Prof. Mohammad Bakherad | Organic Chemistry | Best Researcher Award

Prof. Mohammad Bakherad | Organic Chemistry | Best Researcher Award

Prof. Mohammad Bakherad | Organic Chemistry | Researcher at Shahrood University of Technology, Iran

Mohammad Bakherad, born in 1969 in Mashhad, Iran, is a distinguished Professor of Organic Chemistry at Shahrood University of Technology. He earned his B.Sc. in Chemistry from Isfahan University (1992) and completed his M.Sc. (1995) and Ph.D. (2002) at Ferdowsi University of Mashhad under the mentorship of Majid M. Heravi and Mohammad Rahimizadeh. With a prolific research career, he has published over 147 ISI-indexed papers, contributing significantly to organic synthesis, heterocyclic chemistry, catalysis, and green chemistry. His expertise in organometallic reagents and innovative synthetic methodologies has gained international recognition. He has mentored numerous students and led cutting-edge research projects. His commitment to academic excellence and scientific contributions continues to shape the field of organic chemistry in Iran and beyond.

Professional Profile :         

Scopus 

Summary of Suitability for Award:

Dr. Mohammad Bakherad is a highly accomplished researcher in the field of organic chemistry, particularly in catalysis, heterocyclic chemistry, and green synthetic methodologies. His academic journey, from earning a Ph.D. in Organic Chemistry at Ferdowsi University of Mashhad to becoming a full Professor at Shahrood University of Technology, demonstrates his dedication to research and innovation. With over 147 ISI-cited papers, his contributions have significantly advanced the understanding and application of novel catalytic and environmentally friendly synthetic approaches. Dr. Mohammad Bakherad’s outstanding publication record, pioneering research in organic synthesis and catalysis, and commitment to sustainable chemistry make him an exceptional candidate for the “Best Researcher Award.” His work has had a profound impact on the scientific community, shaping the future of organic chemistry. His innovative methodologies, leadership in academia, and dedication to mentorship and collaborative research make him highly deserving of this recognition.

🎓Education:

Mohammad Bakherad pursued his B.Sc. in Chemistry at Isfahan University, Iran, from 1988 to 1992. He then continued his academic journey at Ferdowsi University of Mashhad, where he obtained his M.Sc. in Organic Chemistry (1993–1996) and later earned his Ph.D. in Organic Chemistry (1996–2002). His doctoral research was conducted under the supervision of esteemed professors Majid M. Heravi and Mohammad Rahimizadeh, focusing on advanced organic synthesis and heterocyclic chemistry. His academic background provided him with a strong foundation in organic methodologies, catalysis, and the development of novel heterocyclic compounds. Through rigorous training and research, he developed expertise in the synthesis of organic frameworks, organometallic reagents, and green chemistry applications. His educational journey laid the groundwork for a prolific career in organic synthesis, contributing significantly to the field with numerous publications and advancements in catalytic and environmentally friendly synthetic approaches.

🏢Work Experience:

Dr. Mohammad Bakherad has had an extensive academic career, beginning as an Assistant Professor of Organic Chemistry at Shahrood University of Technology in July 2003. His dedication and contributions to research and teaching led to his promotion to Associate Professor in January 2008. In February 2013, he achieved the rank of Professor, solidifying his position as a leading researcher in organic and heterocyclic chemistry. Throughout his career, he has mentored numerous students, guiding them in advanced research methodologies and fostering innovation in catalysis and organic synthesis. His teaching experience spans undergraduate and postgraduate levels, covering specialized topics such as organometallic chemistry, synthetic methodologies, and green chemistry. Additionally, he has been actively involved in collaborative research projects, contributing to cutting-edge developments in organic chemistry. His expertise has led to significant advancements in sustainable chemical processes and the development of novel heterocyclic frameworks.

🏅Awards: 

Dr. Mohammad Bakherad has received numerous accolades in recognition of his outstanding contributions to organic chemistry. He has been honored for his pioneering work in catalysis, green synthetic methods, and heterocyclic chemistry. His research excellence has been acknowledged through multiple awards from national and international scientific organizations. He has been invited as a keynote speaker at prestigious conferences, highlighting his expertise in organic synthesis and catalytic methodologies. His scholarly achievements include being recognized for his high-impact publications in leading scientific journals. Furthermore, his commitment to mentorship and academic excellence has earned him appreciation from students and colleagues alike. As a distinguished researcher, he has also been part of various scientific committees, contributing to the advancement of chemistry education and research. His contributions continue to shape the field, fostering innovation and inspiring future generations of chemists.

🔬Research Focus:

Dr. Mohammad Bakherad’s research focuses on organic synthesis, particularly in heterocyclic chemistry, catalysis, and green synthetic methodologies. He has made significant contributions to the development of novel heterocyclic compounds and organometallic reagents, which play a crucial role in medicinal and materials chemistry. His work in catalytic processes has led to innovative and environmentally friendly approaches for synthesizing complex organic molecules. He has explored palladium-catalyzed reactions, Sonogashira coupling, and cyclocondensation techniques to design efficient synthetic routes. Additionally, his interest in sustainable chemistry has driven his research on recyclable catalysts and water-based reactions, reducing the environmental impact of chemical synthesis. His extensive studies on heteroannulation reactions have resulted in the creation of novel bioactive molecules with potential pharmaceutical applications. With over 147 ISI-cited papers, his research continues to influence advancements in organic and green chemistry, making a lasting impact on the scientific community.

Publication Top Notes:

Synthesis, QSAR modeling, and molecular docking studies of 1,2,3-triazole-pyrazole hybrids as significant anti-cancer and anti-microbial agents

Synthesis of new hybrid compounds of imidazo[1,2-a]pyrimidine/pyridine based on quinoxaline through palladium-catalyzed coupling reactions and heteroannulation

A comprehensive review: medicinal applications and diverse synthetic strategies of pyrimidine-based compounds leveraging Suzuki and Sonogashira reactions

Synthesis, and molecular docking studies of novel 1,2,3-triazoles-linked pyrazole carboxamides as significant anti-microbial and anti-cancer agents

Copper catalysts supported by dehydroacetic acid chitosan schiff base for CuAAC click reaction in water

Citations: 1

Furo, Pyrano, and Pyrido[2,3-d]Pyrimidines: A Comprehensive Review of Synthesis and Medicinal Applications

Citations: 5

Synthesis of new 1,2,3-triazole-linked pyrimidines by click reaction

Synthesis of new 4,5-disubstituted-6-methyl-2-(methylthio) pyrimidines via C-C coupling reactions

New Hybrid Compounds from Imidazole and 1,2,3-Triazole: Efficient Synthesis of Highly Substituted Imidazoles and Construction of Their Novel Hybrid Compounds by Copper-Catalyzed Click Reaction

Citations: 1

An Efficient Synthesis of New Pyrazole-Linked Oxazoles via Sonogashira Coupling Reaction

Citations: 2

Dr. Imran Aslam | Materials Chemistry | Best Researcher Award

Dr. Imran Aslam | Materials Chemistry | Best Researcher Award

Dr. Imran Aslam | Materials Chemistry | Associate Professor at Department of Physics, GC Women University Sialkot , Pakistan

Dr. Imran Aslam is an Associate Professor (BPS-20) at the Department of Physics, GC Women University, Sialkot, Pakistan. With over 15 years of teaching and research experience, he has authored 60+ research articles in international peer-reviewed journals, accumulating 3250 citations, an H-index of 27, and an i10-index of 47. His research specializes in nano- heterostructured materials for energy storage, environmental applications, and density functional theory (DFT). He serves as a reviewer for prestigious journals like Scientific Reports (Nature), Journal of Crystal Growth, and Chemosphere. As an HEC-approved PhD supervisor, he has supervised 11 MS students and 4 PhD candidates. He has also been a keynote speaker at multiple international conferences. His contributions to academia have earned him accolades such as the CAS President’s International Fellowship (2016) and the Quaid-e-Azam Gold Medal Award (2020).

Professional Profile :         

Google Scholar

Scopus  

Summary of Suitability for Award:

Dr. Imran Aslam, an Associate Professor at GC Women University Sialkot, is a distinguished researcher in the field of nanomaterials and energy storage. With over 15 years of research and teaching experience, he has authored/co-authored more than 60 research articles in high-impact international journals, accumulating a total impact factor of 300 and over 3,250 citations (H-index: 27, i10-index: 47). His extensive research contributions span the synthesis and characterization of micro/nano heterostructured materials, photocatalysis, supercapacitors, and density functional theory (DFT). Additionally, he serves as a reviewer for multiple reputed journals and is an HEC-approved Ph.D. supervisor. His role as an invited speaker at international conferences further highlights his expertise. Dr. Imran Aslam’s significant contributions to material science, coupled with his prolific publication record, high citation impact, and leadership in research supervision, make him an outstanding candidate for the “Best Researcher Award.” His dedication to advancing nanotechnology and sustainable energy solutions further strengthens his suitability for this prestigious recognition.

🎓Education:

Dr. Imran Aslam holds a Postdoctoral Fellowship (2017) from the National Centre for Nanoscience and Technology (NCNST), Chinese Academy of Sciences. He earned his PhD (2015) from the Beijing Institute of Technology, China, as a recipient of the CSC Scholarship (2011-2015). His M.Phil. (2010) degree is from GC University, Lahore, Pakistan, where he was awarded the M.Phil. Fellowship at Salam Chair in Physics. Prior to that, he completed his M.Sc. (2008) in Physics from the University of the Punjab, Lahore. His academic achievements also include the Distinguished Student Award (2013/2014) at Beijing Institute of Technology, China. Throughout his education, Dr. Aslam has demonstrated a strong focus on nanotechnology, energy storage, photocatalysis, and computational material science, laying the foundation for his extensive research career.

🏢Work Experience:

Dr. Imran Aslam has an extensive 15-year career in academia and research. Currently, he is an Associate Professor at GC Women University, Sialkot. He has previously served as Resident Officer (2020-2023), Convener of the Mess Committee (2021-2023), Technical Evaluation Committee (2020-2023), and Events Management Committee (2022-2023) at UET Lahore, Narowal Campus. Additionally, he was MPhil Coordinator and Exam Superintendent (2015-2016) at the University of Gujrat. His contributions extend to exam coordination, admissions, and scholarship programs at GCWUS. He is an external examiner for MS/PhD theses at multiple universities, including University of Gujrat, Riphah International University, and The University of Chenab. As a co-PI of an HEC-funded project worth 9.4 million rupees, his expertise also spans research administration. Dr. Aslam actively reviews manuscripts for top-tier journals, ensuring quality contributions to the scientific community.

🏅Awards: 

Dr. Imran Aslam has received numerous national and international accolades in recognition of his academic and research contributions. In 2020, he was awarded the Quaid-e-Azam Gold Medal by Istehkam-e-Pakistan Foundation. His international recognition includes the CAS President’s International Fellowship Initiative (PIFI) 2016 for postdoctoral studies at the Chinese Academy of Sciences. As a PhD scholar at Beijing Institute of Technology, he was honored with the Distinguished Student Award (2013/2014) and the CSC Scholarship (2011-2015). During his M.Phil. at GC University, Lahore, he secured a fellowship at Salam Chair in Physics. His consistent excellence in research and leadership in various academic roles has further solidified his reputation as a distinguished scientist in materials science, photocatalysis, and nanotechnology.

🔬Research Focus:

Dr. Imran Aslam’s research is centered on the synthesis and characterization of micro/nano heterostructured materials using cost-effective methods. His work explores optical, photoluminescence, and energy storage properties with applications in supercapacitors and lithium-ion batteries. Additionally, his expertise extends to photocurrent response, incident photo-to-current conversion efficiency (IPCE), and photocatalytic hydrogen production via water-splitting. His environmental research involves photo-degradation processes for pollutant removal. He also conducts computational studies using Density Functional Theory (DFT) to predict and optimize material properties for various energy applications. His contributions have significantly advanced material science, nanotechnology, and environmental sustainability. His findings are published in high-impact journals, and he collaborates internationally to push the frontiers of nano-engineered materials.

Publication Top Notes:

Multifunctional g-C₃N₄ Nanofibers: A Template-Free Fabrication and Enhanced Optical, Electrochemical, and Photocatalyst Properties

Citations: 412

Tubular graphitic-C₃N₄: A Prospective Material for Energy Storage and Green Photocatalysis

Citations: 275

High-Valence-State NiO/Co₃O₄ Nanoparticles on Nitrogen-Doped Carbon for Oxygen Evolution at Low Overpotential

Citations: 239

Synthesis of Novel ZnV₂O₄ Hierarchical Nanospheres and Their Applications as Electrochemical Supercapacitor and Hydrogen Storage Material

Citations: 183

Template-Free Synthesis of CuS Nanosheet-Based Hierarchical Microspheres: An Efficient Natural Light Driven Photocatalyst

Citations: 174

Green Synthesis of TiO₂ Nanoparticles Using Lemon Peel Extract: Their Optical and Photocatalytic Properties

Citations: 147

Bifunctional Catalysts of Co₃O₄@GCN Tubular Nanostructured (TNS) Hybrids for Oxygen and Hydrogen Evolution Reactions

Citations: 143

Large-Scale Production of Novel g-C₃N₄ Microstrings with High Surface Area and Versatile Photodegradation Ability

Citations: 129

A Novel Z-Scheme WO₃/CdWO₄ Photocatalyst with Enhanced Visible-Light Photocatalytic Activity for the Degradation of Organic Pollutants

Citations: 128

One-Dimensional Graphitic Carbon Nitrides as Effective Metal-Free Oxygen Reduction Catalysts

Citations: 101

The Synergistic Effect Between WO₃ and g-C₃N₄ Towards Efficient Visible-Light-Driven Photocatalytic Performance

Citations: 95

Prof. Qinghui Zeng | Materials Chemistry | Medical Chemistry Award

Prof. Qinghui Zeng | Materials Chemistry | Medical Chemistry Award

Prof. Qinghui Zeng | Materials Chemistry | professor at Changchun University of Chinese Medicine ,China

Prof. Qinghui Zeng is a distinguished researcher in fluorescent nanomaterials, biomarkers, and medical immunodetection. He has pioneered advancements in fluorescence resonance energy transfer (FRET), quantum dots, and gold nanorods for biomedical applications. His groundbreaking work includes using fluorescent carbon dots for targeted drug delivery and fluorescence tracing, as well as developing spinal endoscopes and other medical instruments. With over 75 SCI-indexed publications and 23 national and international patents, he has made significant contributions to nanomedicine and optoelectronic devices. His work has been recognized with multiple awards, including the Jilin Provincial Natural Science Academic Achievement Award.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Qinghui Zeng is highly suitable for the “Medical Chemistry Award” due to his groundbreaking contributions to nanomaterials, optoelectronic biosensors, and biomedical applications. His research in fluorescent nanomaterials, fluorescence resonance energy transfer (FRET), and targeted drug delivery has had a profound impact on medical diagnostics and therapeutics. His pioneering work on quantum dots, gold nanorods, and carbon dots has led to significant advancements in biosensing, molecular imaging, and cancer treatment. Additionally, his expertise in nanotechnology-driven drug delivery systems has enabled real-time fluorescence tracking of therapeutic agents, improving precision medicine. Prof. Qinghui Zeng’s extensive contributions to medical chemistry and nanomedicine make him an outstanding candidate for the “Medical Chemistry Award”. His work has pushed the boundaries of biomedical research, leading to practical applications in diagnostics, targeted therapy, and medical instrumentation. His innovations in fluorescent nanomaterials, optoelectronic biosensors, and drug delivery systems have significantly enhanced the precision and efficiency of medical treatments. Given his exceptional academic and professional achievements, Prof. Zeng is highly deserving of this recognition.

🎓Education:

Prof. Qinghui Zeng holds a strong academic background in chemistry and materials science, specializing in biomedical nanotechnology. He earned his undergraduate and master’s degrees in chemistry, followed by a Ph.D. in materials for biomedical applications. His academic journey has been marked by innovative research on nanomaterials, bioimaging, and targeted drug delivery. His doctoral research focused on fluorescence enhancement using metal plasma fields, laying the foundation for his groundbreaking work in FRET-based biosensing and nanomedicine. He has furthered his expertise through postdoctoral research in nanobiotechnology, collaborating with leading institutions in China.

🏢Work Experience:

Prof. Zeng has an extensive academic and research career at Changchun University of Chinese Medicine and the Northeast Asia Institute of Chinese Medicine. With over 15 years of experience, he has led multiple national and provincial research projects, including two from the National Natural Science Foundation of China. His expertise spans fluorescent nanomaterials, optoelectronic devices, and medical immunodetection. As a principal investigator, he has supervised numerous Ph.D. and master’s students, contributing significantly to biomedical research. He is also involved in industry collaborations, bringing innovative nanotechnology-based solutions to healthcare.

🏅Awards: 

Prof. Qinghui Zeng has been widely recognized for his outstanding contributions to nanomaterials, optoelectronics, and biomedical research. He has received the Second Prize of Jilin Provincial Natural Science Academic Achievement Award, acknowledging his pioneering work in fluorescent nanomaterials and medical immunodetection. Additionally, he was honored with the Eighth Changbai Youth Science and Technology Prize for his innovative research in fluorescence resonance energy transfer (FRET) and quantum dot-based biosensors. Over the years, he has won a total of four prestigious scientific research awards, recognizing his excellence in biomedical applications of nanotechnology. His leadership in research has led to his role as the principal investigator for multiple national and provincial-level projects, including two funded by the National Natural Science Foundation of China. His groundbreaking work in targeted drug delivery and advanced medical instrumentation has significantly advanced the field of nanomedicine and bioimaging.

🔬Research Focus:

Prof. Zeng’s research primarily focuses on fluorescent nanomaterials, optoelectronic devices, and biomedical applications. His work on fluorescence resonance energy transfer (FRET) has enhanced the efficiency of biosensing and molecular imaging, leading to significant advancements in medical diagnostics. He has extensively worked with quantum dots and gold nanorods, developing multi-marker immunoassays for rapid and sensitive disease detection. His pioneering studies on fluorescent carbon dots have led to groundbreaking applications in targeted drug delivery and fluorescence-based cancer therapy, enabling real-time tracking of drug release within cancer cells. Furthermore, he has contributed to the development of spinal endoscopes and other advanced medical instruments, integrating nanotechnology with minimally invasive medical procedures. His innovative approach to optoelectronic biosensors and nanomaterial-based drug carriers has positioned him as a leading researcher in biomedical nanotechnology, bridging the gap between materials science and clinical medicine.

Publication Top Notes:

Title: A general synthesis method for small-size and water-soluble NaYF4:Yb, Ln upconversion nanoparticles at high temperature

Title: Highly Stable Core/Shell AgIn5S8/ZnS Quantum Dots for Pure White Light-Emitting Diodes

Citations: 2

Title: Ultra-small-size, highly efficient and stable CsPbBr3 quantum dots synthesized by using a cesium-dodecyl benzene sulfonic acid solution

Citations: 13

Title: Spectrally Stable Blue Light-Emitting Diodes Based on All-Inorganic Halide Perovskite Films

Citations: 6

Title: Flexible Quantum-Dot Color-Conversion Layer Based on Microfluidics for Full-Color Micro-LEDs

Citations: 13

Title: Synthesis of carbon dots with strong luminescence in both dispersed and aggregated states by tailoring sulfur doping

Citations: 42

Title: Research on the influence of polar solvents on CsPbBr3 perovskite QDs

Citations: 42

Dr. Diba Kadivar | Inorganic Chemistry | Best Researcher Award

Dr. Diba Kadivar | Inorganic Chemistry| Best Researcher Award

Dr. Diba Kadivar | Inorganic Chemistry| Ph. D. graduate in inorganic chemistry at chemistry and chemical engineering research center of iran , Iran

Dr. Diba Kadivar is a Ph.D. graduate in Inorganic Chemistry with extensive expertise in anticancer platinum complexes. She has been serving as a technical assistant at the Iranian Food and Drug Administration (IFDA) for over eight years, contributing to pharmaceutical research and regulatory affairs. Dr. Kadivar has conducted significant studies on the synthesis, characterization, and biological activity of novel platinum-based anticancer agents. Her research focuses on the impact of geometric isomerism and aliphatic N-substituted glycine derivatives on platinum complexes’ pharmacological properties. She has published multiple papers in reputed journals and actively collaborates on cancer cell line studies. Passionate about innovative drug discovery, she has contributed to the development of metal-based nanocomplexes for potential therapeutic applications. Dr. Kadivar remains committed to advancing medicinal inorganic chemistry through her research and collaborations, aiming to enhance the effectiveness of anticancer therapies while minimizing side effects.

Professional Profile :         

Google Scholar

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Diba Kadivar is a distinguished researcher in inorganic chemistry, specializing in anticancer platinum complexes. With a Ph.D. in inorganic chemistry and eight years of experience as a technical assistant at the Iranian Food and Drug Administration (IFDA), she has made notable contributions to the development of novel platinum-based anticancer agents. Her research focuses on the impact of geometric isomerism and the role of aliphatic N-substituted glycine derivatives in enhancing the biological activities of platinum complexes. She has published in reputable journals such as Elsevier and the Iranian Quarterly Journal of Chemical Communications, with a citation index of 18. Dr. Diba Kadivar’s innovative research on platinum-based anticancer drugs, scientific contributions, and expertise in inorganic medicinal chemistry make her highly suitable for the “Best Researcher Award.” Her work advances cancer treatment strategies, and her publications demonstrate scientific excellence and impact in medicinal chemistry.

🎓Education:

Dr. Diba Kadivar pursued her doctoral studies in Inorganic Chemistry, specializing in metal-based drug development and anticancer platinum complexes. Her academic journey has been marked by a strong foundation in medicinal chemistry, with a keen interest in exploring the role of isomerism in drug efficacy. During her Ph.D., she conducted extensive research on platinum complexes with glycine derivatives, focusing on their interaction with DNA and anticancer properties. Her work involved molecular docking, dynamic simulations, and in-vitro studies to evaluate the pharmacological potential of these compounds. Through her research, she contributed to the field of coordination chemistry and its applications in medicine. She has actively participated in international conferences, presenting her findings on novel platinum-based therapies. With a passion for drug discovery, Dr. Kadivar continues to apply her expertise in chemistry to enhance the effectiveness of anticancer agents.

🏢Work Experience:

Dr. Diba Kadivar has accumulated over eight years of professional experience as a technical assistant at the Iranian Food and Drug Administration (IFDA). In this role, she has been actively involved in regulatory affairs, pharmaceutical analysis, and drug quality control, ensuring the safety and efficacy of therapeutic compounds. Alongside her administrative responsibilities, she has played a vital role in cancer research, working in laboratory settings to study platinum-based anticancer agents. Her expertise extends to working with cancer and normal cell lines, contributing to drug screening and cytotoxicity assays. Additionally, she has been involved in synthesizing and characterizing novel platinum complexes, focusing on their pharmacological interactions. Dr. Kadivar also collaborates with academic institutions and research centers, aiming to bridge the gap between regulatory science and drug discovery. Her hands-on experience in both research and regulatory affairs makes her a key contributor to pharmaceutical advancements in Iran.

🏅Awards: 

Dr. Diba Kadivar has been recognized for her contributions to inorganic and medicinal chemistry, particularly in the field of platinum-based anticancer research. She has received accolades for her pioneering work on the role of geometric isomerism in anticancer drug efficacy. Her research has been acknowledged at national and international scientific conferences, where she has been invited as a speaker and presenter. She has also played a key role in regulatory initiatives at the Iranian Food and Drug Administration, contributing to drug quality assurance and research-based policy-making. Additionally, her publications in esteemed journals such as Elsevier and the Iranian Quarterly Journal of Chemical Communications have received notable citations, highlighting her impact on the field. Dr. Kadivar’s dedication to advancing cancer therapy and pharmaceutical sciences continues to earn her recognition among her peers, further solidifying her reputation as an innovative researcher in medicinal inorganic chemistry.

🔬Research Focus:

Dr. Diba Kadivar’s research primarily revolves around the synthesis, characterization, and biological evaluation of platinum-based anticancer complexes. She investigates the impact of geometric isomerism on drug efficacy, focusing on how structural variations influence DNA interactions and cytotoxicity. Her studies explore novel ligand designs, particularly aliphatic N-substituted glycine derivatives, to enhance the pharmacological properties of platinum complexes. In addition to drug synthesis, she conducts in-vitro studies on cancer and normal cell lines to assess the cytotoxic potential of these compounds. She is also involved in molecular docking and dynamic simulations to predict drug interactions at the molecular level. Furthermore, she has worked on calcium, magnesium, copper, and zinc glycine edible nanocomplexes, aiming to develop biocompatible metal-based therapies. Through her interdisciplinary approach, Dr. Kadivar contributes to bridging chemistry and medicine, paving the way for new, targeted anticancer treatments with improved therapeutic outcomes.

Publication Top Notes:

Pharmacological properties of some 3-substituted indole derivatives, a concise overview

Authors: K. Nikoofar, D. Kadivar, S. Shirzadnia

Citations: 13

Year: 2014

Effect of geometric isomerism on the anticancer property of new platinum complexes with glycine derivatives as asymmetric N, O donate ligands against human cancer

Authors: D. Kadivar, M. E. Moghadam, B. Notash

Citations: 5

Year: 2024

Novel anticancer agents, Pt complex with 1-pyrrolidineacetic acid ligand: Synthesis, biological activity, DNA interaction, molecular docking, and dynamic study

Authors: D. Kadivar, M. E. Moghadam, M. Rezaeisadat

Year: 2025

 

Prof. Dr. Pengwei Zhao | Medicinal Chemistry | Best Researcher Award

Prof. Dr. Pengwei Zhao | Medicinal Chemistry | Best Researcher Award

Prof. Dr. Pengwei Zhao | Medicinal Chemistry | Ph.D., Master’s Supervisor at Inner Mongolia Medical University, School of Basic Medical Sciences, China 

Dr. Pengwei Zhao is a Professor at the School of Basic Medical Sciences, Inner Mongolia Medical University, he serves as a master’s supervisor and holds various academic positions. He is a member of the Jiusan Society and actively contributes to scientific research as a registered reviewer for Medical Science Monitor and Chinese Journal of Tissue Engineering Research. He is also a youth editorial board member of Modern Oncology and a director of the Inner Mongolia Bioengineering Society. His research focuses on tumor immunology and pharmacological mechanisms of Mongolian medicine. Dr. Zhao has led multiple national and regional research projects, including studies on β-defensins, immune resistance, and cancer treatment mechanisms. His contributions to microbiology and oncology are widely recognized, with several impactful publications in international journals.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Pengwei Zhao, a distinguished Professor at Inner Mongolia Medical University, has made significant contributions to tumor immunology, cancer pharmacology, and Mongolian medicine. His research on β-defensins and their role in immune modulation and cancer therapy has led to groundbreaking findings, particularly in colorectal and triple-negative breast cancer (TNBC). With numerous high-impact publications, including in Pharmacogenomics Journal and World Journal of Gastrointestinal Oncology, his work is recognized globally. His ongoing National Natural Science Foundation of China project further highlights his leadership in cancer research.  Dr. Pengwei Zhao’s extensive research, innovative methodologies, and interdisciplinary approach make him an outstanding candidate for the “Best Researcher Award”. His contributions to immunotherapy, autophagy, and microbiome-related cancer treatments have the potential to shape future oncological therapies. Recognizing him with this award would honor his pioneering discoveries and impact on global cancer research.

🎓Education:

Dr. Pengwei Zhao holds a Ph.D. in Basic Medical Sciences with a specialization in tumor immunology and pharmacology. His doctoral research focused on β-defensin-mediated immune modulation and cancer therapy. He pursued his higher education at Inner Mongolia Medical University, where he developed expertise in molecular biology, pharmacology, and immunology. His early education emphasized microbiology and traditional Mongolian medicine. Dr. Zhao further enhanced his skills through postdoctoral research and collaborations with leading scientists in cancer biology. His education provided a strong foundation in oncological pharmacology, signaling pathways, and immune resistance mechanisms. He has continuously expanded his knowledge through national and international conferences, workshops, and training programs. His academic journey reflects a commitment to translational research, bridging basic science with clinical applications in cancer therapy.

🏢Work Experience:

Dr. Zhao has been a Professor at Inner Mongolia Medical University for several years, where he also serves as a Master’s Supervisor. His professional roles extend beyond teaching, as he holds multiple directorial positions in national and regional scientific societies. He is a reviewer for prestigious journals, including Medical Science Monitor and Chinese Journal of Digestive Diseases. As a youth editorial board member of Modern Oncology, he actively contributes to cancer research. He has successfully led multiple research projects funded by national and regional agencies, focusing on cancer immunology, microbiology, and Mongolian medicine-based therapies. Additionally, Dr. Zhao has conducted collaborative research on β-defensins, autophagy, and immune resistance mechanisms. His expertise in pharmacological pathways and microbial interactions has significantly advanced the understanding of cancer treatment. He has also been invited as a speaker and panelist at various oncology and pharmacology conferences.

🏅Awards: 

Dr. Pengwei Zhao has received multiple prestigious awards and honors in recognition of his contributions to tumor immunology and Mongolian medicine research. He has been honored by the Inner Mongolia Medical University for excellence in research and mentorship. His work on β-defensins and their role in cancer has earned him accolades from Inner Mongolia’s Science and Technology Department. He has also received distinguished reviewer awards from journals such as Medical Science Monitor and Chinese Journal of Tissue Engineering Research. As a key member of the Chinese Society of Ethnomedicine and Pharmacy, he has been acknowledged for his research on the pharmacological mechanisms of traditional Mongolian medicine. His contributions to microbiology and immunology have been recognized by the Inner Mongolia Microbiology Society, and he has been invited as a young committee member of the Chinese Microbiological Society’s Clinical Microbiology Professional Committee.

🔬Research Focus:

Dr. Pengwei Zhao’s research primarily focuses on tumor immunology, cancer pharmacology, and the therapeutic potential of Mongolian medicine. He investigates the molecular mechanisms of β-defensins in cancer, particularly their role in immune regulation and tumor suppression. His work explores how β-defensin-1 peptides modulate PD-1/PD-L1 immune resistance in colorectal cancer. Additionally, he studies Mongolian medicinal formulations like Sendeng-4 and their mechanisms against skin cancer. His research also extends to microbiology, analyzing how bacterial infections, such as those caused by Staphylococcus aureus and Klebsiella pneumoniae, influence lung epithelial immune responses. Dr. Zhao has also contributed significantly to understanding long noncoding RNAs (lncRNAs) and their regulatory impact on autophagy pathways in cancer. His interdisciplinary approach integrates immunology, molecular biology, and ethnopharmacology, providing novel insights into cancer therapy, host-pathogen interactions, and the development of targeted immunotherapies.

Publication Top Notes:

Upregulation of p300 in paclitaxel-resistant TNBC: implications for cell proliferation via the PCK1/AMPK axis

Authors: P. Zhao, Pengwei; J. Cui, Jiaxian; X. Wang, Xiumei

Journal: Pharmacogenomics Journal

Year: 2024

Citations: 2

Human β-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer cells through long non-coding RNA TCONS_00014506

Authors: Y. Zhao, Yuxin; Y. Cui, Yan; X. Li, Xinhong; L. Bao, Lili; P. Zhao, Pengwei

Journal: World Journal of Gastrointestinal Oncology

Year: 2024

Citations: 3

Effect of Staphylococcus aureus in pneumonia mouse model on promotion of mBD-3 expression through ERK1/2

Authors: Yongqing Ni, Xiaoduo Bi, Pengwei Zhao

Ligilactobacillus salivarius LZZAY01 accelerated autophagy and apoptosis in colon cancer cells and improved gut microbiota in CAC mice

Authors: Yang W, Li T, An S, Chen R, Zhao Y, Cui J, Zhang M, Lu J, Tian Y, Bao L, Zhao P

Journal: Microbiol Spectrum

Year: 2025

LPS Promoted HPMEC Autophagy by Suppression of the PI3K/Akt/mTOR through Inhibited TIMAP-Promoted Moesin Expression in Sepsis

Authors: Jili Wen, Pengwei Zhao, HuiJuan Ren, JunMin Wu

Journal: Journal of Biological Regulators and Homeostatic Agents

Year: 2023

 

Assoc. Prof. Dr. Paresh Patel | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Paresh Patel | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Paresh Patel , Uka Tarsadia University , India

Dr. Paresh N. Patel, is an Indian chemist and academic leader, currently serving as the I/c Director of the Tarsadia Institute of Chemical Science, Uka Tarsadia University, Gujarat. With over 12 years of experience in teaching, research, and administration, Dr. Patel has significantly contributed to organic synthesis, nanotechnology, and bio-sensor development. He has authored 42 peer-reviewed publications, holds five patents, and supervised numerous MSc and PhD scholars. As an editor and reviewer for reputed journals, he actively engages in the scientific community. Dr. Patel has been instrumental in securing several high-value research grants, collaborating with academia and industry to advance chemical sciences.

Professional Profile

Orcid

Scopus

Summary of Suitability for Award:

Dr. Paresh N. Patel is an accomplished researcher with a prolific career spanning over a decade in chemical sciences. His expertise lies in organic synthesis, nanotechnology, and biosensor development, supported by 42 international publications, five patents, and significant research grants totaling over ₹3 crore. He has successfully led and collaborated on high-impact projects funded by prestigious organizations such as DST, GUJCOST, GSBTM, and DBT, demonstrating his ability to secure competitive funding and deliver innovative outcomes. Dr. Paresh N. Patel’s exceptional achievements, diverse research portfolio, and impactful contributions make him highly suitable for the “Best Researcher Award.” His innovative work has advanced the frontiers of chemical sciences and demonstrated practical relevance, aligning with the award’s objective of recognizing excellence in research.

🎓Education:

Dr. Paresh N. Patel completed his PhD in Organic Synthesis from Sardar Patel University in 2013, after earning an MSc in Organic Chemistry (2009) and a BSc in Chemistry (2007) from the same institution. His academic training provided a robust foundation for his research in asymmetric synthesis, nanomaterials, and renewable resources. During his doctoral studies, he specialized in single-crystal X-ray diffraction and advanced organic methodologies. He also received an Institute Postdoctoral Fellowship at IIT Madras, where he further honed his expertise in heterocyclic compound synthesis. Over his academic journey, Dr. Patel has consistently demonstrated academic excellence, evident in his comprehensive research output and accolades for innovation.

🏢Work Experience:

Dr. Paresh N. Patel has an illustrious career spanning academia and research. He has served as an I/c Director at Tarsadia Institute of Chemical Science since 2019 and was promoted to Associate Professor in 2024. Previously, he was an Assistant Professor (2016–2024) at Uka Tarsadia University and a Postdoctoral Fellow at IIT Madras (2013–2016), contributing to teaching and research in organic chemistry. He has also worked as a Fellow at NIF-Ahmedabad and an SRF at Sardar Patel University. His roles have encompassed teaching spectroscopy, nanotechnology, and stereochemistry, as well as guiding MSc, PhD, and Postdoctoral scholars. Dr. Patel’s leadership in organizing scientific events and workshops reflects his dedication to fostering innovation and skill development in chemical sciences.

🏅Awards: 

Dr. Paresh N. Patel has earned numerous accolades for his contributions to chemical research. He was awarded the prestigious DST Inspire Grant (₹24 lakh) and several significant project grants, including ₹30 lakh from GUJCOST and ₹32 lakh from GSBTM. He also received an International Travel Grant from DBT to present his research in the USA and was a recipient of a ₹10 lakh ICSR-IIT Madras project fund. His excellence in academia has been recognized through various seed grants from Uka Tarsadia University and industrial-funded research projects. Additionally, his proposals under DST-SYST and DST-TDP are under consideration, with a substantial ₹3 crore DST-FIST project in preparation. These accolades highlight Dr. Patel’s commitment to advancing scientific knowledge and fostering impactful collaborations.

🔬Research Focus:

Dr. Paresh N. Patel’s research centers on innovative applications of organic chemistry and nanotechnology. His projects include developing nano-scale organic biosensors (DST-SERB) and synthesizing gold nanoparticles from renewable resources for organic synthesis (GSBTM). He also explores asymmetric synthesis using biocatalysts and collaborates with industry to develop biotechnology for hydrogen and ethanol production. His research portfolio includes several high-value grants, such as DST Inspire, GUJCOST, and GSBTM. Dr. Patel’s interdisciplinary approach integrates materials science, biotechnology, and organic chemistry, aiming to address environmental and industrial challenges. His work not only advances theoretical understanding but also offers practical solutions in chemical and biosensor technology.

Publication Top Notes:

Title: Study of lawsone and its modified disperse dyes derived by triple cascade reaction: dyeing performance on nylon and polyester fabrics
Authors: Patel, N.C., Desai, D.H., Patel, P.N.
Year: 2024
Citations: 2

Title: Selective detection of azelnidipine in pharmaceuticals via carbon dot mediated spectrofluorimetric method: A green approach
Authors: Lodha, S.R., Gore, A.H., Merchant, J.G., Shah, S.A., Shah, D.R.
Year: 2024
Citations: 1

Title: Benzothiophene based semi-bis-chalcone as a photo-luminescent chemosensor with real-time hydrazine sensing and DFT studies
Authors: Oza, N.H., Kasundra, D., Deshmukh, A.G., Boddula, R., Patel, P.N.
Year: 2024
Citations: 0

Title: A lawsone based novel disperse dyes with DHPMs scaffold: dyeing studies on nylon and polyester fabric
Authors: Patel, N.C., Talati, K.S., Patel, P.N.
Year: 2024
Citations: 0

Title: Surface functionalized graphene oxide integrated 9,9-diethyl-9H-fluoren-2-amine monohybrid nanostructure: Synthesis, physicochemical, thermal and theoretical approach towards optoelectronics
Authors: Borane, N., Boddula, R., Odedara, N., Jirimali, H., Patel, P.N.
Year: 2024
Citations: 1

Title: Fungus reinforced sustainable gold nanoparticles: An efficient heterogeneous catalyst for reduction of nitro aliphatic, aromatic and heterocyclic scaffolds
Authors: Deshmukh, A.G., Rathod, H.B., Patel, P.N.
Year: 2023
Citations: 1

Title: Green and sustainable bio-synthesis of gold nanoparticles using Aspergillus Trinidadensis VM ST01: Heterogeneous catalyst for nitro reduction in water
Authors: Deshmukh, A.G., Mistry, V., Sharma, A., Patel, P.N.
Year: 2023
Citations: 3

Title: Design and synthesis of chalcone mediated novel pyrazoline scaffolds: Discovery of benzothiophene comprising antimicrobial inhibitors
Authors: Tandel, S.N., Kasundra, D.V., Patel, P.N.
Year: 2023
Citations: 2

Title: Studies of novel benzofuran based chalcone scaffolds: A dual spectroscopic approach as selective hydrazine sensor
Authors: Tandel, S.N., Deshmukh, A.G., Rana, B.U., Patel, P.N.
Year: 2023
Citations: 4

Title: Novel chalcone scaffolds of benzothiophene as an efficient real-time hydrazine sensor: Synthesis and single crystal XRD studies
Authors: Tandel, S.N., Mistry, P., Patel, P.N.
Year: 2023
Citations: 4

 

 

 

Assoc. Prof. Dr. cetin bayrak | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. cetin bayrak | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. cetin bayrak , Agri Ibrahim Cecen University , Turkey

Dr. Çetin Bayrak is an Associate Professor at Ağrı İbrahim Çeçen University, Turkey. With a strong academic foundation in organic chemistry, he holds dual Bachelor’s degrees in Chemistry and Food Engineering from Atatürk University, where he also completed his MSc and PhD in Organic Chemistry. Dr. Bayrak’s research spans natural product synthesis, bromination, and mechanistic organic chemistry, focusing on biologically active molecules and enzyme inhibition studies. He has published extensively in top-tier journals and contributed to several high-impact research projects funded by TUBITAK. Dr. Bayrak has also been a visiting scholar with the Kozlowski Group, furthering his expertise in synthesis and catalysis. In addition to his academic accomplishments, he has presented at numerous international conferences, showcasing his innovative research. An expert in NMR spectroscopy and organic compound characterization, Dr. Bayrak’s work bridges fundamental organic chemistry and applied biological research.

Professional Profile

Google Scholar

Orcid

Scopus

Summary of Suitability for Award:

Dr. Çetin Bayrak is a distinguished academic and researcher with extensive contributions to the field of organic chemistry. He has demonstrated excellence in education, holding dual bachelor’s degrees in Chemistry and Food Engineering, and advanced degrees (M.Sc. and Ph.D.) from Atatürk University. His research career includes notable positions, such as Associate Professor and Assistant Professor at Ağrı İbrahim Çeçen University, and a visiting scholar experience that highlights his global scientific engagement. Dr. Çetin Bayrak is a highly suitable candidate for the “Best Researcher Awards” due to his significant academic achievements, impactful research contributions, and demonstrated commitment to advancing the field of organic chemistry. His innovative work and dedication make him a strong contender for this prestigious recognition.

🎓Education:

Dr. Çetin Bayrak completed his education at Atatürk University, Erzurum, Turkey. He earned a BSc in Chemistry (2004–2008) and a double major in Food Engineering (2005–2009). For postgraduate studies, he pursued an MSc in Organic Chemistry (2010–2013) and a PhD in Organic Chemistry (2013–2017). His research during this time laid a robust foundation in organic synthesis, with a focus on biologically active bromophenols and reaction mechanisms. His academic journey continued as an Assistant Professor at Ağrı İbrahim Çeçen University (2017–2024) and later as an Associate Professor (2024–present). From 2021 to 2023, Dr. Bayrak was a visiting scholar with the Kozlowski Group, where he advanced his expertise in triazole phosphines and catalytic applications. This diverse and rigorous academic training has shaped him into a leading researcher in organic and mechanistic chemistry, emphasizing biologically significant compound synthesis and enzyme activity studies.

🏢Work Experience:

Dr. Çetin Bayrak has a rich professional background in organic chemistry research and teaching. He began his academic career as an Assistant Professor at Ağrı İbrahim Çeçen University in 2017, where he was promoted to Associate Professor in 2024. From 2021 to 2023, he worked as a visiting scholar with the Kozlowski Group, focusing on triazole phosphines and catalytic applications. His extensive project experience includes significant contributions to TUBITAK-funded research, such as the first synthesis of biologically active bromophenols (Project 113Z702) and the total synthesis of Onosmon analogs (Project 119R034). Dr. Bayrak has presented his work at numerous national and international conferences, sharing insights into enzyme inhibition, molecular docking, and natural product synthesis. He is proficient in advanced characterization techniques like NMR, GCMS, and HPLC, showcasing a commitment to cutting-edge research in mechanistic and applied organic chemistry.

🏅Awards: 

Dr. Çetin Bayrak has received recognition for his groundbreaking contributions to organic chemistry. He was honored with funding through prestigious TUBITAK programs, including Project 2219 for his work on triazole phosphines and their catalytic applications (2021–2023). His projects, such as the first synthesis of biologically active bromophenols and the total synthesis of Onosmon analogs, highlight his innovative approach to natural product synthesis and catalysis. Dr. Bayrak’s consistent publication of high-impact research has earned him accolades within the scientific community, and his presentations at esteemed international conferences have further distinguished his academic career. These honors underscore his dedication to advancing the field of organic chemistry, with a particular focus on biologically significant compounds and their applications.

🔬Research Focus:

Dr. Çetin Bayrak’s research centers on organic synthesis, focusing on the development of biologically active molecules and natural product derivatives. His work includes bromination reactions, mechanistic organic chemistry, and enzyme inhibition studies. Dr. Çetin Bayrak has synthesized novel bromophenol compounds, characterized their biological activities, and explored their inhibitory effects on enzymes like carbonic anhydrase and aldose reductase. He is also proficient in molecular docking studies, elucidating enzyme-ligand interactions. Recent projects include developing triazole phosphines for selective oxidative addition and investigating their catalytic properties. With expertise in advanced analytical techniques like NMR and HPLC, Dr. Çetin Bayrak’s research contributes significantly to medicinal chemistry and material science, bridging theoretical and applied organic chemistry.

Publication Top Notes:

Title: The first synthesis, carbonic anhydrase inhibition, and anticholinergic activities of some bromophenol derivatives with S including natural products
Authors: C. Bayrak, P. Taslimi, H.S. Karaman, İ. Gülçin, A. Menzek
Citations: 139
Year: 2019

Title: The first synthesis of 4-phenylbutenone derivative bromophenols including natural products and their inhibition profiles for carbonic anhydrase, acetylcholinesterase, and…
Authors: Ç. Bayrak, P. Taslimi, İ. Gülçin, A. Menzek
Citations: 135
Year: 2017

Title: The first synthesis and antioxidant and anticholinergic activities of 1-(4, 5-dihydroxybenzyl)pyrrolidin-2-one derivative bromophenols including natural products
Authors: M. Rezai, C. Bayrak, P. Taslimi, İ. Gülçin, A. Menzek
Citations: 87
Year: 2018

Title: Synthesis and rearrangement reactions of 1,4-dihydrospiro[1,4-methanonaphthalene-9,1′-cyclopropane] derivatives
Authors: C. Bayrak, H. Senol, S. Sirtbasi, E. Sahin, A. Menzek
Citations: 19
Year: 2018

Title: Cycloaddition reaction of spiro[2.4]hepta-4,6-dien-1-ylmethanol and PTAD: a new rearrangement
Authors: H. Şenol, C. Bayrak, A. Menzek, E. Şahin, M. Karakuş
Citations: 18
Year: 2016

Title: Synthesis and photophysical properties of new pyrazolines with triphenyl and ester derivatives
Authors: A.M. Şenol, Ç. Bayrak, A. Menzek, Y. Onganer, N. Yaka
Citations: 14
Year: 2020

Title: Synthesis and aldose reductase inhibition effects of celecoxib derivatives containing pyrazole linked-sulfonamide moiety
Authors: C. Bayrak
Citations: 10
Year: 2022

Title: The first synthesis of phenylpropanoid derivative bromophenols including natural products: Formation of an indene derivative compound
Authors: C. Bayrak, A. Menzek
Citations: 8
Year: 2020

Title: 1,3‐dipolar cycloaddition reactions of the compound obtained from cyclopentadiene‐PTAD and biological activities of adducts formed selectively
Authors: M.A. Yavari, P. Taslimi, C. Bayrak, T. Taskin‐Tok, A. Menzek
Citations: 7
Year: 2022

Title: Synthesis and biological activity of some bromophenols and their derivatives including natural products
Authors: C. Bayrak, P. Taslimi, N. Kilinc, I. Gulcin, A. Menzek
Citations: 6
Year: 2023

Yangyang Gao | Chemistry and Materials Science | Best Researcher Award

Prof Dr. Yangyang Gao | Chemistry and Materials Science | Best Researcher Award

Professor at Beijing University of Chemical Technology, China

Professor Dr. Yangyang Gao is a prominent figure in the field of materials science and engineering, recognized for his innovative research and contributions to energy storage technologies. He holds a Ph.D. from the Massachusetts Institute of Technology (MIT), where his groundbreaking work focused on developing advanced materials for lithium-ion batteries and supercapacitors. Dr. Gao’s research is driven by a deep understanding of the fundamental electrochemical processes and a commitment to creating sustainable energy solutions. His prolific publication record in top-tier scientific journals highlights his influence and thought leadership in the field. Throughout his career, Dr. Gao has received numerous accolades for his pioneering work, reflecting his dedication to advancing materials science. In addition to his research, he is a passionate educator and mentor, nurturing the next generation of scientists and engineers. Dr. Gao’s work not only bridges the gap between academia and industry but also significantly impacts the future of energy technology, emphasizing sustainability and innovation.

Professional Profile:

Google Scholar

Education

Professor Dr. Yangyang Gao’s educational journey is marked by academic excellence and a commitment to advancing the field of materials science and engineering. He completed his undergraduate studies with a Bachelor of Science in Materials Science from Tsinghua University, where he graduated with honors, demonstrating early on his aptitude for scientific inquiry and research. Dr. Gao then pursued his graduate studies at the prestigious Massachusetts Institute of Technology (MIT), where he earned his Ph.D. in Materials Science and Engineering. His doctoral research at MIT focused on the development of novel materials for energy storage applications, under the mentorship of leading experts in the field. This rigorous academic training provided Dr. Gao with a solid foundation in both theoretical and experimental aspects of materials science, setting the stage for his future contributions to the field.

Professional Experience

Professor Dr. Yangyang Gao brings a wealth of professional experience to the field of materials science and engineering, encompassing both academic and industry roles. As a faculty member at esteemed institutions, Dr. Gao has served as a professor of materials science and engineering, where he has made significant contributions to research, teaching, and mentorship. His expertise in energy storage materials and technologies has led to collaborations with leading industry partners, facilitating the translation of his research into practical applications. Dr. Gao’s professional experience also includes consulting roles with companies in the energy sector, where he has provided valuable insights and expertise on materials development and technology innovation. Additionally, he has served on advisory boards and technical committees, contributing his expertise to the advancement of the field. Throughout his career, Dr. Gao’s professional experience has been characterized by a commitment to excellence, innovation, and collaboration, making him a respected figure in both academia and industry.

Research Interest

Professor Dr. Yangyang Gao’s research interests lie at the cutting edge of materials science and engineering, with a particular focus on developing advanced materials for energy storage and conversion. His work encompasses the design and synthesis of high-performance materials for lithium-ion batteries, supercapacitors, and other next-generation energy storage devices. Dr. Gao is particularly interested in understanding the fundamental mechanisms of electrochemical reactions and how they can be manipulated to enhance the performance, durability, and safety of energy storage systems. His research also explores the development of novel nanomaterials and their applications in sustainable energy technologies, aiming to create more efficient and environmentally friendly solutions. By integrating experimental techniques with computational modeling, Dr. Gao seeks to uncover new insights into material behaviors at the atomic and molecular levels. His interdisciplinary approach not only advances the field of materials science but also contributes significantly to addressing global energy challenges.

Award and Honor

Professor Dr. Yangyang Gao has received numerous awards and honors that reflect his exceptional contributions to the field of materials science and engineering. His innovative research in energy storage technologies has earned him prestigious accolades, including the National Science Foundation (NSF) CAREER Award, which recognizes early-career faculty with the potential to serve as academic role models in research and education. Dr. Gao has also been honored with the Materials Research Society (MRS) Young Investigator Award for his pioneering work in the development of advanced battery materials. Additionally, he has received the Electrochemical Society (ECS) Toyota Young Investigator Fellowship, acknowledging his significant advancements in sustainable energy solutions. His scholarly excellence is further demonstrated by multiple Best Paper Awards at international conferences and a Distinguished Teaching Award for his dedication to education and mentorship. These awards and honors underscore Dr. Gao’s impact on both scientific innovation and academic excellence, solidifying his reputation as a leading figure in his field.

Research Skills

Professor Dr. Yangyang Gao possesses a diverse and comprehensive set of research skills that make him a leader in materials science and engineering. His expertise in the synthesis and characterization of advanced materials is complemented by his proficiency in various state-of-the-art analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Dr. Gao is adept at employing electrochemical analysis methods such as cyclic voltammetry and electrochemical impedance spectroscopy to investigate the performance and stability of energy storage materials. Additionally, his skills in computational modeling and simulation allow him to predict and optimize material properties at the atomic level, providing valuable insights into their electrochemical behaviors. Dr. Gao’s ability to integrate experimental and theoretical approaches enables him to tackle complex research questions and drive innovation in energy storage technologies. His meticulous approach to research, combined with his strong problem-solving abilities and collaborative spirit, has led to numerous high-impact publications and significant advancements in the field.

Publications

  • Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation
    • J Liu, Y Gao, D Cao, L Zhang, Z Guo
    • Langmuir 27 (12), 7926-7933
    • 381 citations
    • 2011
  • Polymer–nanoparticle interfacial behavior revisited: A molecular dynamics study
    • J Liu, Y Wu, J Shen, Y Gao, L Zhang, D Cao
    • Physical Chemistry Chemical Physics 13 (28), 13058-13069
    • 120 citations
    • 2011
  • The interesting influence of nanosprings on the viscoelasticity of elastomeric polymer materials: Simulation and experiment
    • J Liu, YL Lu, M Tian, F Li, J Shen, Y Gao, L Zhang
    • Advanced Functional Materials 23 (9), 1156-1163
    • 93 citations
    • 2013
  • Molecular dynamics simulations of the structural, mechanical and visco-elastic properties of polymer nanocomposites filled with grafted nanoparticles
    • J Shen, J Liu, H Li, Y Gao, X Li, Y Wu, L Zhang
    • Physical Chemistry Chemical Physics 17 (11), 7196-7207
    • 79 citations
    • 2015
  • Nanoparticle chemically end-linking elastomer network with super-low hysteresis loss for fuel-saving automobile
    • J Liu, Z Zheng, F Li, W Lei, Y Gao, Y Wu, L Zhang, ZL Wang
    • Nano Energy 28, 87-96
    • 73 citations
    • 2016
  • Revisiting the dispersion mechanism of grafted nanoparticles in polymer matrix: a detailed molecular dynamics simulation
    • J Shen, J Liu, Y Gao, D Cao, L Zhang
    • Langmuir 27 (24), 15213-15222
    • 64 citations
    • 2011
  • Increasing the thermal conductivity of graphene-polyamide-6, 6 nanocomposites by surface-grafted polymer chains: Calculation with molecular dynamics and effective-medium …
    • Y Gao, F Müller-Plathe
    • The Journal of Physical Chemistry B 120 (7), 1336-1346
    • 63 citations
    • 2016
  • Molecular dynamics simulation of dispersion and aggregation kinetics of nanorods in polymer nanocomposites
    • Y Gao, J Liu, J Shen, L Zhang, D Cao
    • Polymer 55 (5), 1273-1281
    • 49 citations
    • 2014
  • Existence of a Glassy Layer in the Polymer‐Nanosheet Interface: Evidence from Molecular Dynamics
    • Y Gao, J Liu, L Zhang, D Cao
    • Macromolecular Theory and Simulations 23 (1), 36-48
    • 42 citations
    • 2014
  • Self-repairable, recyclable and heat-resistant polyurethane for high-performance automobile tires
    • S Hu, S He, Y Wang, Y Wu, T Shou, D Yin, G Mu, X Zhao, Y Gao, J Liu, …
    • Nano Energy 95, 107012
    • 40 citations
    • 2022
  • Elucidating and tuning the strain-induced non-linear behavior of polymer nanocomposites: a detailed molecular dynamics simulation study
    • J Shen, J Liu, Y Gao, X Li, L Zhang
    • Soft Matter 10 (28), 5099-5113
    • 40 citations
    • 2014
  • Influence of various nanoparticle shapes on the interfacial chain mobility: a molecular dynamics simulation
    • Y Gao, J Liu, J Shen, Y Wu, L Zhang
    • Physical Chemistry Chemical Physics 16 (39), 21372-21382
    • 40 citations
    • 2014
  • Influence of graphene oxide and carbon nanotubes on the fatigue properties of silica/styrene-butadiene rubber composites under uniaxial and multiaxial cyclic loading
    • Z Xu, S Jerrams, H Guo, Y Zhou, L Jiang, Y Gao, L Zhang, L Liu, S Wen
    • International Journal of Fatigue 131, 105388
    • 39 citations
    • 2020
  • Uniaxial deformation of nanorod filled polymer nanocomposites: a coarse-grained molecular dynamics simulation
    • Y Gao, J Liu, J Shen, L Zhang, Z Guo, D Cao
    • Physical Chemistry Chemical Physics 16 (30), 16039-16048
    • 2014