Prof. Dr. Boguslaw BUSZEWSKI | Materials Chemistry | Analytical Chemistry Award

Prof. Dr. Boguslaw BUSZEWSKI | Materials Chemistry | Analytical Chemistry Award

Prof. Dr. Boguslaw BUSZEWSKI ,  Materials Chemistry , Head at Prof. Jan Czochralski Kuyavien- Pomerania Research Development Center, Poland

Prof. Dr. Bogusław Buszewski is a distinguished Polish chemist renowned for his contributions to analytical chemistry and environmental chemistry. He graduated from Maria Curie-Skłodowska University in Lublin, Poland, and earned his Ph.D. in 1986, followed by a Dr Sc degree in 1992. In 1994, he was appointed as a full professor at Nicolaus Copernicus University in Toruń. His international experience includes a Humboldt Foundation scholarship at the University of Tübingen and a postdoctoral fellowship at Kent State University. Prof. Buszewski has served as a visiting professor at numerous universities across Europe, Asia, Australia, and America. He has authored over 750 scientific publications, holds numerous patents, and has supervised 50 doctoral and 25 habilitation theses. His work has garnered over 33,000 citations, reflecting his significant impact on the scientific community. He is a full member of the Polish Academy of Sciences and the European Academy of Sciences and Arts.

Professional Profile : 

Orcid

Summary of Suitability for Award:

Prof. Dr. Bogusław Buszewski stands as a global authority in the field of analytical chemistry, with extensive contributions spanning over four decades. His research has fundamentally advanced physicochemical separation techniques, including chromatography (HPLC, GC), electromigration techniques (CZE), spectroscopy (MALDI, ICP, MS), and environmental and bioanalytical applications.  Prof. Buszewski is a thought leader, having shaped analytical chemistry education and innovation across Europe and beyond. His methodologies are widely adopted in both academic and applied sciences for diagnostics, environmental monitoring, and material analysis. Prof. Dr. Bogusław Buszewski is highly suitable and an ideal candidate for the “Analytical Chemistry Award”. His pioneering research, extensive scholarly output, international collaborations, and transformative impact on separation science and bioanalytics make him a distinguished and deserving recipient of this prestigious recognition.

🎓Education:

Prof. Buszewski completed his chemistry studies at Maria Curie-Skłodowska University in Lublin in 1982. He earned his Ph.D. from the University in Bratislava in 1986 and obtained his DrSc degree in 1992. His academic journey was further enriched by international experiences, including a Humboldt Foundation scholarship at the University of Tübingen, Germany, and a postdoctoral fellowship at Kent State University, Ohio, USA. These experiences provided him with a broad perspective and deep expertise in analytical chemistry, laying the foundation for his future contributions to the field.

🏢Work Experience:

Prof. Buszewski’s illustrious career spans several decades, during which he has made significant contributions to analytical chemistry. Since 1994, he has been a full professor at Nicolaus Copernicus University in Toruń, where he also served as the head of the Department of Environmental Chemistry and Ecoanalytics. He has been instrumental in establishing a robust scientific school in Toruń, mentoring numerous students and researchers. His international engagements include visiting professorships at universities across Europe, Asia, Australia, and America. Prof. Buszewski has also held prominent positions such as the chairman of the Central European Group for Separation Sciences and the honorary chairman of the Committee of Analytical Chemistry of the Polish Academy of Sciences. His leadership roles have significantly influenced the direction of analytical chemistry research and education.

🏅Awards: 

Prof. Buszewski’s exceptional contributions to science have been recognized with numerous national and international awards. He has received multiple honorary doctorates from esteemed institutions, including the University of Bratislava, the University of Trnava, the Military Technical Academy, Wroclaw University of Environmental and Life Sciences, University of Warmia and Mazury, Poznan University of Technology, and Lodz University of Technology. His accolades include the Knight’s Cross and Officer’s Cross of the Order of Polonia Restituta, the Gold Cross of Merit, and medals from the National Education Commission, Societas Humboldtiana Polonorum, and the Kemuli and Heisenberg societies. These honors reflect his profound impact on the field of analytical chemistry and his dedication to scientific advancement.

🔬Research Focus:

Prof. Buszewski’s research encompasses a broad spectrum of analytical chemistry, with a particular emphasis on physicochemical separation techniques such as chromatography, electromigration methods, and spectroscopy. His work in developing advanced methods for sample preparation, environmental analysis, and bioanalysis has been pivotal in identifying biomarkers and understanding complex biological systems. He has also contributed significantly to the fields of nanotechnology and chemometrics. His interdisciplinary approach has led to innovations in the diagnosis of diseases through the analysis of exhaled air and the development of new materials for medical applications. Prof. Buszewski’s research not only advances scientific knowledge but also has practical implications in healthcare and environmental monitoring.

Publication Top Notes:

1. Potential Clinical Application of Analysis of Bisphenols in Pericardial Fluid from Patients with Coronary Artery Disease with the Use of Liquid Chromatography Combined with Fluorescence Detection and Triple Quadrupole Mass Spectrometry

2. In Vitro and In Silico of Cholinesterases Inhibition and In Vitro and In Vivo Anti-Melanoma Activity Investigations of Extracts Obtained from Selected Berberis Species

3. Development and Validation of LC-MS/MS Method for Determination of Cytisine in Human Serum and Saliva

4. Comprehensive Study of Si-Based Compounds in Selected Plants (Pisum sativum L., Medicago sativa L., Triticum aestivum L.)

5. Determination of Some Isoquinoline Alkaloids in Extracts Obtained from Selected Plants of the Ranunculaceae, Papaveraceae and Fumarioideae Families by Liquid Chromatography and In Vitro and In Vivo Investigations of Their Cytotoxic Activity

6. Exogenously Applied Cyclitols and Biosynthesized Silver Nanoparticles Affect the Soluble Carbohydrate Profiles of Wheat (Triticum aestivum L.) Seedling

7. Determination of Selected Isoquinoline Alkaloids from Chelidonium majus, Mahonia aquifolium and Sanguinaria canadensis Extracts by Liquid Chromatography and Their In Vitro and In Vivo Cytotoxic Activity against Human Cancer Cells

8. Functional Beverages in the 21st Century

9. The Association between the Bisphenols Residues in Amniotic Fluid and Fetal Abnormalities in Polish Pregnant Women—Its Potential Clinical Application

10. Analysis of VOCs in Urine Samples Directed towards Bladder Cancer Detection

11. Comparative Study of the Potentially Toxic Elements and Essential Microelements in Honey Depending on the Geographic Origin

12. Oligonucleotides Isolation and Separation—A Review on Adsorbent Selection

13. A New Approach to Imaging and Rapid Microbiome Identification for Prostate Cancer Patients Undergoing Radiotherapy

 

Prof. Reine NEHME | Analytical Chemistry | Best Researcher Award

Prof. Reine NEHME | Analytical Chemistry | Best Researcher Award

Prof. Reine NEHME, Analytical Chemistry , Head of analytical team at University of Orléans, ICOA UMR7311, France

Prof. Reine Nehmé is a renowned French scientist and Professor of Analytical Sciences at the University of Orléans, where she leads the “Analytical Strategies, Affinities and Bioactives” team at ICOA. With over 15 years of academic and research experience, she specializes in advanced separation techniques, bioanalysis, and microfluidics. She is deeply involved in both teaching and scientific governance—serving on multiple university and national scientific committees. Prof. Nehmé also contributes to scientific advancement as a supervisor of numerous Ph.D. and post-doctoral researchers and by coordinating key national research projects funded by ANR and regional bodies. Her prolific contributions to analytical chemistry are reflected in her numerous publications, particularly in the areas of enzymatic assays, capillary electrophoresis, and bioactive compound analysis. With a strong leadership role in Afsep and her involvement in high-level academic administration, she is recognized as a leading figure in analytical chemistry in France and Europe.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Nehmé holds a Ph.D. in Analytical Chemistry from the University of Montpellier (2008) and an HDR (Accreditation toSupervise Research) from the University of Orléans (2016). Her academic background demonstrates deep expertise and a commitment to high-level scientific scholarship. As a professor and group leader at ICOA, University of Orléans, she leads the “Analytical Strategies, Affinities and Bioactives” team, driving impactful research in analytical sciences, especially in bioanalysis, separative techniques, capillary electrophoresis, microfluidics, and mass spectrometry. Prof. Nehmé is deputy treasurer and a management committee member of the Capillary Electrophoresis Group of Afsep. She holds leadership roles at her university and is actively engaged in curriculum design, evaluation panels, and scientific committees. Prof. Reine Nehmé exemplifies the ideal profile for a “Best Researcher Award”: a high-impact scientist, strategic research leader, dedicated educator, and committed scientific community member. Her strong publication record, funded projects, mentoring, and institutional service collectively highlight her as a trailblazer in analytical chemistry. She fully deserves recognition through such a prestigious award.

🎓Education:

Prof. Reine Nehmé earned her Ph.D. in Analytical Chemistry from the University of Montpellier in 2008, following her Master’s degree (Master 2) in the same field from the same institution in 2005. Demonstrating her continued academic excellence and expertise, she received her Habilitation to Supervise Research (HDR) from the University of Orléans in 2016. This qualification represents the highest academic degree in France and reflects her capacity to independently lead doctoral research and large-scale scientific projects. Her academic training laid a robust foundation in analytical methodologies, chromatographic techniques, and advanced spectroscopy. These qualifications have enabled her to contribute extensively to the development of innovative analytical tools and methods in environmental, biological, and pharmaceutical research. Her educational background not only established her scientific depth but also positioned her to take on leadership and mentoring roles across both academic and research platforms.

🏢Work Experience:

Prof. Nehmé began her academic journey at the University of Orléans in 2008 as a Temporary Teaching and Research Assistant (ATER). She advanced to Associate Professor in 2009 and was promoted to Professor in 2019. Over the years, she has held multiple leadership roles, including Head of the Analytical Chemistry Department and Coordinator of the Professional License program in Chemistry at IUT Chimie d’Orléans. She has been a member of the laboratory’s scientific council since 2017, and also serves on the Commission of Disciplinary Experts. As an active educator, she teaches a range of courses in analytical sciences including electrochemistry, chromatography, mass spectrometry, and microfluidics. In research, she has successfully supervised 6 Ph.D. students (2 ongoing) and multiple post-doctoral and master’s interns. Her contributions extend to national committees such as Afsep’s CE group, where she has served as Deputy Treasurer since 2021.

🏅Awards: 

While specific awards are not explicitly listed, Prof. Reine Nehmé’s honors are evidenced by her numerous leadership and elected roles. She received the Habilitation to Supervise Research (HDR), a distinguished recognition in France for scholarly excellence. Her long-standing position on the scientific council of the ICOA laboratory and as a Commission Expert in disciplinary affairs at the University of Orléans speaks to her academic credibility. She was elected to the Management Committee of the CE group of Afsep in 2017 and appointed as Deputy Treasurer in 2021, underlining national recognition by her peers. She has consistently been entrusted with leadership in nationally funded research programs by ANR and regional agencies, confirming her scientific standing and project leadership ability. Her active role in supervising doctoral candidates and international collaborations further affirms her status as a respected figure in analytical sciences.

🔬Research Focus:

Prof. Nehmé’s research centers on analytical sciences, particularly in capillary electrophoresis, mass spectrometry, and microscale thermophoresis for studying molecular interactions. Her projects frequently explore bioanalysis, enzyme kinetics, and natural product evaluation. She leads or participates in numerous ANR-funded projects, including stapled peptide design, bioremediation via micromycetes, and enzyme behavior in crowded synthetic environments. A significant part of her work involves developing lab-on-a-chip (LoC) platforms for investigating target-ligand interactions at the single-cell level. She has also contributed to the miniaturization of enzymatic assays, passive sampling techniques for water analysis, and electrochemical sensors for environmental monitoring. Prof. Nehmé integrates separation sciences with biology and materials chemistry, bridging analytical method development with real-world biological and environmental challenges. Her interdisciplinary research fosters innovations in diagnostics, therapeutic monitoring, and ecological risk assessment, marking her as a pioneer in translating analytical chemistry into functional tools for bioactive discovery and environmental stewardship.

Publication Top Notes:

1. Using CE to Confirm the Activity of Fluorescent miRFP670-LIMK1 Protein Produced for MST Assays Directly in Cell Lysate

2. The Antimicrobial Activity of ETD151 Defensin is Dictated by the Presence of Glycosphingolipids in the Targeted Organisms

3. Glycolipid and Lipopeptide Biosurfactants: Structural Classes and Characterization—Rhamnolipids as a Model

4. Nutraceutical and Cosmetic Applications of Bioactive Compounds of Saffron (Crocus Sativus L.) Stigmas and Its By-products

5. Antioxidant and Anti-lipase Capacities from the Extracts Obtained from Two Invasive Plants: Ambrosia artemisiifolia and Solidago canadensis

6. Nutraceutical Capacities of Extracts from the Invasive Plants Ambrosia artemisiifolia and Solidago canadensis

7. Screening and Evaluation of Dermo-Cosmetic Activities of the Invasive Plant Species Polygonum cuspidatum

8. Biosurfactant-Producing Mucor Strains: Selection, Screening, and Chemical Characterization

9. Capillary Electrophoresis for Enzyme-Based Studies: Applications to Lipases and Kinases

10. Correction to: Reproducibility and Accuracy of Microscale Thermophoresis in the NanoTemper Monolith: A Multi Laboratory Benchmark Study

11. Design, Synthesis and SAR in 2,4,7-Trisubstituted Pyrido[3,2-d]Pyrimidine Series as Novel PI3K/mTOR Inhibitors

 

 

Dr. Jean Moto Ongagna | Theoretical Chemistry | Catalysis Award

Dr. Jean Moto Ongagna | Theoretical Chemistry | Catalysis Award

Dr. Jean Moto Ongagna | Theoretical Chemistry | Lecturer – University of Douala-Cameroon , Cameroon

Dr. Jean Moto Ongagna is a Cameroonian researcher specializing in Theoretical chemistry and Computational Chemistry . He obtained his Ph.D. from the University of Douala in 2021. His expertise spans Density Functional Theory (DFT), Pharmacokinetics (ADMET), Molecular Docking, Molecular Dynamics (MD), and ab initio Molecular Dynamics (ADMP). Dr. Ongagna has contributed significantly to computational chemistry, particularly in studying metal complexes, chemical bonding, and reaction mechanisms. He has participated in prestigious international conferences and workshops, presenting groundbreaking research on chemical bonding interactions. With numerous publications in high-impact journals such as RSC Advances and the International Journal of Quantum Chemistry, his work advances the understanding of transition metal complexes and their applications. He actively collaborates with researchers worldwide and is dedicated to developing computational tools for chemical and biological systems.

Professional Profile : 

Orcid  

Summary of Suitability for Award:

Dr. Jean Moto Ongagna is an outstanding candidate for the “Catalysis Awards”, given his significant contributions to computational catalysis and theoretical chemistry. His research extensively applies Density Functional Theory (DFT), Quantum Chemical Calculations, and Molecular Dynamics (MD) to investigate transition metal complexes, non-standard chemical bonding, and catalytic reaction mechanisms. His studies provide deep insights into metal-ligand interactions, catalytic efficiency, and reaction pathways, which are fundamental for designing novel catalytic systems. Dr. Jean Moto Ongagna’s research in computational catalysis, transition metal chemistry, and theoretical modeling aligns perfectly with the objectives of the “Catalysis Awards”. His work advances the understanding of catalyst behavior, reaction mechanisms, and molecular interactions, making a substantial impact on modern catalysis research. His ability to integrate quantum chemistry tools with catalytic design positions him as a highly suitable candidate for this prestigious recognition.

🎓Education:

Dr. Jean Moto Ongagna pursued his higher education at the University of Douala, Cameroon. He earned a Ph.D. in Theoretical and Computational Chemistry (2021), focusing on Density Functional Theory (DFT) and molecular simulations. In 2016, he completed his Master’s degree in the same field, where he explored the computational analysis of metal-ligand interactions. His Bachelor’s degree in Physical Chemistry (2013) laid the foundation for his research on quantum chemistry and molecular modeling. Before university, he completed his GCE Advanced Level (Baccalauréat D) in 2008 at Laic Private College “La Liberté” in Douala. His education equipped him with expertise in quantum chemistry, molecular docking, and theoretical modeling, enabling him to contribute to cutting-edge research. Throughout his academic journey, he attended specialized workshops and conferences to enhance his skills in computational chemistry, continuously refining his expertise in quantum simulations and advanced chemical theories.

🏢Work Experience:

Dr. Jean Moto Ongagna has extensive experience in Theoretical chemistry and Computational Chemistry, with expertise in Density Functional Theory (DFT), Molecular Docking, Pharmacokinetics (ADMET), and ab initio Molecular Dynamics (ADMP). He has actively participated in international conferences, presenting research on transition metal complexes, chemical bonding, and molecular interactions. He has contributed to significant projects involving the computational study of catalysts, biomolecular interactions, and pharmaceutical compounds. Dr. Ongagna has also collaborated with renowned institutions and researchers worldwide, publishing extensively in high-impact journals. His research experience includes developing and applying quantum chemical tools for investigating metal-ligand interactions and reaction mechanisms. He has been involved in multiple computational chemistry workshops, enhancing his knowledge of secondary metabolite discovery, quantum topology, and electronic structure theory. His contributions have led to a deeper understanding of non-standard chemical bonding and have implications for catalysis, drug design, and materials science.

🏅Awards: 

Dr. Jean Moto Ongagna has received multiple recognitions for his contributions to Theoretical and Computational Chemistry. He has been invited as a speaker at international conferences, including the 4th Commonwealth Chemistry Posters (2023) and the Virtual Conference on Chemistry and Its Applications (2021, 2022). His research on transition metal complexes and quantum chemistry has been published in high-impact journals such as RSC Advances and the International Journal of Quantum Chemistry. He has received accolades for his computational investigations on catalytic and biomolecular systems, contributing to the advancement of quantum chemical methodologies. His participation in scientific workshops at the University of Buea (Cameroon) and Technische Universität Dresden (Germany) further highlights his academic excellence. His continuous engagement in international scientific discussions and collaborations has strengthened his reputation as a leading researcher in quantum chemistry and molecular modeling.

🔬Research Focus:

Dr. Jean Moto Ongagna’s research focuses on Theoretical and Computational Chemistry, particularly Density Functional Theory (DFT), Quantum Chemical Calculations, Molecular Docking, Pharmacokinetics (ADMET), and Molecular Dynamics (MD). He specializes in studying transition metal complexes, non-standard chemical bonds, and catalytic reactions. His work involves topological analysis of chemical interactions using advanced computational techniques such as Quantum Theory of Atoms in Molecules (QTAIM), Energy Decomposition Analysis (EDA), and Natural Bond Orbital (NBO) analysis. He has made significant contributions to understanding palladium complexes, Diels–Alder reactions, and bioactive compounds. His research extends to computational drug discovery, antimicrobial compounds, and bioinorganic chemistry, aiming to bridge the gap between theoretical modeling and experimental applications. By integrating quantum chemical methods with molecular simulations, his studies provide valuable insights into reaction mechanisms, electronic structures, and potential applications in pharmaceuticals, catalysis, and material science.

Publication Top Notes:

Deciphering the Influence of Alkylene Bridged and Chelating Mode on Pd—C and Pd—X (X = Cl, Br, and I) Bonding Interaction Within Bis‐(NHC)‐Palladium Complexes Using Quantum Chemistry Tools

Authors: Gaël Mouzong D’Ambassa, Jean Moto Ongagna, Adjieufack Abel Idrice, Désiré Bikele Mama

Year: 2024

Computational Exploration of the Impact of Low‐Spin and High‐Spin Ground State on the Chelating Ability of Dimethylglyoxime Ligand on Dihalo Transition Metal: A QTAIM, EDA, and CDA Analysis

Authors: Daniel Lissouck, Suzane Leonie Djendo Mazia, Gaël Mouzong D’Ambassa, Jean Moto Ongagna

Year: 2024

Deciphering the Influence of PdII and PdIV Oxidation States on Non-Standard Chemical Bonds Within Bis(N-Heterocyclic Carbene) Complexes: Insights from DFT

Authors: Gaël Mouzong D’Ambassa, Jean Moto Ongagna, Adjieufack Abel Idrice, Désiré Bikele Mama

Year: 2024

Exploring the Mechanism of the Intramolecular Diels–Alder Reaction of (2E,4Z,6Z)-2(allyloxy)cycloocta-2,4,6-trien-1-one Using Bonding Evolution Theory

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2023

In Vitro and In Silico Studies of Antibacterial Activities of Secofriedelane Derivatives from Senna alata (L) Roxb

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2023

How a Chromium Tricarbonyl Complex Catalyzes the [3 + 2] Cycloaddition Reaction of N-Substituted Phenylnitrones with Styrene: A Molecular Electron Density Theory Analysis

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2023

Insight into the Antioxidant and Antiradical Properties of Colorotane Sesquiterpenes Extracted from Warburgia ugandensis: Theoretical Evaluation

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2021

Topological Unraveling of the [3+2] Cycloaddition (32CA) Reaction Between N-Methylphenylnitrone and Styrene Catalyzed by the Chromium Tricarbonyl Complex Using Electron Localization Function and Catastrophe Theory

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2021

B3LYP, M06 and B3PW91 DFT Assignment of nd8 Metal-Bis-(N-Heterocyclic Carbene) Complexes

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2020