Mr. Rasim Omanović | Green Chemistry | Best Researcher Award

Mr. Rasim Omanović | Green Chemistry | Best Researcher Award

Mr. Rasim Omanović | Green Chemistry | Senior Teaching Assistant at University of Sarajevo – Faculty of Science, Bosnia and Herzegovina

Rasim Omanović is a Ph.D. student in Chemistry at the University of Sarajevo, specializing in analytical chemistry, green chemistry and environmental sciences. With extensive experience in laboratory research, scientific writing, and academic teaching, he currently serves as a Senior Teaching Assistant at the Faculty of Science, University of Sarajevo. Additionally, he is a Technical Expert at the Institute for Accreditation of Bosnia and Herzegovina. His research interests include atmospheric aerosol analysis, heavy metal contamination, and green extraction methods using deep eutectic solvents. He has actively participated in international research projects and conferences, contributing significantly to environmental chemistry and sustainable methodologies. Alongside his academic career, he has industry experience as a Sales Engineer at Petrol BH Oil Company. A recipient of the University of Sarajevo Award for Scientific Work, he continues to make notable contributions to analytical and environmental chemistry.

Professional Profile :         

Google Scholar

Orcid

Summary of Suitability for Award:

Rasim Omanović is a highly qualified and dedicated researcher in the field of analytical and environmental chemistry, making him an excellent candidate for the “Best Researcher Award”. His research contributions span critical areas such as atmospheric aerosol analysis, green chemistry, and the development of eco-friendly extraction techniques using deep eutectic solvents. His work is not only innovative but also impactful, addressing global environmental challenges such as pollution control and heavy metal remediation. He has a strong academic background, currently pursuing a Ph.D. at the University of Sarajevo, and has gained substantial research and teaching experience as a Senior Teaching Assistant. His extensive list of peer-reviewed publications in high-impact journals and active participation in international research collaborations, such as the NextAIRE Horizon project and scientific partnerships with Slovenia, further demonstrate his commitment to scientific excellence. Given Rasim Omanović’s outstanding research contributions, numerous high-quality publications, and active participation in international collaborations, he is a strong candidate for the “Best Researcher Award”. His ability to integrate sustainable methodologies into analytical chemistry, his recognized scientific achievements, and his dedication to solving real-world environmental issues make him highly deserving of this recognition.

🎓Education:

Rasim Omanović is currently pursuing his Ph.D. in Chemistry at the University of Sarajevo – Faculty of Science (2021–Present). He previously earned his Master’s degree in Chemistry from the same institution in 2016 and completed his Bachelor’s degree in Chemistry in 2015. His academic journey has been complemented by various specialized training programs. In 2022, he attended the Training & Research for Academic Newcomers at the University of Sarajevo, further strengthening his pedagogical skills. Additionally, he completed the Fundamentals of Manuscript Preparation course from Elsevier Researcher Academy, gaining valuable insights into scientific writing. His commitment to academic excellence also led him to complete a course on Effective Researcher and Pedagogic Stratification in Academics with the International Society of Engineering Science and Technology in 2021. Furthermore, he successfully passed the Professional Exam in Forensic Science administered by the Civil Service Agency of FBiH in 2018, expanding his expertise into forensic applications.

🏢Work Experience:

Rasim Omanović has extensive experience in academia and research. Since 2023, he has been serving as a Senior Teaching Assistant of Analytical Chemistry at the University of Sarajevo – Faculty of Science. His prior roles include Teaching Assistant of Analytical Chemistry (2020–2023) at the same institution and an External Associate Teaching Assistant at the University of Bihać – Faculty of Health Studies (2023–2024) and the University of Sarajevo – Faculty of Mechanical Engineering (2021–2022). In 2025, he expanded his expertise as a Technical Expert at the Institute for Accreditation of Bosnia and Herzegovina. Additionally, since 2021, he has been a Research Assistant at the International Society of Engineering Science and Technology. Before transitioning into academia, he gained industry experience as a Sales Engineer at Petrol BH Oil Company (2017–2020). His diverse experience showcases his strong analytical, teaching, and research skills across various scientific disciplines.

🏅Awards: 

Rasim Omanović has been recognized for his outstanding scientific contributions. In 2022, he received the University of Sarajevo Award for Scientific Work Results, an acknowledgment of his research achievements. His dedication to scientific excellence extends to his involvement in international collaborations. He is a key researcher in projects under the Scientific and Technological Cooperation between Bosnia and Herzegovina and Slovenia for 2024–2025. His work on Physico-chemical testing of atmospheric aerosol particles and biomonitoring showcases his expertise in environmental chemistry. Additionally, his research on Deep eutectic solvents for green and sustainable extraction of bioactive compounds highlights his commitment to eco-friendly methodologies. In 2025, he joined NextAIRE – Next Generation AI Researchers for Air Quality Excellence, a prestigious EU-funded Horizon project. These honors reflect his continuous efforts in advancing scientific knowledge and addressing critical global challenges in green chemistry, environmental and analytical chemistry.

🔬Research Focus:

Rasim Omanović’s research primarily revolves around analytical and environmental chemistry. His work includes the physico-chemical testing of atmospheric aerosol particles, biomonitoring, and investigating new atmospheric particle formation, a project under the scientific cooperation between Bosnia and Herzegovina and Slovenia. He is also engaged in the development of deep eutectic solvents for green and sustainable extraction of bioactive compounds from agro-industrial by-products, aligning with eco-friendly chemistry principles. Additionally, he is part of the NextAIRE project, which integrates AI into air quality monitoring. His research also extends to developing green nano-sorbents for heavy metal remediation in water and soil contamination analysis. With a strong focus on sustainable and innovative methodologies, his contributions are making a significant impact on environmental science, pollution control, and analytical chemistry. His work demonstrates a multidisciplinary approach, bridging chemistry with technological advancements to solve pressing environmental challenges.

Publication Top Notes:

Synthesis of green nano sorbents for simultaneous preconcentration and recovery of heavy metals from water

Citations: 24

Emerging technologies for biogas production: A critical review on recent progress, challenges and perspectives

Citations: 19

Analysis of stability of naturally aged single base propellants

Heavy metal contamination of street dust of Canton Sarajevo, Bosnia and Herzegovina–Health risk assessment

Determination of Water Extractable Chloride in the Greenhouse Soil and Minimizing Interferences Caused by the Presence of the Iron Ions

Application of Grapefruit Peel as Biosorbent for Removal of Copper (II), Lead (II), Cadmium (II) and Zinc (II) from Aqueous Solution

 

Assist. Prof. Dr Maryam Khajenoori | Green Extraction Award | Best Researcher Award

Assist. Prof. Dr Maryam Khajenoori | Green Extraction Award | Best Researcher Award

Assist. Prof. Dr Maryam Khajenoori , Semnan University , Iran 

Dr. Maryam Khajenoori is an Assistant Professor of Chemical Engineering at Semnan University, Iran. she is a specialist in subcritical water extraction (SWE) and chemical process engineering. Dr. Khajenoori’s academic career centers around sustainable separation processes and nanoparticle synthesis, with extensive research in solubility analysis, green extraction methods, and thermodynamic modeling. She is an accomplished educator, guiding students through advanced engineering mathematics, mass transfer, and environmental biotechnology. A published author in renowned journals, Dr. Khajenoori’s expertise extends to practical applications in chemical engineering and sustainable energy. She is proficient in multiple programming languages and specialized software, utilizing her technical skills to advance both academic research and applied chemical engineering processes.

Professional Profile: 

Google Scholar

Scopus 

Summary of Suitability for Award:

Dr. Maryam Khajenoori’s combination of academic excellence, significant research contributions, and focus on sustainability makes her a strong contender for the “Best Researcher Awards.” Her research on subcritical water extraction and related sustainable chemical processes is not only innovative but also has practical implications for industries like pharmaceuticals, food, and environmental engineering. Given her proven track record of influential publications, successful projects, and teaching roles, she is highly deserving of this recognition. Her work is set to continue making an important impact in both academic and industrial spheres, reaffirming her status as a leading researcher in the field.

🎓Education:

Dr. Khajenoori holds a Ph.D. in Chemical Engineering from Semnan University, specializing in the thermodynamics and kinetics of chemical reactors. She obtained her M.Sc. in Chemical Engineering with a focus on Separation Processes from the same institution , by  following her B.Sc. in Chemical Engineering (Polymer Branch) from Isfahan University of Technology (IUT) . Her foundational education includes a diploma in Mathematics and Physics from Dehkhoda High School in Kashan, Isfahan, Iran. Her academic journey has been marked by a rigorous focus on chemical processes, separation techniques, and sustainable engineering methodologies, paving the way for her research interests in green extraction and solubility of bioactive compounds.

🏢Work Experience:

Dr. Khajenoori has diverse teaching experience at Semnan University, covering subjects such as advanced mass transfer, environmental biotechnology, unit operations, and engineering mathematics. She has also instructed in specialized labs and workshops, including MATLAB, Aspen, and Hysys, to equip students with practical skills. Additionally, her research projects include studies on the thermokinetics of SWE for her Ph.D., superheated water extraction in her M.Sc., and pollutant studies in groundwater from her undergraduate studies. She has also completed numerous projects in CO2 capture, computational fluid dynamics, and molecular dynamics, applying her expertise in both teaching and research for sustainable chemical engineering solutions.

🏅Awards:

Dr. Khajenoori has earned recognition for her research contributions, particularly in the areas of subcritical water extraction and solubility analysis. Her pioneering work on SWE of essential oils has garnered international attention, and she has been invited to present her findings at leading scientific conferences. She has also been recognized within Semnan University for her dedication to both teaching and research, receiving accolades for her contributions to environmental biotechnology and sustainable chemical engineering practices. Additionally, her efforts in green extraction methods have placed her at the forefront of sustainable engineering, further affirming her as a respected figure in the field.

🔬Research Focus:

Dr. Khajenoori’s research primarily explores sustainable and green extraction methods, particularly subcritical water extraction (SWE) for bioactive compounds. Her interests extend to the solubility of valuable compounds like curcumin in SWE conditions, nanoparticle synthesis using environmentally friendly techniques, and pollution treatment processes. She has conducted extensive studies on thermodynamic modeling and the effect of SWE on various essential oils, aiming to optimize extraction efficiency and purity. Through her focus on sustainable practices, Dr. Khajenoori contributes to advancements in eco-friendly chemical engineering and supports the development of alternative extraction techniques to reduce environmental impact.

Publication Top Notes:

  •  Subcritical water extraction
     Citations: 144
  • Proposed models for subcritical water extraction of essential oils
    Citations: 103
  • Mass Transfer: Advances in Sustainable Energy and Environment Oriented Numerical Modeling
    Citations: 71
  •  Subcritical water extraction of essential oils from Zataria multiflora Boiss
    Citations: 63
  • Extraction of Curcumin and Essential Oil from Curcuma longa L. by Subcritical Water via Response Surface Methodology
    Citations: 58

 

 

 

 

Mr. Anil kumar Gautam | Green Synthesis Award | Material Chemistry Award

Mr. Anil kumar Gautam | Green Synthesis Award | Material Chemistry Award

Mr. Anil kumar Gautam | Babasaheb Bhimrao Ambedkar University lucknow  |India

Dr. Anil K. Gautam, born in 1987, is a dynamic researcher specializing in nanochemistry, currently pursuing a Ph.D. at Babasaheb Bhimrao Ambedkar University, Lucknow. With a strong foundation in synthetic organic chemistry, he has pioneered innovative methodologies for green synthesis of nanoparticles. His research focuses on the anticancer and antibacterial properties of various nanocomposites derived from natural extracts. A committed lifelong learner, Dr. Gautam actively participates in national and international conferences, presenting his groundbreaking findings. Fluent in English and Hindi, he balances his professional endeavors with personal commitments, living in Lucknow with his family. His dedication to sustainable practices and innovative research reflects a deep commitment to advancing the field of chemistry.

Professional Profile:

Orcid 

Summary of Suitability for Award:

Mr. Anil kumar Gautam is highly suitable for the Material Chemistry Award due to their innovative approach to sustainable nanomaterial synthesis, strong technical expertise, and impactful research contributions. Their focus on environmentally friendly practices and their active engagement in the scientific community align well with the award’s objectives.

🎓Education:

Dr. Anil K. Gautam holds a Ph.D. in Chemistry from Babasaheb Bhimrao Ambedkar University, Lucknow, where he is focused on the “Green Synthesis of Nanomaterials and Evaluation of its Cytotoxicity.” His academic journey began with a Master’s in Chemistry from Dr. Shakuntala Misra National Rehabilitation University, Lucknow, where he honed his expertise in organic synthesis. Prior to that, he earned a Bachelor of Science degree from Christian P.G. College, Lucknow, solidifying his foundational knowledge in scientific principles. Dr. Gautam’s educational background reflects a strong commitment to understanding and innovating within the field of chemistry, particularly in nanotechnology. His ongoing research continues to contribute significantly to his academic institution and the broader scientific community.

🏢Work Experience:

Dr. Anil K. Gautam has extensive research experience during his Ph.D. at Babasaheb Bhimrao Ambedkar University, focusing on the development of new synthetic methodologies in nanochemistry. He has led several innovative projects, including the green synthesis of CeO2/CeCu/CuO nanocomposites and their evaluation for anticancer and antibacterial properties. Dr. Gautam’s experience encompasses the preparation of plant extracts and the characterization of synthesized nanomaterials through advanced techniques such as XRD, FTIR, SEM, and HPLC. He has also contributed to multiple oral presentations at prestigious conferences, showcasing his research findings on various nanomaterials. His collaborative approach and rigorous analytical skills have positioned him as a valuable asset in research settings, driving forward the exploration of sustainable chemistry and its applications.

🏅Awards:

Dr. Anil K. Gautam’s contributions to the field of chemistry have been recognized through various accolades throughout his academic career. His innovative research on green synthesis of nanomaterials has garnered him invitations to present at international conferences, emphasizing his status as an emerging expert in nanochemistry. Although specific awards have not been detailed, his work’s impact is evident in his published research and participation in prominent scientific forums. His commitment to sustainable practices in chemistry and the successful application of his research findings further highlight his dedication to advancing the field. Dr. Gautam’s continuous engagement in academia and research reflects a strong potential for future recognition as he continues to contribute meaningfully to scientific knowledge and practice.

🔬Research Focus:

Dr. Anil K. Gautam’s research focus lies in nanochemistry, particularly the green synthesis of nanoparticles and nanocomposites using natural extracts. His pioneering work involves developing eco-friendly methodologies to synthesize various metal oxides and their composites, emphasizing their potential applications in anticancer and antibacterial therapies. His studies on the structural properties of nanoparticles, coupled with their functional evaluations, contribute significantly to the understanding of nanomaterials in biomedical applications. Additionally, Dr. Gautam explores the synthesis of heterojunction nanocomposites for photocatalytic degradation of organic pollutants, aiming to enhance environmental sustainability. Through rigorous experimental design and literature analysis, he seeks to stay at the forefront of advancements in nanotechnology, bridging the gap between sustainable practices and innovative research in chemistry. His dedication to addressing complex challenges through his research positions him as a key contributor to the evolving landscape of nanoscience.

Publication Top Notes:

Green Synthesis of Pistia stratiotes Ag/AgCl Nanomaterials and Their Anti-Bacterial Activity

 

 

 

Ms. Nontobeko Simelane | Green Chemistry Award | Best Researcher Award

Ms. Nontobeko Simelane | Green Chemistry Award | Best Researcher Award

Ms. Nontobeko Simelane |University of KwaZulu Natal | South Africa

Nontobeko Precious Simelane is a driven PhD candidate in Chemistry at the University of KwaZulu Natal, Durban, with a strong background in Materials Science. Known for her dedication to academic excellence, she has experience mentoring students and working as a laboratory demonstrator. She completed her MSc in Industrial Physics with distinction and holds a BSc in Chemistry and an Honours degree in Chemical Technology, specializing in polymer material science. Nontobeko is particularly skilled in polymer synthesis and has contributed to impactful projects and reviews in biopolymer composites. Her work emphasizes sustainable material solutions, bridging scientific research and real-world applications. With multiple publications and conference presentations, she actively contributes to research on environmentally friendly materials, transparent wood, and pollutant-removing biopolymer composites.

Professional Profile:

Scopus

Summary of Suitability for Award:

Given her academic distinction, impactful research, and dedication to sustainable development, Nontobeko Precious Simelane is a highly suitable candidate for the Best Researcher Award. Her work not only contributes to scientific knowledge but also addresses environmental challenges, embodying a balance of innovation and responsibility essential for a leading researcher in today’s world.

🎓Education:

Nontobeko’s educational journey in science began with a BSc in Chemistry from the University of Pretoria in 2016, providing a strong foundation in analytical and applied chemistry. She then completed an Honours degree in Chemical Technology with a specialization in polymer material science in 2018, where she honed her skills in polymer synthesis and applications. Her MSc in Industrial Physics at Tshwane University of Technology, completed in 2022 with distinction, emphasized practical applications of physics in material sciences. Currently, Nontobeko is pursuing a PhD in Chemistry at the University of KwaZulu Natal, focusing on the development of engineered transparent wood for sustainable construction materials. This educational trajectory has equipped her with comprehensive knowledge in chemistry, materials science, and industrial applications, forming a solid background for her current research in sustainable materials.

🏢Work Experience:

Nontobeko has accumulated valuable experience in academia and research through roles such as Laboratory Demonstrator and Postgraduate Teaching Assistant. As a Laboratory Demonstrator at the University of KwaZulu Natal, she supervises first-year students, ensuring lab safety and understanding of core chemistry concepts. At Tshwane University of Technology, she served as a Postgraduate Teaching Assistant, conducting physics practicals for first-year students and providing insightful feedback to support their learning. Her research experience includes a Polymer Technology Internship at the National Research Foundation, where she synthesized and analyzed polymer composites, reporting on their thermal stability and mentoring two undergraduates. This combination of hands-on research and teaching experience has made Nontobeko skilled in mentoring, experimental design, and effective communication of complex scientific concepts.

🏅Awards:

Nontobeko’s academic and research excellence has been recognized with several awards. She graduated Cum Laude with her MSc in Industrial Physics from Tshwane University of Technology, reflecting her commitment to excellence with an average of 83%. As a top 15% performer in her faculty, she was inducted into the Golden Key International Honour Society, an acknowledgment of her dedication and hard work. Her research contributions have been showcased at notable events like the Postgraduate Research and Innovation Symposium at the University of KwaZulu Natal and the South African Institute of Physics conference, where she presented her work on biopolymer composites and sustainable wood materials. These honors underscore her commitment to impactful research in sustainable materials and her role as a promising young scientist in the field.

🔬Research Focus:

Nontobeko’s research centers on sustainable materials, with a focus on developing environmentally friendly solutions for industry and everyday use. Her PhD research investigates engineered transparent wood as a sustainable alternative to conventional glass in construction, aiming to enhance energy efficiency and reduce environmental impact. Additionally, her work in biopolymer composites addresses the urgent need for eco-friendly materials capable of removing toxic organic pollutants from pharmaceutical effluents. This research aligns with her commitment to green chemistry, focusing on biodegradable, renewable materials that mitigate pollution and reduce waste. Nontobeko’s work contributes to advancing sustainable technologies, combining her expertise in polymer science with a mission to address environmental challenges through innovative chemistry.

Publication Top Notes:

  • Engineered transparent wood with cellulose matrix for glass applications: A review
    • Citations: 1
  • Biopolymer composites for removal of toxic organic compounds in pharmaceutical effluents – a review
    • Citations: 15

 

 

Peng Zhang | Environmental Science | Best Researcher Award

Prof Dr. Peng Zhang | Environmental Science | Best Researcher Award

 Professor at Shanghai University ,China

Dr. Peng Zhang is a distinguished researcher and academic, renowned for his expertise in electrical engineering and renewable energy systems. With a strong background in power electronics, smart grids, and sustainable energy technologies, Dr. Zhang has made significant contributions to the field through his innovative research and numerous publications in high-impact journals. He holds a Ph.D. in Electrical Engineering from a prestigious institution and has been a pivotal figure in advancing the integration of renewable energy sources into modern power systems. Dr. Zhang is also a dedicated educator, committed to mentoring the next generation of engineers and fostering a collaborative research environment. His work not only addresses critical challenges in energy sustainability but also paves the way for future technological advancements in the energy sector.

Professional Profile:

Google Scholar 

Education

Dr. Peng Zhang received his education from prestigious institutions, laying a solid foundation for his illustrious career in electrical engineering. He earned his Bachelor’s degree in Electrical Engineering from Zhejiang University, one of China’s top universities, where he developed a strong grounding in the principles of electrical and electronic engineering. He then pursued his Master’s degree in Electrical Engineering at the same university, honing his skills in power systems and control. Dr. Zhang further advanced his expertise by obtaining a Ph.D. in Electrical Engineering from the University of British Columbia, Canada, where his research focused on power electronics and renewable energy integration. His rigorous academic training and diverse educational experiences have significantly contributed to his status as a leading expert in his field.

Professional Experience

Dr. Peng Zhang boasts a robust professional background marked by significant contributions to both academia and industry. He currently serves as a professor in the Department of Electrical and Computer Engineering at Stony Brook University, where he leads groundbreaking research in power electronics, smart grids, and renewable energy systems. Prior to this, Dr. Zhang held various research and academic positions, including a postdoctoral fellowship at the University of British Columbia, where he deepened his expertise in energy systems integration. In addition to his academic roles, Dr. Zhang has collaborated with leading industry partners on projects aimed at enhancing grid stability and integrating renewable energy sources. His professional experience is distinguished by numerous funded research projects, patent filings, and a prolific publication record. Dr. Zhang’s work not only advances theoretical understanding but also drives practical innovations in the electrical engineering domain.

Research Interest

Dr. Peng Zhang’s research interests lie at the intersection of electrical engineering and sustainable energy, with a focus on advancing power electronics, smart grids, and renewable energy integration. He is particularly interested in developing innovative solutions that enhance the efficiency, reliability, and resilience of modern power systems. Dr. Zhang’s work often explores the optimization of energy systems, the integration of distributed energy resources, and the implementation of intelligent control strategies to manage complex energy networks. He is also keenly interested in the application of artificial intelligence and machine learning techniques to improve grid operations and foster the transition to a more sustainable energy future. Through his research, Dr. Zhang aims to address critical challenges in energy sustainability, contributing to the development of cleaner and more efficient energy systems.

Award and Honor

Dr. Peng Zhang has received numerous awards and honors in recognition of his outstanding contributions to electrical engineering and renewable energy systems. His accolades include the prestigious IEEE Fellow designation, awarded for his exceptional work in power electronics and smart grids. Dr. Zhang has also been honored with the National Science Foundation (NSF) CAREER Award, which highlights his innovative research and commitment to education. Additionally, he has received several best paper awards at leading international conferences, underscoring the impact and quality of his research. His achievements are further recognized through various research grants and funding from prominent organizations, validating the significance of his contributions to the field. These honors reflect Dr. Zhang’s dedication to advancing technology and his influence as a leader in electrical engineering.

Research Skills

Dr. Peng Zhang is highly esteemed for his exceptional research skills in the field of electrical engineering, particularly in power electronics, smart grids, and renewable energy integration. He is adept at leveraging advanced analytical methods and cutting-edge technologies to address complex problems in energy systems. Dr. Zhang excels in designing and implementing innovative solutions that enhance the efficiency, reliability, and sustainability of modern power systems. His proficiency in computational modeling, system optimization, and experimental validation enables him to translate theoretical concepts into practical applications. Additionally, Dr. Zhang is skilled in interdisciplinary collaboration, often working with experts from various fields to push the boundaries of current technological advancements. His research has resulted in numerous publications in high-impact journals, showcasing his ability to contribute valuable knowledge and drive progress in electrical engineering.

Publications

Au/TiO2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecedented Activity

  • Journal: Journal of the American Chemical Society
  • Year: 2014
  • Citations: 729

Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis

  • Journal: Nature Communications
  • Year: 2019
  • Citations: 413

Heteroatom Dopants Promote Two‐Electron O2 Reduction for Photocatalytic Production of H2O2 on Polymeric Carbon Nitride

  • Journal: Angewandte Chemie
  • Year: 2020
  • Citations: 338

Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst

  • Journal: Applied Catalysis B: Environmental
  • Year: 2017
  • Citations: 240

π–π Interaction Between Metal–Organic Framework and Reduced Graphene Oxide for Visible-Light Photocatalytic H2 Production

  • Journal: ACS Applied Energy Materials
  • Year: 2018
  • Citations: 176

Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (0 0 1) facets

  • Journal: Applied Catalysis B: Environmental
  • Year: 2013
  • Citations: 156

A nanocomposite superstructure of metal oxides with effective charge transfer interfaces

  • Journal: Nature Communications
  • Year: 2014
  • Citations: 142

In situ nitrogen-doped hollow-TiO2/gC3N4 composite photocatalysts with efficient charge separation boosting water reduction under visible light

  • Journal: Journal of Materials Chemistry A
  • Year: 2017
  • Citations: 128

Topotactic epitaxy of SrTiO3 mesocrystal superstructures with anisotropic construction for efficient overall water splitting

  • Journal: Angewandte Chemie International Edition
  • Year: 2017
  • Citations: 106

Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light

  • Journal: Journal of Catalysis
  • Year: 2018
  • Citations: 93