Dr. Satyen Kumar Das | Chemical Engineering | Best Researcher Award

Dr. Satyen Kumar Das | Chemical Engineering | Best Researcher Award

Dr. Satyen Kumar Das , Chemical Engineering ,  Chief General Manager at Indian Oil Corporation Limited, R&D Centre , India

Dr. Satyen Kumar Das is a distinguished Chemical Engineer and Chief General Manager at Indian Oil R&D Centre, leading the Refining Technology domain. Since joining Indian Oil in 1995, he has contributed nearly 30 years of cutting-edge research, commercialization, and troubleshooting in petroleum refining, sustainability, and circularity. He is recognized for pioneering indigenous technologies such as Ind-Coker, Needle Coke, INDMAX, and INDEcoP2F, significantly contributing to India’s energy innovation and self-reliance. With over 200 patents (144 granted globally) and 94 technical publications, his work bridges research and industry application seamlessly. Dr. Das is known for driving initiatives in crude-to-chemicals, bio-refinery, waste-to-energy, and CO₂ valorization. He has led the successful deployment of several commercial-scale processes and continues to champion green and circular technologies for a sustainable energy future. His leadership and innovation have earned him several prestigious national accolades, making him a key figure in India’s refining research landscape.

Professional Profile : 

Google Scholar 

Scopus

Summary of Suitability for Award:

Dr. Satyen Kumar Das is a seasoned chemical engineering researcher with nearly three decades of experience at the forefront of petroleum refining technology. As Chief General Manager at Indian Oil R&D, he has spearheaded groundbreaking innovations in residue upgradation, crude-to-chemicals, plastic circularity, and CO₂ valorization—making significant contributions toward energy sustainability and circular economy. He has led the commercialization of six major technologies and supported the operation of four commercial plants. With 210 patents filed (144 granted across multiple jurisdictions including the US, Europe, and India) and 94 journal and conference publications, his research has had both academic impact and industrial translation. Dr. Das has been honored by multiple national bodies, including the Ministry of Petroleum & Natural Gas (GoI), DSIR, and AIMA, for innovations like INDMAX, Needle Coke Technology, and IV- IZOMaxCATR. His work bridges fundamental research, applied technology, and commercial deployment, positioning him as a pioneer in refining technology and sustainable process development. Dr. Satyen Kumar Das exemplifies the qualities sought for the “Best Researcher Award”—originality, industrial relevance, academic excellence, and societal impact. His contributions have not only advanced the frontiers of petroleum research but also addressed critical environmental and sustainability challenges. He is an exceptional candidate for this prestigious recognition.

🎓Education:

Dr. Satyen Kumar Das holds a Ph.D. in Chemical Engineering from the Indian Institute of Technology (IIT) Delhi, where he specialized in advanced refining technologies. He earned his M.Tech in Chemical Engineering from IIT Kanpur, where he developed a strong foundation in process design, catalysis, and fuel technology. He began his academic journey with a B.Tech in Chemical Engineering from Calcutta University, where he demonstrated academic brilliance and curiosity for applied research. His academic path through premier institutions helped him cultivate expertise across petroleum refining, catalysis, process engineering, and materials chemistry. The rigorous and interdisciplinary training he received has been instrumental in his successful translation of R&D projects into commercial technologies. His educational background also laid the groundwork for his future role as a technocrat and innovator in India’s petroleum industry. His continuous learning mindset remains central to his leadership at Indian Oil R&D Centre.

🏢Work Experience:

Dr. Das began his professional journey at Indian Oil’s R&D Centre in 1995. Over nearly three decades, he has grown to become Chief General Manager, heading Refining Technology. From 1995 to 2013, he played a pivotal role in developing processes such as INDMAX, INDALIN, DIST-Extra, and MAXLIN. His technical services and troubleshooting expertise in FCC/RFCC/INDMAX made a significant impact on operational efficiency. From 2014 onward, he has been spearheading key initiatives including Ind-Coker, Crude to Chemicals, Needle Coke, and INDEcoP2F (plastic circularity). He has led technology commercialization efforts, driving innovations like MMO catalysts, Octamax, and IV- IZOMaxCATR. Dr. Das has overseen deployment of over 4 commercial technologies and filed over 210 patents, marking his influence on both national and global energy platforms. His forward-looking leadership also covers futuristic domains such as bio-refinery, CO₂ valorization, and advanced carbon materials, ensuring India’s alignment with energy sustainability goals.

🏅Awards: 

Dr. Satyen Kumar Das has been honored with numerous prestigious awards for his innovation in petroleum refining. He received the NPMP Award for INDMAX and Needle Coke technologies 🧪, and the DSIR Award for INDMAX commercialization 🛢️. The AIMA Award recognized his breakthroughs in R&D and AI integration 🤖. His energy-efficient, eco-friendly technologies, including Anode Grade Coker and IV- IZOMaxCATR, won accolades from the Ministry of Petroleum & Natural Gas (MOP&NG) . Notable recognitions include the Innovation Awards (2019-20, 2022-23, 2023-24) for technologies such as Delayed Coker and INDEcoP2F ♻️. In 2025, he was also awarded the JEWEL OF INDIA 🏅 for his outstanding contributions to petroleum science. These honors are a testament to his commitment to technological excellence, sustainability, and Atmanirbhar Bharat in the energy domain. His award-winning innovations have significantly strengthened India’s refining and circular economy capabilities.

🔬Research Focus:

Dr. Das’s research centers on refining technology innovation, petroleum residue upgrading, and sustainable energy solutions. He focuses on developing high-efficiency catalytic processes such as INDMAX and Ind-Coker 🛢️. His work emphasizes crude-to-chemicals conversion, light olefins production, and high-octane fuel blending components like Octamax and AmyleMax 🔄. A pioneer in circular economy research, he spearheads INDEcoP2F for plastic-to-fuel transformation ♻️. He also works on CO₂ valorization, specialty chemical synthesis, and advanced carbon materials 🌱. With a forward-looking vision, Dr. Das has launched multiple initiatives in bio-refinery, waste-to-energy, and indigenous catalyst development 🔋. His research integrates sustainability, process intensification, and commercial viability, shaping India’s roadmap towards energy security and carbon neutrality. Through 210+ patents and 94 publications, he bridges academic research and industrial application, ensuring innovation meets implementation. His focus continues to align with global trends in green refining and circular chemical engineering.

Publication Top Notes:

1. Multi stage selective catalytic cracking process and a system for producing high yield of middle distillate products from heavy hydrocarbon feedstocks

Authors: D Bhattacharyya, AK Das, AV Karthikeyani, SK Das, P Kasliwal, M Santra, …

Citations: 65

2. CO-hydrogenation of syngas to fuel using silica supported Fe–Cu–K catalysts: Effects of active components

Authors: SK Das, S Majhi, P Mohanty, KK Pant

Citations: 42

3. Process for catalytic cracking of petroleum based feed stocks

Authors: S Mandal, S Kumarshah, D Bhattacharyya, VLN Murthy, AK Das, S Singh, …

Citations: 41

4. CO-hydrogenation over silica supported iron based catalysts: Influence of potassium loading

Authors: SK Das, P Mohanty, S Majhi, KK Pant

Citations: 40

5. Upgradation of undesirable olefinic liquid hydrocarbon streams

Authors: AK Das, S Mandal, S Ghosh, D Bhattacharyya, GS Mishra, JK Dixit, …

Citations: 38

6. Stabilized dual zeolite single particle catalyst composition and a process thereof

Authors: MP Kuvettu, SK Ray, G Ravichandran, V Krishnan, SK Das, S Makhija, …

Citations: 31

7. Molecular-level structural insight into clarified oil by nuclear magnetic resonance (NMR) spectroscopy: estimation of hydrocarbon types and average structural parameters

Authors: S Mondal, A Yadav, R Kumar, V Bansal, SK Das, J Christopher, GS Kapur

Citations: 29

8. Process for simultaneous cracking of lighter and heavier hydrocarbon feed and system for the same

Authors: S Subramani, D Bhattacharyya, R Manna, SK Das, T Sarkar, S Rajagopal

Citations: 19

9. Dissecting the cohesiveness among aromatics, saturates and structural features of aromatics towards needle coke generation in DCU from clarified oil by analytical techniques

Authors: S Mondal, A Yadav, V Pandey, V Sugumaran, R Bagai, R Kumar, …

Citations: 13

10. Process for simultaneous cracking of lighter and heavier hydrocarbon feed and system for the same

Authors: S Subramani, D Bhattacharyya, R Manna, SK Das, T Sarkar, S Rajagopal

Citations: 13

11. Process for the production of needle coke

Authors: D Bhattacharyya, SV Kumaran, BVHP Gupta, P Kumar, AK Das, G Saidulu, …

Citations: 8

12. Delayed coker drum and method of operating thereof

Authors: THVD Prasad, PR Pradeep, SK Das, JK Dixit, G Thapa, D Bhattacharyya, …

Citations: 7

Mr. Frédéric Pignon | Chemical Engineering | Best Researcher Award

Mr. Frédéric Pignon | Chemical Engineering | Best Researcher Award

Mr. Frédéric Pignon , Chemical Engineering ,Senior Scientist at CNRS/Laboratoire Rhéologie et Procédés, France

Frédéric Pignon is a Senior Scientist (Directeur de Recherche, DR1) at CNRS, affiliated with the Laboratoire Rhéologie et Procédés (LRP), UMR 5520, Grenoble, France.🇫🇷, he specializes in fluid mechanics and soft matter rheology. With over 25 years of expertise, Pignon has significantly contributed to the understanding of the multiscale structural behavior of anisotropic dispersions under various flow conditions. His pioneering development of in situ experimental setups has enabled novel insights into flow-structure relationships using SAXS, SANS, SALS, and ultrasound techniques. He holds an h-index of 32 📊, with 76 international publications, 2 patents, and numerous invited talks globally . Apart from research, he actively contributes to scientific evaluation committees and review panels including ANR, HCERES, and ESRF. His collaborations span leading institutions in Europe, North America, and Asia, positioning him as a key figure in advanced rheological material research.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Pignon holds a Ph.D. in Fluid Mechanics and Transfer (1997, Grenoble-INP), with prior DEA in the same field. His formal training is strongly aligned with his long-term research focus in rheology and multiscale fluid dynamics. He has published 76 peer-reviewed international journal papers, presented in 97 international conferences (including 8 invited talks), and holds 2 patents. His h-index of 32 demonstrates sustained impact in his field. His research uniquely combines rheometric properties with nanoscale-to-microscale structural characterization using advanced techniques such as SAXS, SALS, and optical methods. These contributions have significantly advanced the understanding of flow-induced behavior in complex fluids and materials. Dr. Frédéric Pignon’s pioneering research, prolific publication record, significant mentoring, leadership in scientific boards, and innovative patent contributions make him exceptionally well-qualified for the “Best Researcher Award”. His work bridges theoretical insight with experimental innovation in fluid mechanics and nanostructured systems, making a deep impact on science and industry alike. He is a model of scientific excellence and leadership.

🎓Education:

Frédéric Pignon pursued higher education in engineering and fluid mechanics in France. In 1993, he earned his D.E.A. (Diplôme d’Études Approfondies) in Fluid Mechanics and Transfer from Grenoble-INP, one of France’s premier engineering institutions 🎓. He deepened his specialization by completing a Ph.D. in Fluid Mechanics and Transfer at the same institution in January 1997, underlining his early interest in the microstructural behavior of complex fluids. His doctoral research laid the foundation for his later pioneering work in multiscale flow characterization. Pignon’s strong academic formation in physics, transport phenomena, and complex systems gave him a robust foundation to innovate in rheometry and structural analysis of soft matter systems. His academic path reflects a consistent focus on multidisciplinary approaches to fluid behavior, bridging physics, materials science, and applied engineering.

🏢Work Experience:

Frédéric Pignon has held leading research positions within the CNRS system for over two decades 🧪. Since October 2013, he serves as Senior Scientist (DR1) at CNRS-LRP, following a 14-year tenure (1999–2013) as Research Scientist (CR1). Earlier, he conducted postdoctoral research at ESRF’s ID28 Beamline (1999) and Laboratoire Rhéologie et Procédés (LRP) (1997–1998) 🔬. His research career is defined by designing cutting-edge experimental cells that integrate rheology with structural probes (SAXS/SANS/optical methods). He supervises Ph.D. students and postdoctoral researchers, participates actively in international collaborations, and leads major research projects across France and Europe. Pignon’s extensive academic and industrial network has facilitated groundbreaking studies on anisotropic particles, biopolymers, and colloids under dynamic conditions. He also contributes to scientific governance through involvement in evaluation panels (ESRF, ANR, HCERES), steering strategic research and innovation.

🏅Awards: 

Frédéric Pignon’s research excellence has been recognized through leadership roles, panel appointments, and competitive research funding . He is a long-standing member of the ESRF Review Committee (Panel C08) (2014–present) and served on France’s ANR CES 09 panel (2018). He also contributed to institutional evaluation through HCERES Committee vague C (2016–2017). As Co-PI of Labex Tec 21 (2013–2021) and scientific coordinator for Carnot PolyNat Institute projects, he has driven interdisciplinary research strategies. Pignon holds two patents, including one on thixotropic hydrogels and another on an ultrasound-enhanced filtration device 🔬. He has secured significant funding from national and regional sources (ANR, SATT, Région Bretagne), supervising several Ph.D. and postdoctoral projects. His work is frequently cited and referenced in the scientific community, and he is a regular reviewer for top-tier journals and national research proposals, having completed 83 international journal reviews and 7 ANR project reviews.

🔬Research Focus:

Frédéric Pignon’s research bridges rheology, soft matter physics, and multiscale characterization. His expertise lies in understanding how anisotropic particles—like cellulose nanocrystals and clay platelets—organize under flow, pressure, or acoustic fields. By developing custom in situ setups integrating rheometers with SAXS, SANS, birefringence, and SALS, he studies how microstructure impacts mechanical properties during dynamic processing. His group investigates orientation, aggregation, concentration polarization, and gelation in suspensions, particularly during cross-flow filtration and ultrasound exposure. He also explores bio-based nanomaterials and the physical behavior of hydrogels, enabling applications in biotechnology and green materials. Collaborating with synchrotron and neutron facilities, he probes structures from nanometer to micrometer scales. Projects like ANR ANISOFILM and Memus (SATT Linksium) showcase his role in advancing filtration, structural control, and nanocomposite design. His research is highly interdisciplinary, combining physics, chemistry, and process engineering.

Publication Top Notes:

1. Multi-scale investigation of the effect of photocurable polyethylene glycol diacrylate (PEGDA) on the self-assembly of cellulose nanocrystals (CNCs)

2. A self-cleaning biocatalytic membrane with adjusted polyphenol deposition for edible oil-water separation

3. A scalable and eco-friendly carbohydrate-based oleogelator for vitamin E controlled delivery

4. Orthotropic organization of a cellulose nanocrystal suspension realized via the combined action of frontal ultrafiltration and ultrasound as revealed by in situ SAXS

5. Viologen-based supramolecular crystal gels: gelation kinetics and sensitivity to temperature

6. Molecular mechanism of casein-chitosan fouling during microfiltration

7. Multiscale investigation of viscoelastic properties of aqueous solutions of sodium alginate and evaluation of their biocompatibility

8. Self-supported MOF/cellulose-nanocrystals materials designed from ultrafiltration

9. Orientation of Cellulose Nanocrystals Controlled in Perpendicular Directions by Combined Shear Flow and Ultrasound Waves Studied by Small-Angle X-ray Scattering

10. Effect of Polymer Length on the Adsorption onto Aluminogermanate Imogolite Nanotubes

Citations: 3​

11. Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS

 

Assoc. Prof. Dr. Akeem Arinkoola | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Akeem Arinkoola | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Akeem Arinkoola , Chemical Engineering ,Ladoke Akintola University of Technology, Ogbomoso, Nigeria

Dr. Akeem Olatunde Arinkoola is an accomplished Associate Professor in the Department of Chemical Engineering at Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Nigeria. With a career spanning both academia and industry, he has significantly contributed to the fields of petroleum and chemical engineering. His expertise covers product development, gas engineering, petroleum production, and uncertainty management. Dr. Arinkoola has successfully led and collaborated on several national and international research projects, including those funded by TETFUND and The Clay Minerals Society, USA. His innovations, such as the patented method for improving rheological properties of Nigerian bentonite clay, have been pivotal in enhancing oil and gas production technologies. He actively consults for major oil and gas companies in Nigeria and has contributed to the optimization of key oil fields. With over 90 publications, a patent, and a book chapter to his credit, he remains a driving force in applied petroleum research and development.

Professional Profile :         

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Akeem Olatunde Arinkoola exhibits a rare combination of academic rigor, innovative research, industrial application, and scientific impact, making him an exceptionally deserving candidate for the “Best Researcher Award”. His work addresses critical global challenges in energy, environment, and sustainable petroleum technologies. He not only meets but exceeds the benchmarks typically associated with award-winning research excellence.

🎓Education:

Dr. Arinkoola holds a Bachelor’s degree in Chemical Engineering and advanced degrees (M.Sc. and Ph.D.) in Petroleum Engineering. His educational journey reflects a strong foundation in core engineering principles and specialized training in oil and gas technologies. Through his postgraduate studies, he explored critical areas like drilling fluid formulation, reservoir modeling, and uncertainty analysis—fields that would later define his academic and consulting career. His Ph.D. work focused on the integration of locally available materials into drilling and production processes, an effort that led to his patented method in bentonite enhancement. His academic training was rooted in the Nigerian university system, and he has since continued to apply this foundation to address local and global challenges in petroleum engineering. His educational background has equipped him with not only technical depth but also interdisciplinary insight into environmental and operational challenges in energy resource management.

🏢Work Experience:

Dr. Arinkoola is an Associate Professor with vast academic and industry experience. At LAUTECH, he teaches and supervises research in petroleum engineering and chemical process development. His experience spans key areas including drilling fluid design, corrosion inhibition, and enhanced oil recovery. In industry, he has served as a consultant to major oil companies such as Total E&P Nigeria Ltd, ADDAX Nigeria Ltd, and Halliburton, providing field-level solutions like reservoir analysis, uncertainty management, and production optimization. Notably, he reduced the history matching time for the Akpo field reservoir and enhanced performance at Abana Field. His consultancy experience also includes the deployment of reservoir modeling templates used in training oil workers. As a project leader and collaborator, he has managed several grant-supported research efforts focused on Nigeria’s unique resource challenges. His dual engagement in academia and the energy industry reflects a balanced, impactful career committed to innovation and capacity building.

🏅Awards: 

Dr. Akeem Arinkoola has received several accolades and recognitions for his impactful contributions to petroleum and chemical engineering. Notably, he was a recipient of the prestigious TETFUND National Research Fund (NRF) for his work on bitumen polymeric modification using nano-additives. His collaborative project with The Clay Minerals Society (CMS), USA, was twice awarded a student research grant in 2016 and 2017—recognizing innovation in drilling fluid development. His patented method to enhance Nigerian bentonite clay reflects his commitment to local content and has been celebrated as a major milestone in Nigerian petroleum research. In industry circles, his consultancy roles have earned him accolades from partner companies for field performance improvements. Furthermore, his contribution as a book chapter author in an Elsevier publication underscores his international recognition. Dr. Arinkoola is also a registered engineer (COREN) and an active member of several prestigious professional organizations including NSE, SPE, and NSChE.

🔬Research Focus:

Dr. Arinkoola’s research is centered on petroleum production optimization, green chemical development, product innovation, and reservoir modeling under uncertainty. He specializes in the design of environmentally friendly drilling fluids, corrosion inhibitors, and enhanced recovery systems using indigenous materials. His pioneering work on improving rheological properties of potassium-based bentonite clay has resulted in a patented method with wide application in the oil industry. Current research efforts include the polymeric modification of bitumen using nano-additives for road durability and heavy oil producibility evaluation in the Niger Delta. He also leads work on chemical additives and polymer synthesis for improved drilling and reservoir performance. His integration of stochastic modeling frameworks has set a new standard for reservoir characterization and uncertainty analysis. Dr. Arinkoola’s research remains committed to solving real-world challenges in oil and gas operations while enhancing local content and sustainability in engineering solutions.

Publication Top Notes:

Title: Green corrosion inhibition and adsorption characteristics of Luffa cylindrica leaf extract on mild steel in hydrochloric acid environment

Citations: 197

Title: Thin layer drying of green microalgae (Chlorella sp.) paste biomass: Drying characteristics, energy requirement and mathematical modeling

Citations: 71

Title: Improving the demulsification process of heavy crude oil emulsion through blending with diluent

Citations: 62

Title: Optimization of operating parameters using response surface methodology for paraffin-wax deposition in pipeline

Citations: 42

Title: Optimization of media components and fermentation conditions for citric acid production from sweet potato peel starch hydrolysate by Aspergillus niger

Citations: 34

Title: Prediction of compressive strength of oil field class G cement slurry using factorial design

Citations: 30

Title: Improved phenol sequestration from aqueous solution using silver nanoparticle modified Palm Kernel Shell Activated Carbon

Citations: 29

Title: Gravimetric and quantitative surface morphological studies of Mangifera indica peel extract as a corrosion inhibitor for mild steel in 1 M HCl solution

Citations: 28

Title: Clay characterization and optimisation of bleaching parameters for palm kernel oil using alkaline activated clays

Citations: 28

Title: Evaluation of thickening time of oil field class G cement slurry at high temperature and pressure using experimental design

Citations: 24