Assoc. Prof. Dr. Jing Qi | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Jing Qi | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Jing Qi , Environmental Chemistry , Associate Professor at Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Dr. Jing Qi is an Associate Professor at the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, China. Her research specializes in algae removal and secondary pollution control, with a keen interest in the oxidative stress mechanisms in algae, algal-bacterial interactions, and advanced flocculation technologies. She has significantly contributed to national and international water treatment research and has been principal investigator on several projects funded by the National Natural Science Foundation of China. Dr. Qi has authored more than 30 peer-reviewed journal articles and holds eight national invention patents. Her scientific work bridges fundamental algal physiology with applied environmental solutions, aiming to safeguard water quality and reduce health hazards. In her current role, she also contributes to mentoring young researchers and promoting innovations in water purification processes. She is recognized as a rising leader in eco-environmental sciences, with impactful contributions in aquatic environmental chemistry.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Jing Qi, an Associate Professor at the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, demonstrates exceptional research caliber in the field of aquatic environmental science. Her work addresses globally relevant challenges such as algae removal, secondary pollution control, and oxidative stress mechanisms in algae, which have direct applications in water quality improvement and public health protection. Her impressive academic trajectory, including a Ph.D. from RCEES (2017) and rapid advancement to Associate Professor (2021), reflects her strong research capability. Dr. Qi has led multiple national research projects funded by prestigious Chinese agencies, and has made significant scientific contributions through 30+ peer-reviewed publications in high-impact journals like Water Research, Environmental Science & Technology, and Journal of Hazardous Materials. Additionally, she holds eight national invention patents, underscoring her commitment to applied innovation and environmental problem-solving. Dr. Jing Qi is a highly suitable candidate for the “Best Researcher Award” . Her scholarly achievements, patent contributions, and leadership in national environmental projects affirm her as a pioneering scientist whose work significantly contributes to the advancement of sustainable water treatment technologies. She combines scientific excellence, innovation, and real-world impact, making her a compelling choice for this prestigious recognition.

🎓Education:

Dr. Jing Qi earned her Ph.D. in Environmental Science from the prestigious Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, in 2017. Her doctoral research focused on the mechanisms of algae behavior in water treatment processes, particularly the oxidative stress responses and interaction with chemical agents. This work laid the foundation for her ongoing studies on algal metabolism and secondary pollution control in drinking water systems. Prior to her Ph.D., Dr. Qi underwent intensive training in aquatic chemistry, environmental chemistry, and microbiological techniques, which provided her with a robust interdisciplinary foundation. Her academic excellence was consistently evident through her publications even during her early career. The comprehensive education she received at RCEES empowered her with advanced laboratory skills, critical thinking, and an applied approach to addressing China’s pressing water quality challenges, helping her transition smoothly into a research-intensive professional career.

🏢Work Experience:

Dr. Jing Qi began her professional journey as an Assistant Professor at the State Key Laboratory of Environmental Aquatic Chemistry, RCEES, after completing her Ph.D. in 2017. Her early projects focused on optimizing coagulation and oxidation techniques for algal control in raw water. In 2021, she was promoted to Associate Professor, reflecting her consistent contributions to national research projects and high-impact publications. At RCEES, she actively leads interdisciplinary research teams and collaborates with national water management agencies. Dr. Qi’s role encompasses both academic and applied dimensions—ranging from supervising postgraduate students and publishing scholarly work to developing patentable technologies for algae removal. Her involvement in applied environmental chemistry has made her a sought-after expert for improving China’s municipal water treatment processes. Her research group integrates biochemical, ecological, and technological strategies to mitigate algal blooms and associated pollutants in freshwater systems.

🏅Awards: 

Dr. Jing Qi has received multiple commendations for her innovative contributions to environmental science and water treatment. She has been a principal investigator on several prestigious grants from the National Natural Science Foundation of China, supporting her pioneering studies in algal oxidative stress and flocculation enhancement. Her research excellence has earned her awards for technological innovation and patent development within the Chinese Academy of Sciences. Dr. Qi has also been invited to present at national conferences and recognized for excellence in young scientist research forums. Her eight national invention patents on algae control and water purification reflect both scientific novelty and real-world impact. Additionally, several of her papers have been listed as highly cited in their respective journals. These honors underscore her position as a thought leader in aquatic environmental chemistry and a contributor to public health through improved drinking water technologies.

🔬Research Focus:

Dr. Jing Qi’s research primarily addresses the ecological and chemical mechanisms underlying algae removal and secondary pollution control in aquatic systems. Her focus includes the growth regulation and metabolic dynamics of algae in raw water, oxidative stress responses to disinfectants, and the microbial interactions between algae and bacteria. She investigates how algal organic matter contributes to pollution during water treatment and explores techniques such as pre-oxidation, enhanced flocculation, and photocatalysis to mitigate these effects. A distinctive feature of her work is the integration of biochemical analysis with environmental engineering solutions, ensuring both mechanistic understanding and practical application. Dr. Qi also explores microplastic-algae interactions, emerging pollutants, and their impact on trophic dynamics in aquatic food webs. Her interdisciplinary approach—combining microbiology, chemistry, and materials science—provides innovative strategies for sustainable drinking water treatment and eutrophication prevention, contributing directly to national and global environmental quality goals.

Publication Top Notes:

1. Environmental Gradient Changes Shape Multi-Scale Food Web Structures: Impact on Antibiotics Trophic Transfer in a Lake Ecosystem

2. Bipartite Trophic Levels Cannot Resist the Interference of Microplastics: A Case Study of Submerged Macrophytes and Snail

3. Prechlorination of Algae-Laden Water: The Effects of Ammonia on Chlorinated Disinfection Byproduct Formation During Long-Distance Transportation

 

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki , Environmental Chemistry , Jan Evangelista Purkyne University , Czech Republic

Dr. Karim Al Souki is a postdoctoral researcher and assistant professor at the Faculty of Environment, Jan Evangelista Purkyne University (UJEP), Czechia. With a Ph.D. in Earth and Universe Sciences from Lille 1 University, France, his academic journey reflects a strong foundation in plant biology and environmental sciences. Dr. Al Souki’s research spans phytoremediation, bioremediation, biochar utilization, and climate change mitigation through sustainable phytotechnology. He is a key contributor to international projects funded by NATO, Erasmus+, and Interreg, focusing on ecosystem restoration, water management, and environmental biotechnology. As an educator, he has taught courses across Europe on subjects such as environmental biotechnology, phytotechnology, and bio-economy. Dr. Al Souki’s interdisciplinary approach blends ecological theory with applied environmental solutions, making significant contributions to marginal land restoration and water pollution mitigation. His work promotes sustainability, ecological awareness, and environmental resilience through innovation and education.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

With a Ph.D. in Earth and Universe Sciences from Lille 1 University (France), and two Master’s degrees in Phyto-ecology and Plant Biology from Lebanese University, Dr. Karim Al Souki demonstrates a solid and multidisciplinary academic foundation. Dr. Karim Al Souki  leads and contributes to cutting-edge projects on phytoremediation, biochar technology, and environmental biotechnology—directly addressing climate change, pollution mitigation, and sustainable soil management. His research covers analytical techniques (FTIR, TGA, stable isotopes, DNA extraction), linking practical fieldwork with lab-based precision, ensuring both academic rigor and societal relevance. His role as project supervisor in initiatives like IDEAL and NATO-SPS illustrates leadership in shaping future environmental policies and technologies. Dr. Karim Al Souki is an ideal candidate for the “Best Researcher Award”, given his consistent, interdisciplinary contributions to environmental sciences. His research directly supports global sustainability goals through practical, innovative, and scalable solutions. Furthermore, his educational outreach, cross-border collaborations, and commitment to solving real-world ecological problems distinguish him as a researcher of international repute. This award would recognize and further empower his impactful scientific journey.

🎓Education:

Dr. Al Souki pursued his academic studies in biology and environmental sciences. He earned his Bachelor’s degree in General Biology (2008–2010), followed by a Master 1 in Plant Biology and Environment (2010–2011), and a Master 2 in Phyto-ecology, Resources, and Security Applications (2011–2012), all from Lebanese University, Lebanon. He then completed his Ph.D. in Earth and Universe Sciences at LGCgE, ISA-Lille, Lille 1 University of Sciences and Technologies, France (2014–2017). His academic foundation combines ecological sciences, environmental applications, and molecular understanding of plant-soil interactions. This educational pathway equipped him with the necessary tools to integrate ecological theory with practical environmental solutions. His training in Europe and the Middle East enabled him to adopt a multidisciplinary perspective and work in cross-cultural academic and research environments. His education has laid the groundwork for his specialization in environmental biotechnology, phytoremediation, and biochar applications.

🏢Work Experience:

Since October 2018, Dr. Karim Al Souki has been serving as a Post-doctoral researcher and Assistant Professor at UJEP, Czechia, where he teaches and conducts advanced research in environmental sciences. His prior experience includes teaching roles at ESME Sudria (France) and private institutions in Lille, where he lectured in phytoecology, molecular biology, and environmental science. He has supervised and contributed to numerous EU- and NATO-funded projects related to phytotechnology, biochar, soil-plant interactions, and wastewater treatment. His pedagogical contributions span multiple European universities and platforms, such as Erasmus, COIL, and ISA-Lille. He has taught subjects including Bioremediation, Bio-economy, Environmental Biotechnology, and Climate Change. Dr. Al Souki’s interdisciplinary teaching and research experience enable him to link theoretical knowledge with field-based applications, fostering student engagement and scientific problem-solving skills relevant to contemporary ecological challenges.

🏅Awards: 

Dr. Karim Al Souki has been recognized for his impactful research and cross-border educational initiatives. He is the Principal Investigator or Supervisor on several prestigious projects funded by international agencies such as NATO Science for Peace and Security Programme, Interreg (IDEAL project), and Erasmus+, highlighting his leadership in environmental science and sustainability education. He received the UJEP Internal Grant Agency funding multiple times (2021–2023), supporting his innovative work on biochar and Miscanthus x giganteus in soil restoration. He was awarded the Usti nad Labem region grant for young researchers for his study on quinoa in polluted soils. His consistent success in securing competitive research grants attests to the scientific merit and societal relevance of his projects. These accolades recognize his commitment to ecosystem services, educational outreach, and environmental restoration, and affirm his role as a rising figure in applied environmental sciences and international academic collaboration.

🔬Research Focus:

Dr. Al Souki’s research centers on phytotechnology, bioremediation, biochar characterization, and ecosystem service enhancement in marginal and contaminated soils. He specializes in using Miscanthus x giganteus and quinoa to rehabilitate former military lands and toxic-element-polluted environments. His research integrates stable isotope analysis, DNA-based microbial community profiling, and plant physiological assessments to explore rhizospheric interactions, nutrient cycling, and carbon sequestration. His work on biochar, especially its physico-chemical and ecotoxicological properties, supports sustainable agricultural and water reuse practices. His active projects include NATO-funded studies on climate change mitigation and EU-supported educational modules for water sustainability in the Elbe/Labe basin. His interdisciplinary approach links environmental microbiology, plant ecophysiology, and green chemistry, targeting real-world environmental problems with practical, nature-based solutions. His goal is to bridge science and education to improve soil health, water quality, and resilience against climate change.

Publication Top Notes:

1. An overview of potentially toxic element pollution in soil around lead–zinc mining areas

2. A comprehensive evaluation of the environmental and health risks associated with the potential utilization of chars produced from tires, electro-waste plastics and biomass

3. Characterizations of ash derived from the crops’ waste biomass for soil improvement and assisted phytoremediation

4. A 6-year review status on soil pollution in coal mining areas from Europe

5. Extracted rapeseed meal biochar combined with digestate as a soil amendment: Effect on lettuce (Lactuca sativa L.) biomass yield and concentration of bioavailable element fraction in the soil

6. Miscanthus x giganteus stress tolerance and phytoremediation capacities in highly diesel contaminated soils

7. The influence of diesel contaminated soil on Miscanthus x giganteus biomass thermal utilization and pyrolysis products composition

8. Evaluation of Miscanthus × giganteus Tolerance to Trace Element Stress: Field Experiment with Soils Possessing Gradient Cd, Pb, and Zn Concentrations

9. Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate

10. Utilization of Biochar for Eliminating Residual Pharmaceuticals from Wastewater Used in Agricultural Irrigation: Application to Ryegrass

 

 

 

 

Assoc. Prof. Dr. yifeng Lan | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. yifeng Lan | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. yifeng Lan | Environmental Chemistry | Associate Professor at Shanxi medical university, China

Dr. Yifeng Lan is an Associate Professor in the Department of Forensic Medicine at Shanxi Medical University, P. R. China. She holds a Ph.D. in Environmental Sciences from Shanxi University and has expertise in biosensors, fluorescence, and toxicological analysis. Dr. Lan has held positions as a lecturer and inspector and completed a research exchange at Georgia State University, USA. She is also a postdoctoral fellow at the China Institute for Radiation Protection. Her research is focused on developing biosensing platforms based on nucleic acid aptamers for forensic toxicology applications. Dr. Lan has secured prestigious grants, including the National Natural Science Foundation of China, and has published extensively in high-impact journals. She actively contributes to forensic toxicology education and scientific advancements in nanomaterials and biosensors.

Professional Profile :         

Scopus 

Summary of Suitability for Award:

Dr. Yifeng Lan is a distinguished researcher specializing in fluorescent biosensors, forensic toxicology, and nanomaterial-based sensing platforms. Her work integrates chemistry, nanotechnology, and forensic science, addressing critical challenges in environmental monitoring and toxicological detection. With a strong background in aptamer-based biosensors, she has pioneered novel signal amplification strategies to enhance detection sensitivity. Her postdoctoral research at the China Institute for Radiation Protection further expands her expertise in biosensor applications for forensic and environmental safety. Dr. Lan has received prestigious grants, including funding from the National Natural Science Foundation of China, and has published extensively in high-impact journals. Dr. Yifeng Lan’s groundbreaking contributions to forensic science, biosensor technology, and environmental monitoring make her a highly suitable candidate for the “Best Researcher Award”. Her innovative research, international collaborations, and impactful publications demonstrate her leadership and excellence in scientific advancements, making her a deserving recipient of this prestigious honor.

🎓Education:

Dr. Yifeng Lan completed her B.Sc. in Chemistry from Jinzhong College, P.R. China, in July 2008. She pursued her M.Sc. in Pharmacy at Shanxi University, where she specialized in the extraction and separation of chemical components from safflower, a traditional Chinese medicine, and successfully isolated five flavonoid compounds. She then earned her Ph.D. in Environmental Sciences from Shanxi University in July 2020, focusing on the development of multi-functional label-free nucleic acid aptamer sensing systems using signal amplification strategies. Additionally, she undertook an exchange research program at Georgia State University, USA, in 2019, where she synthesized and characterized two-dimensional molybdenum disulfide nanosheets. Her diverse academic background integrates chemistry, pharmacy, environmental sciences, and nanotechnology, shaping her expertise in biosensor development.

🏢Work Experience:

Dr. Yifeng Lan has accumulated extensive research and academic experience. She began as an undergraduate researcher (2004-2008), working on microcapsule preparation using chitosan-based coatings. As a graduate researcher (2008-2011), she studied the chemical components of safflower using chromatography techniques. From 2011 to 2017, she worked as an inspector at the Shanxi Food and Drug Control Institute, where she contributed to the national evaluation of drug samples and explored quality assessment methods. She then pursued her Ph.D. at Shanxi University (2017-2020), specializing in nucleic acid aptamer-based biosensing systems. In 2020, she joined the Department of Forensic Medicine at Shanxi Medical University as a lecturer, where she developed optical sensing platforms for small molecules. She was promoted to Associate Professor in December 2024, teaching forensic toxicology and conducting research on biosensor platforms. Since 2021, she has also been a postdoctoral fellow at the China Institute for Radiation Protection, focusing on fluorescent biosensors for test strips.

🏅Awards: 

Dr. Yifeng Lan has received multiple prestigious grants and recognitions for her contributions to biosensor research. She was awarded the Shanxi Province Science Foundation for Youths (2021-2024) for her research in fluorescence-based sensing systems. She also secured funding from the National Natural Science Foundation of China (2022-2025) for developing advanced aptamer-based biosensors for forensic applications. Her innovative work in toxicological analysis has earned her several institutional and national recognitions, further solidifying her reputation in the field of forensic medicine. Additionally, she has been an invited speaker at multiple international conferences, sharing her expertise on nanomaterials and biosensor technology. As a recognized expert, she actively collaborates with researchers worldwide and serves as a reviewer for high-impact scientific journals. Her contributions to biosensor development, forensic toxicology, and nanomaterial synthesis continue to influence cutting-edge research in environmental and medical applications.

🔬Research Focus:

Dr. Yifeng Lan’s research primarily focuses on the development of fluorescent biosensors for forensic and toxicological applications. She specializes in nucleic acid aptamer-based sensing platforms, utilizing signal amplification strategies to enhance detection sensitivity for small molecules and toxicants. Her expertise includes the fabrication of optical sensing platforms, leveraging nanomaterials such as molybdenum disulfide nanosheets for improved sensor performance. Her studies extend to microscale chemistry, where she explores novel approaches to environmental and toxicological monitoring. Additionally, she is involved in the development of rapid and cost-effective test strips for detecting contaminants and hazardous substances in food and environmental samples. Her interdisciplinary approach integrates chemistry, nanotechnology, and forensic science, addressing challenges in toxicological analysis, environmental sciences, and biosensor applications. Her ongoing research at the China Institute for Radiation Protection further expands the applications of fluorescence-based biosensing in radiation and forensic detection.

Publication Top Notes:

  • “A label-free Exonuclease I-assisted fluorescence aptasensor for highly selective and sensitive detection of silver ions.”

  • “Development of Rapid Colorimetric Assay for Detection of Gluconic Acid Using Iron(α) and Indigo Carmine.”

  • “Dual-signal fluorescence aptasensing system for adenosine triphosphate assisting by MoS₂ nanosheets.”

 

Assist. Prof. Dr. Mohammad Bagher Farhangi | Biogeotechnology | Environmental Chemistry Award

Assist. Prof. Dr. Mohammad Bagher Farhangi | Biogeotechnology | Environmental Chemistry Award

Assist. Prof. Dr. Mohammad Bagher Farhangi , University of Guilan , Iran

Prof. Dr. Mohammad Bagher Farhangi is a distinguished professor of soil microbiology at the University of Guilan, Iran. With a profound passion for environmental sustainability, he has dedicated his academic career to enhancing our understanding of microbial processes in soil and water systems. A seasoned educator and researcher, Prof. Farhangi excels in developing innovative teaching methodologies and supervising graduate students. His pioneering work on microbially induced calcite precipitation (MICP) has made significant contributions to the fields of environmental remediation and soil stabilization. He is actively involved in interdisciplinary collaborations, bringing expertise in microbiology to solve pressing global environmental challenges. Beyond academia, Prof. Farhangi is known for his leadership in departmental growth and university fundraising initiatives, reflecting his commitment to advancing education and research.

Professional Profile

Google Scholar

Orcid

Scopus

Summary of Suitability for Award:

Prof. Mohammad Bagher Farhangi is highly suitable for the “Environmental Chemistry Award” due to his pioneering contributions to sustainable environmental remediation through microbiological methods. His research emphasizes the integration of microbiology and environmental chemistry, focusing on Microbially Induced Calcite Precipitation (MICP) to remove heavy metals from water and soil and to filter pathogenic bacteria. These innovative approaches align directly with the principles of environmental chemistry by addressing pollution control and promoting sustainable environmental practices. Prof. Farhangi’s contributions exemplify the application of chemical and microbiological processes to address critical environmental challenges. His innovative methods in bioremediation and microbial applications make him an excellent candidate for the Environmental Chemistry Award, highlighting his commitment to sustainable environmental solutions and impactful research outcomes.

🎓Education:

Prof. Mohammad Bagher Farhangi has a comprehensive educational foundation in soil microbiology and environmental sciences. He earned his Ph.D. in Soil Microbiology, focusing on the role of microorganisms in soil ecosystems and their potential for environmental remediation. His M.Sc. in Soil Science emphasized microbial ecology and nutrient cycling, providing a deeper understanding of soil-plant interactions and sustainable agricultural practices. Beginning with a B.Sc. in Agriculture, Prof. Farhangi developed a strong foundation in agricultural sciences, particularly in managing soil health for improved productivity. Throughout his academic journey, he has engaged in interdisciplinary studies, integrating microbiology, chemistry, and environmental sciences. His education equips him to address pressing challenges in soil and environmental microbiology, including sustainable remediation technologies like microbially induced calcite precipitation (MICP).

🏢Work Experience:

Prof. Mohammad Bagher Farhangi boasts extensive professional experience in academia and research. Currently a professor of soil microbiology at the University of Guilan, he has played a pivotal role in enhancing the institution’s academic and research landscape. His expertise includes supervising graduate students, with several completing impactful theses under his guidance. Prof. Farhangi has spearheaded innovative research projects, notably in MICP technology, addressing heavy metal remediation and bacterial filtration. A dedicated educator, he has modernized course content to reflect the latest trends in microbiology and soil science. His collaborative endeavors extend to interdisciplinary research and consultancy projects, bridging academia and industry. Additionally, his leadership in university fundraising and departmental growth underscores his commitment to institutional advancement.

🏅Awards: 

Prof. Mohammad Bagher Farhangi’s outstanding contributions to soil microbiology and environmental science have been recognized with numerous accolades. He received the prestigious Young Scientist Award, celebrating his innovative research in MICP technology. His efforts in transforming academic practices earned him a Teaching Excellence Award, recognizing his dedication to modernizing educational methodologies. Prof. Farhangi has also been acknowledged with a Research Grant Award for his impactful projects in microbial applications for environmental remediation. His mentorship and guidance of graduate students have been lauded with a Student Leadership Award, showcasing his commitment to academic and professional growth. These honors reflect his unwavering dedication to advancing knowledge in soil microbiology and his role as a leader in the scientific community.

🔬Research Focus:

Prof. Mohammad Bagher Farhangi’s research centers on advancing environmental microbiology, with a particular focus on sustainable and innovative solutions. His expertise lies in Microbially Induced Calcite Precipitation (MICP), a cutting-edge technology used for heavy metal removal from water and soil and bacterial filtration. He explores the potential of microorganisms in stabilizing soils, improving structural integrity, and mitigating environmental pollution. His studies on pathogenic indicator bacteria filtration are groundbreaking in microbial water purification. Additionally, he delves into soil microbial ecology, examining nutrient cycling, microbial diversity, and ecosystem sustainability. Prof. Farhangi’s interdisciplinary approach integrates microbiology, chemistry, and environmental science, addressing global challenges like soil health, pollution control, and sustainable agriculture. His work is pivotal in bridging fundamental science with practical applications for environmental and societal benefit.

Publication Top Notes:

Saturated and unsaturated transport of cow manure-borne Escherichia coli through in situ clay loam lysimeters
Authors: MR Mosaddeghi, AAS Sinegani, MB Farhangi, AA Mahboubi, A Unc
Journal: Agriculture, Ecosystems & Environment
Citations: 34
Year: 2010

Bioremediation of cadmium in a sandy and a clay soil by microbially induced calcium carbonate precipitation after one week incubation
Authors: N Ghorbanzadeh, S Abduolrahimi, A Forghani, MB Farhangi
Journal: Arid Land Research and Management
Citations: 31
Year: 2020

Impact of calcium carbonate and temperature on survival of Escherichia coli in soil
Authors: MB Farhangi, AAS Sinegani, MR Mosaddeghi, A Unc, G Khodakaramian
Journal: Journal of Environmental Management
Citations: 22
Year: 2013

Short-term impacts of pomace application and Pseudomonas bacteria on soil available phosphorus
Authors: N Ghorbanzadeh, M Mahsefat, MB Farhangi, MK Rad, P Proietti
Journal: Biocatalysis and Agricultural Biotechnology
Citations: 18
Year: 2020

Effect of precipitation and sediment concentration on the loss of nitrogen and phosphorus in the Pasikhan River
Authors: E Ebrahimi, H Asadi, M Rahmani, MB Farhangi, A Ashrafzadeh
Journal: AQUA-Water Infrastructure, Ecosystems and Society
Citations: 10
Year: 2022

Soil quality assessment of paddy fields (in Northern Iran) with different productivities: Establishing the critical limits of minimum data set indicators
Authors: S Hemmati, N Yaghmaeian, MB Farhangi, A Sabouri
Journal: Environmental Science and Pollution Research
Citations: 9
Year: 2023

Variation entry of sediment, organic matter and different forms of phosphorus and nitrogen in flood and normal events in the Anzali wetland
Authors: E Ebrahimi, H Asadi, M Joudi, M Rezaei Rashti, MB Farhangi, …
Journal: Journal of Water and Climate Change
Citations: 9
Year: 2022

Phosphate removal from landfill leachate using ferric iron bioremediation under anaerobic condition
Authors: MB Farhangi, Z Ghasemzadeh, N Ghorbanzadeh, M Khalilirad, A Unc
Journal: Journal of Material Cycles and Waste Management
Citations: 9
Year: 2021

Potential application of Chlorella sp. biomass cultivated in landfill leachate as agricultural fertilizer
Authors: E Saadat, N Ghorbanzadeh, MB Farhangi, M Fazeli Sangani
Journal: Archives of Agronomy and Soil Science
Citations: 8
Year: 2023

Zinc bioremediation in soil by two isolated L-asparaginase and urease producing bacteria strains
Authors: N Ghorbanzadeh, Z Ghanbari, MB Farhangi, MK Rad
Journal: Applied Geochemistry
Citations: 8
Year: 2022

 

 

 

 

 

 

Dr.Razieh Sheikhi |Environmental Engineering|Best Researcher Award

Dr.Razieh Sheikhi |Environmental Engineering|Best Researcher Award

Dr. Razieh Sheikhi, Tehran University of Medical Sciences,Iran

Razieh Sheikhi serves as an Environmental Chemistry Lab Instructor at the Department of Environmental Health Engineering, Tehran University of Medical Sciences. A PhD candidate (ABD) in Environmental Health Engineering, she holds MSc and BS degrees from the same institution and has dedicated 20 years to teaching environmental chemistry. Her research spans water and wastewater treatment, environmental pollution control, and environmental chemistry. Her significant contributions include innovative methods for pollution reduction and water purification, reflected in a strong publication record with 236 citations and an h-index of 8. Razieh is also an Editorial Board member for the Journal of Advanced Immunopharmacology and a member of the Iranian Association of Environmental Health (IAEH).

Professional Profile

Google Scholar

Orcid

Summary of  Suitability for Award

Razieh Sheikhi’s comprehensive expertise, her track record of impactful research, and her dedication to environmental health make her a compelling candidate for the Best Researcher Award. Her innovative approach to water treatment and pollution control, coupled with her academic and professional contributions, reflect the qualities expected of a top researcher in environmental health engineering. This recognition would further her ability to influence the field and continue her contributions to sustainable environmental practices.

🎓Education:

Razieh Sheikhi is a PhD Candidate (ABD) in Environmental Health Engineering at Tehran University of Medical Sciences, expected to complete her degree in 2024. She earned both her MSc in 2002 and her BS in 1996 from the same institution, where she has developed a strong foundation in environmental health. Her educational background underpins her extensive research and teaching career in environmental chemistry and health engineering.

🏢Work Experience:

Razieh Sheikhi has over 20 years of experience as an Environmental Chemistry Lab Instructor in the Department of Environmental Health Engineering at Tehran University of Medical Sciences. In addition to her teaching role, she serves on the Editorial Board of the Journal of Advanced Immunopharmacology and actively reviews research projects. She is also a dedicated member of the Iranian Association of Environmental Health (IAEH), where she contributes her expertise in environmental health and chemistry.

🏅Awards:

Razieh Sheikhi has over 20 years of experience as an Environmental Chemistry Lab Instructor in the Department of Environmental Health Engineering at Tehran University of Medical Sciences. In addition to her teaching role, she serves on the Editorial Board of the Journal of Advanced Immunopharmacology and actively reviews research projects. She is also a dedicated member of the Iranian Association of Environmental Health (IAEH), where she contributes her expertise in environmental health and chemistry.

🔬Research Focus:

Razieh Sheikhi is nominated for the prestigious Best Researcher Award, recognizing her impactful contributions in environmental health engineering. Her work in water treatment, pollution control, and environmental chemistry reflects a strong commitment to advancing sustainable solutions for environmental challenges.

Publication Top Notes:

  1. A case study of BTEX characteristics and health effects by major point sources of pollution during winter in Iran
    • Citations: 70
  2. Investigation and evaluation of ultrasound reactor for reduction of fungi from sewage
    • Citations: 42
  3. Municipal solid waste recycling: Impacts on energy savings and air pollution
    • Citations: 31
  4. In-vitro effects of Mycobacterium bovis BCG-lysate and its derived heat shock proteins on cytokines secretion by blood mononuclear cells of rheumatoid arthritis patients in …
    • Citations: 24
  5. Synthesis and characterization of amino-functionalized magnetic nanocomposite (Fe3O4–NH2) for fluoride removal from aqueous solution

Eslam Syala | Environment | Environmental Chemistry Award

Dr. Eslam Syala | Environment | Environmental Chemistry Award

Doctorate at Institute of Graduate Studies and Researches (IGSR), Alexandria University, 163 Horreya Avenue, Shatby, 21526, Alexandria, Egypt.

Eslam Abdel Aziz Hussien Syala is a dedicated researcher and processing engineer specializing in Material Science. He holds a Ph.D. from Alexandria University and has a robust background in both practical engineering and academic research. His career is characterized by a strong commitment to advancing scientific knowledge, demonstrated through his extensive research publications, peer reviewing activities, and teaching roles. Syala’s diverse professional experiences, including technical translation and engineering roles, underscore his multifaceted expertise and contribution to the field.

Author Metrics

Scopus Profile

ORCID Profile

Google Scholar Profile

Eslam Syala has a significant record of publications in high-impact journals, reflecting his active role in the scientific community. His research has been featured in esteemed journals such as Scientific Reports, Ceramics International, and the Journal of Composite Materials. Syala’s work on various topics within Material Science, including composites and waste management, highlights his impactful contributions to the field. His role as a peer reviewer for numerous journals further underscores his engagement and influence in the academic community.

Citations and Documents: Eslam Syala has accrued a total of 193 citations across 157 documents. This indicates that his research work is frequently referenced by other scholars, reflecting its impact and relevance in the field of Material Science.

Documents: He has published 11 documents, which include research papers, articles, and possibly conference papers or reports. The number of documents gives an idea of the volume of his scholarly contributions.

h-index: Syala has an h-index of 7. This metric suggests that he has at least 7 papers that have each been cited at least 7 times. The h-index is used to measure both the productivity and citation impact of a researcher’s publications.

Education

Eslam Syala’s educational background is distinguished by his advanced degrees in Material Science and Metallurgy Engineering. He earned his Ph.D. in Material Science from Alexandria University with a high CGPA of 3.722/4, following a Master’s degree in the same field, where he ranked in the top 5% of his class. His undergraduate studies in Metallurgy Engineering at AL-Azhar University were marked by a strong academic performance, culminating in a highly praised graduation project on titanium extraction.

Research Focus

Syala’s research focus spans several key areas within Material Science. His work includes the development and characterization of composite materials, the study of waste management solutions such as using cement kiln dust for wastewater treatment, and the analysis of glass systems’ thermal and kinetic properties. These research areas reflect his commitment to addressing practical challenges and advancing scientific understanding in materials technology.

Professional Journey

Eslam Syala’s professional journey combines roles in engineering, academia, and technical translation. He currently serves as a Processing Engineer at the Egyptian Black Sand Company, where he manages operations and oversees plant commissioning. In addition to his engineering role, Syala is a part-time lecturer, teaching courses related to welding, corrosion control, and materials science. His experience as a technical translator for major industrial projects adds to his diverse skill set and professional expertise.

Honors & Awards

In September 2010, Eslam Syala received an award for academic distinction from the Faculty of Engineering at AL-Azhar University. This honor recognized his exceptional academic performance during his undergraduate studies, highlighting his dedication and excellence in his field of study.

Publications Noted & Contributions

Eslam Syala has authored and co-authored numerous influential publications in respected journals, addressing various aspects of Material Science. His notable contributions include studies on the treatment of dye-containing wastewater, thermal protection of steel, and the characterization of polymer composites. These publications demonstrate his extensive research efforts and impact in advancing material science knowledge.

“Thermal protection of steel using various ceramic-like fireproofing coatings systems: Comparative study”

  • Journal: Ceramics International
  • Publication Date: October 2024
  • DOI: 10.1016/j.ceramint.2024.06.123
  • Contributors: Essam El-Rafey, Mohamed Kamal Mostafa, Mohamed Abdel Gawad Konsouh, Mohamed M. Yousry, Eslam Syala
  • Summary: This study provides a comparative analysis of various ceramic-like fireproofing coatings designed to enhance the thermal protection of steel. The research evaluates the performance and effectiveness of different coating systems, aiming to identify the most efficient solutions for fire protection in industrial applications.

“The effective treatment of dye-containing simulated wastewater by using the cement kiln dust as an industrial waste adsorbent”

  • Journal: Scientific Reports
  • Publication Date: June 25, 2024
  • DOI: 10.1038/s41598-024-64191-5
  • Contributors: Eslam Syala, Wagih A. Sadik, Abdel-Ghaffar M. El-Demerdash, Waffa Mekhamer, M. Essam El-Rafey
  • Summary: This article investigates the use of cement kiln dust as an adsorbent for treating dye-containing simulated wastewater. The study demonstrates the effectiveness of using industrial waste materials for environmental remediation, providing a sustainable solution for wastewater treatment.

“Characterization of the extruded polypropylene filled with cement kiln dust composite”

  • Journal: Journal of Composite Materials
  • Publication Date: March 2023
  • DOI: 10.1177/00219983221147387
  • Contributors: Essam El-Rafey, Wagih A Sadik, Tawfik A Ramadan, Shimaa El-Farouk, Eslam Syala
  • Summary: This research focuses on the characterization of a composite material made from extruded polypropylene and cement kiln dust. The study examines the physical and mechanical properties of the composite, highlighting its potential applications and benefits in various industries.

“A study on the physical, mechanical, thermal properties and soil biodegradation of HDPE blended with PBS/HDPE-g-MA”

  • Journal: Polymer Bulletin
  • Publication Date: April 2022
  • DOI: 10.1007/s00289-021-03623-y
  • Contributors: E. El-Rafey, Walaa M. Walid, Eslam Syala, Abbas Anwar Ezzat, Salah F. Abdellah Ali
  • Summary: This study explores the physical, mechanical, and thermal properties of High-Density Polyethylene (HDPE) blended with Poly(butylene succinate) (PBS) and HDPE-g-MA. It also assesses the biodegradation of the material in soil, offering insights into its environmental impact and potential for sustainable use.

“Natural Fiber Reinforced Unsaturated Polyester Resin Filled with Bio-based Calcium Carbonate: Preparation and Examination”

  • Journal: Fibers and Polymers
  • Publication Date: April 11, 2022
  • DOI: 10.1007/s12221-022-4460-1
  • Part of ISSN: 1229-9197, 1875-0052
  • Summary: This paper discusses the development of a natural fiber reinforced unsaturated polyester resin incorporated with bio-based calcium carbonate. The research focuses on the preparation, examination, and properties of the composite material, emphasizing its potential applications and environmental benefits.

Research Timeline

Syala’s research timeline reflects a progression from fundamental studies in glass systems and their properties to practical applications in materials technology. From 2017 to 2020, he focused on kinetic characterization and thermal properties of tellurite glasses. In recent years, his research has shifted towards practical applications, including composite materials and waste management solutions, showcasing his evolving research interests and contributions.

Strengths of the Environmental Chemistry Award for Dr. Eslam Syala:

Interdisciplinary Impact: Dr. Syala’s research spans a diverse range of topics within Material Science, including waste management, composite materials, and thermal protection. This breadth demonstrates his ability to address various environmental challenges through innovative approaches, aligning well with the interdisciplinary nature of environmental chemistry.

High-Impact Publications: His work is published in reputable journals like Scientific Reports, Ceramics International, and Journal of Composite Materials. These journals are known for their rigorous peer-review processes and high visibility, indicating the significant impact and relevance of his research.

Practical Applications: Dr. Syala’s focus on practical applications, such as using industrial waste for wastewater treatment and developing fireproofing coatings, highlights his commitment to solving real-world environmental issues. This practical approach is highly valued in the field of environmental chemistry.

Commitment to Sustainability: His research on sustainable materials and waste management, such as the use of cement kiln dust and the development of biodegradable composites, reflects a strong commitment to environmental sustainability. This aligns with the goals of environmental chemistry to promote eco-friendly solutions.

Academic and Professional Experience: Dr. Syala’s extensive experience in both academia and industry enhances his ability to contribute to environmental chemistry. His roles as a processing engineer, lecturer, and peer reviewer demonstrate a well-rounded expertise that supports his research activities.

Areas for Improvement:

Increased Citation Impact: With an h-index of 7 and a total of 193 citations across 157 documents, there is potential for Dr. Syala to increase the visibility and citation impact of his work. Strategies could include targeting high-impact journals, engaging in collaborative research, and enhancing the dissemination of his findings.

Broader Research Topics: While Dr. Syala’s work is impressive, expanding his research to include emerging topics in environmental chemistry, such as climate change mitigation or advanced green technologies, could further strengthen his profile in this field.

Enhanced Outreach and Communication: Increasing outreach efforts, such as public lectures, workshops, or media engagement, could help raise awareness of his research and its implications for environmental chemistry. Effective science communication can amplify the impact of his findings.

Interdisciplinary Collaborations: Strengthening collaborations with researchers from related fields, such as environmental engineering or environmental policy, could provide new insights and broaden the scope of his research. This interdisciplinary approach can lead to more comprehensive solutions to environmental challenges.

Grant Funding and Research Opportunities: Pursuing additional research funding and exploring new research opportunities could enhance his ability to undertake larger-scale studies and contribute further to the field of environmental chemistry. Securing grants for innovative projects can also increase his research impact.

Conclusion:

Dr. Eslam Syala’s work in material science, particularly in areas related to environmental chemistry, demonstrates a strong commitment to addressing practical environmental challenges through innovative solutions. His impressive publication record, practical applications of his research, and diverse professional experience highlight his contributions to the field. By focusing on increasing the impact of his work, exploring new research topics, enhancing outreach efforts, fostering interdisciplinary collaborations, and securing additional funding, Dr. Syala can further strengthen his position as a leading researcher in environmental chemistry. His ongoing efforts and achievements position him well for continued success and recognition in this important field.

Peng Zhang | Environmental Science | Best Researcher Award

Prof Dr. Peng Zhang | Environmental Science | Best Researcher Award

 Professor at Shanghai University ,China

Dr. Peng Zhang is a distinguished researcher and academic, renowned for his expertise in electrical engineering and renewable energy systems. With a strong background in power electronics, smart grids, and sustainable energy technologies, Dr. Zhang has made significant contributions to the field through his innovative research and numerous publications in high-impact journals. He holds a Ph.D. in Electrical Engineering from a prestigious institution and has been a pivotal figure in advancing the integration of renewable energy sources into modern power systems. Dr. Zhang is also a dedicated educator, committed to mentoring the next generation of engineers and fostering a collaborative research environment. His work not only addresses critical challenges in energy sustainability but also paves the way for future technological advancements in the energy sector.

Professional Profile:

Google Scholar 

Education

Dr. Peng Zhang received his education from prestigious institutions, laying a solid foundation for his illustrious career in electrical engineering. He earned his Bachelor’s degree in Electrical Engineering from Zhejiang University, one of China’s top universities, where he developed a strong grounding in the principles of electrical and electronic engineering. He then pursued his Master’s degree in Electrical Engineering at the same university, honing his skills in power systems and control. Dr. Zhang further advanced his expertise by obtaining a Ph.D. in Electrical Engineering from the University of British Columbia, Canada, where his research focused on power electronics and renewable energy integration. His rigorous academic training and diverse educational experiences have significantly contributed to his status as a leading expert in his field.

Professional Experience

Dr. Peng Zhang boasts a robust professional background marked by significant contributions to both academia and industry. He currently serves as a professor in the Department of Electrical and Computer Engineering at Stony Brook University, where he leads groundbreaking research in power electronics, smart grids, and renewable energy systems. Prior to this, Dr. Zhang held various research and academic positions, including a postdoctoral fellowship at the University of British Columbia, where he deepened his expertise in energy systems integration. In addition to his academic roles, Dr. Zhang has collaborated with leading industry partners on projects aimed at enhancing grid stability and integrating renewable energy sources. His professional experience is distinguished by numerous funded research projects, patent filings, and a prolific publication record. Dr. Zhang’s work not only advances theoretical understanding but also drives practical innovations in the electrical engineering domain.

Research Interest

Dr. Peng Zhang’s research interests lie at the intersection of electrical engineering and sustainable energy, with a focus on advancing power electronics, smart grids, and renewable energy integration. He is particularly interested in developing innovative solutions that enhance the efficiency, reliability, and resilience of modern power systems. Dr. Zhang’s work often explores the optimization of energy systems, the integration of distributed energy resources, and the implementation of intelligent control strategies to manage complex energy networks. He is also keenly interested in the application of artificial intelligence and machine learning techniques to improve grid operations and foster the transition to a more sustainable energy future. Through his research, Dr. Zhang aims to address critical challenges in energy sustainability, contributing to the development of cleaner and more efficient energy systems.

Award and Honor

Dr. Peng Zhang has received numerous awards and honors in recognition of his outstanding contributions to electrical engineering and renewable energy systems. His accolades include the prestigious IEEE Fellow designation, awarded for his exceptional work in power electronics and smart grids. Dr. Zhang has also been honored with the National Science Foundation (NSF) CAREER Award, which highlights his innovative research and commitment to education. Additionally, he has received several best paper awards at leading international conferences, underscoring the impact and quality of his research. His achievements are further recognized through various research grants and funding from prominent organizations, validating the significance of his contributions to the field. These honors reflect Dr. Zhang’s dedication to advancing technology and his influence as a leader in electrical engineering.

Research Skills

Dr. Peng Zhang is highly esteemed for his exceptional research skills in the field of electrical engineering, particularly in power electronics, smart grids, and renewable energy integration. He is adept at leveraging advanced analytical methods and cutting-edge technologies to address complex problems in energy systems. Dr. Zhang excels in designing and implementing innovative solutions that enhance the efficiency, reliability, and sustainability of modern power systems. His proficiency in computational modeling, system optimization, and experimental validation enables him to translate theoretical concepts into practical applications. Additionally, Dr. Zhang is skilled in interdisciplinary collaboration, often working with experts from various fields to push the boundaries of current technological advancements. His research has resulted in numerous publications in high-impact journals, showcasing his ability to contribute valuable knowledge and drive progress in electrical engineering.

Publications

Au/TiO2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecedented Activity

  • Journal: Journal of the American Chemical Society
  • Year: 2014
  • Citations: 729

Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis

  • Journal: Nature Communications
  • Year: 2019
  • Citations: 413

Heteroatom Dopants Promote Two‐Electron O2 Reduction for Photocatalytic Production of H2O2 on Polymeric Carbon Nitride

  • Journal: Angewandte Chemie
  • Year: 2020
  • Citations: 338

Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst

  • Journal: Applied Catalysis B: Environmental
  • Year: 2017
  • Citations: 240

π–π Interaction Between Metal–Organic Framework and Reduced Graphene Oxide for Visible-Light Photocatalytic H2 Production

  • Journal: ACS Applied Energy Materials
  • Year: 2018
  • Citations: 176

Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (0 0 1) facets

  • Journal: Applied Catalysis B: Environmental
  • Year: 2013
  • Citations: 156

A nanocomposite superstructure of metal oxides with effective charge transfer interfaces

  • Journal: Nature Communications
  • Year: 2014
  • Citations: 142

In situ nitrogen-doped hollow-TiO2/gC3N4 composite photocatalysts with efficient charge separation boosting water reduction under visible light

  • Journal: Journal of Materials Chemistry A
  • Year: 2017
  • Citations: 128

Topotactic epitaxy of SrTiO3 mesocrystal superstructures with anisotropic construction for efficient overall water splitting

  • Journal: Angewandte Chemie International Edition
  • Year: 2017
  • Citations: 106

Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light

  • Journal: Journal of Catalysis
  • Year: 2018
  • Citations: 93