surface morphology of metal complexes for enhanced pharmaceutical applications. Her studies contribute significantly to the understanding of metal-based drugs and their potential in medicine. By integrating spectroscopic analysis and computational modeling, she continues to advance knowledge in the field of inorganic chemistry, contributing to the development of innovative materials for biomedical and environmental applications.

Publication Top Notes:

Synthesis, characterization, molecular docking and in vitro antibacterial assessments of anthracene-bis(hydrazine)thiosemicarbazide complexes with Co(II), Ni(II) and Cu(II) ions

Authors: O.A. El-Gammal, A.A. El-Bindary, A.M. Eldesoky, I.M. Abd Al-Gader

Journal: Journal of Molecular Structure

Year: 2025

Citations: 1

DNA binding, potential anticancer, antioxidant and molecular docking simulations of some isonicotinohydrazide metal complexes with the impact of high energy γ-rays irradiation doses: Synthesis and structural characterization

Authors: O.A. El-Gammal, H.A. El-Boraey, H. Alshater

Journal: Journal of Molecular Structure

Year: 2024

Citations: 1

Bishydrazone ligand and its Zn-complex: synthesis, characterization and estimation of scalability inhibition mitigation effectiveness for API 5L X70 carbon steel in 3.5% NaCl solutions

Authors: O.A. El-Gammal, D.A. Saad, M.N. El-Nahass, K. Shalabi, Y.M. Abdallah

Journal: RSC Advances

Year: 2024

Synthesis, structural characterization, antioxidant, cytotoxic activities and docking studies of schiff base Cu(II) complexes

Authors: G.N. Rezk, O.A. El-Gammal, S.H. Alrefaee, A.A. El-Bindary, M.A. El-Bindary

Journal: Heliyon

Year: 2023

Citations: 20

Synthesis, spectral, DFT, intrinsic constant of DNA binding and antioxidant activity of vanadyl (IV)2+^2+ complexes of a symmetrical bisthiosemicarbazides

Authors: O.A. El-Gammal, M.A.R. El-Nawawy, H.A. Gomaa, B.M. Ismael

Journal: Journal of Molecular Structure

Year: 2023

Citations: 4

Divalent transition metal complexes of multidentate nitrogen, oxygen and sulfur containing ligand: Design, spectroscopic, theoretical molecular modeling and antioxidant-like activity

Authors: B.M. Ismael, M.A.R. El-Nawawy, H.A. Gomaa, O.A. El-Gammal

Journal: Egyptian Journal of Chemistry

Year: 2022

 

 

 

 

Dr. SAJAL KUNDU | Inorganic Chemistry | Best Researcher Award

Dr. SAJAL KUNDU | Inorganic Chemistry | Best Researcher Award

Dr. SAJAL KUNDU , NIT-AGARTALA , India

Dr. Sajal Kundu is an accomplished chemist specializing in organometallic chemistry. He obtained his Ph.D. in 2015 from North-Eastern Hill University, Shillong , under the guidance of Prof. Tushar S. Basu Baul. His research focuses on synthesizing, characterizing, and studying the structural and optical properties of metal complexes, particularly zinc, cadmium, and mercury-based systems. He has extensive teaching experience, serving as an Assistant Professor at NIT Agartala and previously as a Guest Faculty at Sikkim University. His academic journey has been marked by prestigious awards, including the UGC-Meritorious Fellowship and the Dr. D.S. Kothari Postdoctoral Fellowship. He has participated in various national and international conferences and has contributed significantly to peer-reviewed journals. His expertise spans coordination chemistry, crystallography, and advanced spectroscopic techniques, making substantial contributions to inorganic chemistry  and medicinal chemistry.

Professional Profile :

Orcid

Scopus

Summary of Suitability for Award:

Dr. Sajal Kundu is an outstanding candidate for the “Best Researcher Award” due to his consistent and impactful contributions to organometallic chemistry. His research on metal complexes and their biological and photophysical properties has broad applications, making a significant impact on material science and medicinal chemistry. His extensive publication record, awards, and commitment to academic excellence position him as a leading scientist in his field. Dr. Sajal Kundu’s dedication to cutting-edge research, combined with his expertise in synthesis and characterization of metal complexes, makes him highly suitable for the “Best Researcher Award.” His scholarly achievements, innovative research contributions, and recognition at national and international levels validate his candidacy for this prestigious honor.

🎓Education:

Dr. Sajal Kundu pursued his academic journey at North-Eastern Hill University, Shillong. He earned his Ph.D. in Organometallic Chemistry (2015), focusing on the synthesis, structural characterization, and reactivity of zinc, cadmium, and mercury complexes with azo dyes. His doctoral research was conducted under the supervision of Prof. Tushar S. Basu Baul. Prior to his Ph.D., he obtained an M.Sc. in Chemistry (2007), graduating with first-class distinction. He completed his B.Sc. in Chemistry (2005) from the same institution, securing a first-class position. His educational background provided him with a strong foundation in inorganic chemistry , crystallography, and spectroscopy. During his doctoral studies, he worked extensively on luminescent materials, antimicrobial agents, and fluorescent properties of metal complexes. His academic excellence and research contributions have been recognized with various fellowships and awards, shaping his career as a leading researcher in organometallic chemistry.

🏢Work Experience:

Dr. Sajal Kundu has extensive teaching and research experience in chemistry. He currently serves as an Assistant Professor at NIT Agartala, where he teaches and supervises research in inorganic chemistry and organometallic chemistry. Previously, he worked as a Guest Faculty at Sikkim University (Feb 2015 – July 2015), where he taught advanced chemistry courses. His research experience includes a DST-sponsored project (2008-2009) focusing on coordination chemistry, luminescent materials, antimicrobial agents, and conducting polymers. Additionally, he has participated in numerous national and international conferences, presenting his work on metal complexes and their applications in medicinal and material chemistry. His expertise includes inert-atmosphere reactions, hydrothermal synthesis, purification techniques, and advanced spectroscopic methods such as NMR, ESI-MS, IR, UV, TGA, and Mössbauer Spectroscopy. His contributions to academia and research continue to impact the field of coordination and medicinal chemistry significantly.

🏅Awards: 

Dr. Sajal Kundu has been recognized with several prestigious awards and fellowships throughout his academic career. He was awarded the UGC-Meritorious Fellowship (2011) by the University Grants Commission, India, for his outstanding research contributions. Additionally, he received the Dr. D.S. Kothari Postdoctoral Fellowship, a highly competitive fellowship for postdoctoral researchers in India. His research work in coordination chemistry and material sciences has also been acknowledged through various project grants and travel awards. In recognition of his teaching excellence, he was appointed as a Guest Faculty at Sikkim University in 2015. His active participation in research projects, particularly in the synthesis and applications of metal complexes, has earned him accolades at national and international conferences. His contributions to academia, coupled with his commitment to advancing chemical sciences, have solidified his reputation as a distinguished researcher in organometallic chemistry.

🔬Research Focus:

Dr. Sajal Kundu’s research is centered on organometallic and coordination chemistry, with a particular emphasis on zinc, cadmium, and mercury complexes. His work involves the synthesis, structural characterization, and reactivity of these metal complexes, particularly those derived from azo dyes and Schiff bases. His research explores their potential applications in luminescent materials, antimicrobial agents, and conducting polymers. He has extensively studied the photophysical properties of metal complexes and their role in DNA interactions and tumor cell regulation. His expertise extends to crystallography, supramolecular aggregation, and various spectroscopic techniques, including NMR, UV-Vis, and Mössbauer spectroscopy. His investigations into the biological applications of metal-based complexes contribute significantly to medicinal chemistry, particularly in developing metal-based drugs. His interdisciplinary approach bridges inorganic chemistry with material science and biochemistry, making notable advancements in both fundamental and applied chemistry.

Publication Top Notes:

Synthesis, characterization, DFT and docking studies of tributyltin(IV) complex of 2-{4-hydroxy-3-[(2-carboxyphenylimino)methyl] phenylazo} benzoic acid

Authors: D. Chakraborty, J. De, S. Kundu, M. Roy, M. Saha

Journal: Journal of Coordination Chemistry

Year: 2024

Volume: 77

Issue: 12-14

Pages: 1667–1678

Citations: 0

Synthesis and structures of polynuclear organotin(IV) complexes of a polyaromatic carboxylate ligand and cytotoxic evaluation in tumor cell lines

Authors: T.S. Basu Baul, B. Hlychho, M.R. Addepalli, D. de Vos, A. Linden

Journal: Journal of Organometallic Chemistry

Year: 2023

Volume: 985

Article ID: 122592

Citations: 4

Synthesis, Spectral Studies and Antimicrobial Activity of Zinc(II) Azide Complexes with N,N-Donor and N,N,S-Donor Schiff Base Ligands Derived from 2-Pyridinecarboxaldehyde

Authors: S.L. Sunar, S. Kundu, K.S. Singh, S.S. Singh, M. Roy

Journal: Asian Journal of Chemistry

Year: 2023

Volume: 35

Issue: 1

Pages: 119–124

Citations: 0

Synthesis and Spectral Studies of Some Zn(II) Complexes with Substituted N,N-Donor Ligands Derived from Pyridine-2-carbaldehyde

Authors: S.L. Sunar, K.S. Singh, S. Kundu

Journal: Asian Journal of Chemistry

Year: 2020

Volume: 32

Issue: 1

Pages: 122–126

Citations: 1

Synthesis, characterization and antidiabetic activity of some water soluble Zn(II) complexes with (E)-N-(thiophen-2-ylmethylene)anilines

Authors: D. Paria, S. Kundu, K.K. Singh, S.S.K. Singh, K.S. Singh

Journal: Asian Journal of Chemistry

Year: 2018

Volume: 30

Issue: 5

Pages: 1115–1119

Citations: 6

Synthesis, characterization and antibacterial activity of some water soluble Zn(II) azide complexes with (E)-N-(thiophen-2-ylmethylene)anilines

Authors: D. Paria, S. Kundu, N.M. Devi, Ch.B. Singh, K.S. Singh

Journal: Journal of the Indian Chemical Society

Year: 2017

Volume: 94

Issue: 11

Pages: 1187–1194

Citations: 1

Insight into inhibition of the human amyloid beta protein precursor (APP: PDB ID 3UMI) using (E)-N-(pyridin-2-ylmethylene)arylamine (LR) models: Structure elucidation of a family of ZnX₂-LR complexes

Authors: T.S. Basu Baul, S. Kundu, P. Singh, Shaveta, M.F.C. Guedes Da Silva

Journal: Dalton Transactions

Year: 2015

Volume: 44

Issue: 5

Pages: 2359–2369

Citations: 12

Synthesis, structures, and spectroscopic properties of Hg(II) complexes of bidentate NN and tridentate NNO Schiff-base ligands

Authors: T.S. Basu Baul, S. Kundu, H. Höpfl, E.R.T. Tiekink, A. Linden

Journal: Journal of Coordination Chemistry

Year: 2014

Volume: 67

Issue: 6

Pages: 1061–1078

Citations: 12

Synthesis and characterization of some water soluble Zn(II) complexes with (E)-N-(pyridin-2-ylmethylene)arylamines that regulate tumor cell death by interacting with DNA

Authors: T.S. Basu Baul, S. Kundu, A. Linden, S.K. Manna, M.F.C. Guedes Da Silva

Journal: Dalton Transactions

Year: 2014

Volume: 43

Issue: 3

Pages: 1191–1202

Citations: 35

Synthesis, characterization, photoluminescent properties and supramolecular aggregations in diimine chelated cadmium dihalides

Authors: T.S. Basu Baul, S. Kundu, S.W. Ng, N. Guchhait, E.R.T. Tiekink

Journal: Journal of Coordination Chemistry

Year: 2014

Volume: 67

Issue: 1

Pages: 96–119

Citations: 13

 

 

 

 

Athanassios Philippopoulos | Inorganic Chemistry | Best Researcher Award

Assoc Prof Dr. Athanassios Philippopoulos | Inorganic Chemistry | Best Researcher Award

Associate Professor at National and Kapodistrian University of Athens/Chemistry Department, Greece

Athanassios Philippopoulos is an Associate Professor in the Laboratory of Inorganic Chemistry at the National and Kapodistrian University of Athens. His research spans organometallic and coordination chemistry, with a focus on applying nanotechnologies to energy and environmental challenges. Philippopoulos has made significant contributions to renewable energy technologies, particularly dye-sensitized solar cells, and bio-inorganic chemistry, including metal-based drugs. His academic career is marked by substantial publications and active involvement in advancing both fundamental and applied chemistry.

Author Metrics

Scopus Profile

ORCID Profile

Philippopoulos has an extensive scholarly impact, with over 1300 citations according to Web of Science (H-index 18) and more than 1520 citations on Google Scholar (H-index 19). His work reflects a strong presence in the fields of organometallic and coordination chemistry, with significant influence on both theoretical and practical aspects of these disciplines.

Education

Philippopoulos obtained his Bachelor of Science in Chemistry from the University of Ioannina in 1992. He continued his studies at the same institution, completing his Ph.D. in Inorganic-Organometallic Chemistry in 1997. His advanced education provided a robust foundation for his subsequent research and academic career.

Research Focus

Philippopoulos’s research encompasses several key areas: organometallic and coordination chemistry, nanotechnologies for energy and environmental applications, and bio-inorganic chemistry. His work in renewable energy resources includes the development of dye-sensitized solar cells. Additionally, he explores metal-based drugs and their applications in medicine, alongside catalysis and general inorganic chemistry.

Professional Journey

Philippopoulos began his professional career with postdoctoral research at the University of Ioannina and Humboldt University of Berlin. He then served as a Research Associate at the Institute of Physical Chemistry, NCSR “Demokritos,” before joining the National and Kapodistrian University of Athens as an Associate Professor in 2021. His career trajectory reflects a blend of rigorous research and impactful academic roles.

Honors & Awards

Throughout his career, Philippopoulos has received several prestigious awards and fellowships, including those from the Institute of Physical Chemistry, the IKYDA Fellowship, and various scholarships from the French Government and Erasmus Program. These accolades highlight his exceptional contributions to the field of chemistry and his commitment to advancing scientific knowledge.

Publications Noted & Contributions

Philippopoulos has authored over 50 peer-reviewed journal articles and delivered more than 65 conference presentations. His work includes one invited book chapter and numerous contributions to academic journals as an editor and reviewer. His publications are noted for their impact on organometallic chemistry, nanotechnology, and renewable energy research.

Ruthenium <i>p</i>-Cymene Complexes Incorporating Substituted Pyridine–Quinoline-Based Ligands: Synthesis, Characterization, and Cytotoxic Properties

Publication Details:
Journal: Molecules
Date: July 2024
DOI: 10.3390/molecules29133215
Role: Author
Contributors: Afroditi Kokkosi, Elpida Garofallidou, Nikolaos Zacharopoulos, Nikolaos Tsoureas, Konstantina Diamanti, Nikolaos S. Thomaidis, Antigoni Cheilari, Christina Machalia, Evangelia Emmanouilidou, Athanassios Philippopoulos

This article explores the synthesis and characterization of ruthenium <i>p</i>-cymene complexes with substituted pyridine-quinoline ligands. It examines their potential cytotoxic properties, contributing to the field of metal-based anticancer agents.

Anti-Inflammatory and Antithrombotic Potential of Metal-Based Complexes and Porphyrins

Publication Details:
Journal: Compounds
Date: June 2024
DOI: 10.3390/compounds4020023
Role: Author
Contributors: Alexandros Tsoupras, Sofia Pafli, Charilaos Stylianoudakis, Kalliopi Ladomenou, C.A. Demopoulos, Athanassios Philippopoulos

This study evaluates the anti-inflammatory and antithrombotic activities of various metal-based complexes and porphyrins. The findings offer insights into their therapeutic potential for cardiovascular and inflammatory diseases.

First-Row Transition Metal Complexes Incorporating the 2-(2′-pyridyl)quinoxaline Ligand (pqx), as Potent Inflammatory Mediators: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin

Publication Details:
Journal: Molecules
Date: October 2023
DOI: 10.3390/molecules28196899
Role: Author
Contributors: Antigoni Margariti, Vasiliki D. Papakonstantinou, George Stamatakis, C.A. Demopoulos, Christina Machalia, Evangelia Emmanouilidou, Gregor Schnakenburg, Maria-Christina Nika, Nikolaos S. Thomaidis, Athanassios Philippopoulos

The paper focuses on the cytotoxic effects and biological activities of first-row transition metal complexes with 2-(2′-pyridyl)quinoxaline ligands. It investigates their role as inflammatory mediators and their impact on platelet-activating factors and thrombin.

Tin(II) and Tin(IV) Complexes Incorporating the Oxygen Tripodal Ligands [(<i>η</i><sup>5</sup>-C<sub>5</sub>R<sub>5</sub>)Co{P(OEt)<sub>2</sub>O}<sub>3</sub>]<sup>−</sup>, (R = H, Me; Et = -C<sub>2</sub>H<sub>5</sub>) as Potent Inflammatory Mediator Inhibitors: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin

Publication Details:
Journal: Molecules
Date: February 2023
DOI: 10.3390/molecules28041859
Role: Author
Contributors: Alexandros Kalampalidis, Artemis Damati, Demetrios Matthopoulos, Alexandros Tsoupras, C.A. Demopoulos, Gregor Schnakenburg, Athanassios Philippopoulos

This article investigates the cytotoxic properties and biological activities of tin(II) and tin(IV) complexes with oxygen tripodal ligands. It highlights their effectiveness as inhibitors of inflammatory mediators like PAF and thrombin.

Sterically Demanding Pyridine-Quinoline Anchoring Ligands as Building Blocks for Copper(<scp>i</scp>)-Based Dye-Sensitized Solar Cell (DSSC) Complexes

Publication Details:
Journal: Dalton Transactions
Date: 2022
DOI: 10.1039/d2dt02382b
Role: Author
Contributors: Anastasios Peppas, Demetrios Sokalis, Dorothea Perganti, Gregor Schnakenburg, Polycarpos Falaras, Athanassios Philippopoulos

This publication discusses the use of sterically demanding pyridine-quinoline ligands in designing copper(I)-based dye-sensitized solar cells. It contributes to the development of advanced materials for solar energy applications.

Research Timeline

Philippopoulos’s research career includes significant milestones, such as his postdoctoral studies from 1998 to 2003, his role as a Research Associate from 2003 to 2006, and his tenure as an Associate Professor since 2021. His research grants and projects reflect ongoing advancements in solar cell technology, chelation methods, and innovative materials.

Collaborations and Projects

Philippopoulos has been involved in various collaborative research projects, including those funded by the Hellenic Foundation for Research and Innovation and the General Secretariat for Research and Technology. His work has spanned areas like nanocrystalline solar cells and innovative cleaning methods for museum artifacts, showcasing his collaborative efforts in advancing chemistry and technology.

Strengths of the Best Researcher Award for Athanassios Philippopoulos

  1. Significant Scholarly Impact: Philippopoulos has made notable contributions to the fields of organometallic and coordination chemistry, with over 1300 citations on Web of Science and 1520 on Google Scholar. This indicates a strong influence and recognition of his work within the scientific community.
  2. Diverse Research Areas: His research spans several crucial areas, including renewable energy (dye-sensitized solar cells), bio-inorganic chemistry (metal-based drugs), and nanotechnologies. This broad focus demonstrates his versatility and impact across multiple subfields of chemistry.
  3. High-Quality Publications: Philippopoulos has published over 50 peer-reviewed journal articles and contributed to significant research outputs, such as studies on ruthenium complexes, metal-based drugs, and copper(I)-based dye-sensitized solar cells. This reflects his commitment to advancing scientific knowledge and addressing pressing challenges.
  4. Awards and Recognition: The recognition Philippopoulos has received, including the Best Researcher Award, highlights his exceptional contributions and the esteem in which he is held by the academic and research communities. His past honors from various prestigious institutions further validate his achievements.
  5. Active Academic Engagement: Philippopoulos’s role in numerous conference presentations and his involvement as an editor and reviewer for academic journals show his active engagement in the scientific community. This participation underscores his dedication to both research and the dissemination of knowledge.

Areas for Improvement

  1. Broader Research Collaborations: While Philippopoulos has been involved in several collaborative projects, expanding his network to include more international and interdisciplinary collaborations could enhance the scope and impact of his research.
  2. Interdisciplinary Integration: There is an opportunity to further integrate his research with other scientific disciplines, such as materials science or environmental engineering, to address complex challenges from multiple perspectives.
  3. Increased Public Outreach: Enhancing efforts to communicate his research findings to the general public and stakeholders outside the academic community could increase the societal impact and relevance of his work.
  4. Funding and Grants: While Philippopoulos has been involved in research funded by various grants, seeking additional funding opportunities or leading larger-scale, multi-institutional projects could provide more resources for ambitious research goals.
  5. Educational Contributions: Developing and incorporating innovative teaching methods or educational programs related to his research areas could further benefit students and early-career researchers, enriching the academic environment at his institution.

Conclusion

Athanassios Philippopoulos has made substantial contributions to inorganic chemistry, particularly in the areas of organometallic chemistry, renewable energy, and bio-inorganic chemistry. His extensive publication record, significant citations, and numerous awards reflect his outstanding research accomplishments and impact on the field. While there are areas for potential improvement, such as broadening collaborations and enhancing public outreach, his achievements and ongoing contributions position him as a leading figure in his field. The Best Researcher Award is a testament to his dedication and excellence in advancing scientific knowledge and addressing global challenges through chemistry.