Prof. Dr. Xuanmeng He | Inorganic Chemistry | Best Researcher Award

Prof. Dr. Xuanmeng He | Inorganic Chemistry | Best Researcher Award

Prof. Dr. Xuanmeng He , Inorganic Chemistry , Laboratory Chief at Shaanxi University of Science and Technology, China

Prof. He Xuanmeng is a distinguished faculty member at the School of Materials Science and Engineering, Shaanxi University of Science and Technology. With a profound dedication to material innovation and functional nanomaterials, he has risen through academic ranks from lecturer to full professor since joining the university in 2008. His research primarily focuses on energy-related materials, including high-entropy oxides, electrocatalysts for oxygen evolution reactions (OER), and advanced color pigments. A prolific researcher, Prof. He has authored several impactful publications in reputed journals like Journal of Alloys and Compounds, ACS Applied Nano Materials, and Journal of Colloid and Interface Science. His interdisciplinary approach bridges inorganic chemistry, electrochemistry, and materials engineering. Through years of rigorous academic training and research, he has emerged as a key contributor to China’s materials science domain. Prof. He continues to inspire future scientists through both his scholarly work and academic leadership.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Prof. He Xuanmeng, currently serving as a Professor at the School of Materials Science and Engineering, Shaanxi University of Science and Technology, exemplifies all the qualities befitting a recipient of the “Best Researcher Award”. His academic path, entirely pursued at Shaanxi University, reflects both loyalty and progressive excellence in materials science. With over 15 years of research experience, he has consistently advanced from lecturer to full professor, demonstrating a strong trajectory of academic growth and leadership. Prof. He Xuanmeng is a highly qualified and deserving nominee for the “Best Researcher Award”.  Honoring him with this award would be a recognition of research excellence, sustained innovation, and impactful scholarship. His research output includes high-impact publications in reputed international journals such as ACS Applied Nano Materials, Journal of Alloys and Compounds, and Journal of Colloid and Interface Science.Prof. He’s ability to integrate multifunctionality, sustainability, and performance optimization in material design stands out. His interdisciplinary work impacts both the energy sector and ceramic industries, illustrating his broad contribution to science and technology. His work on high-entropy oxides, energy electrocatalysts, Li-S battery materials, and environmentally friendly ceramic pigments showcases innovation, application relevance, and scientific depth. Moreover, his expertise bridges nanomaterials, electrochemistry, and optical engineering, aligning with contemporary global research priorities.

🎓Education:

Prof. He Xuanmeng’s academic journey is deeply rooted in Shaanxi University of Science and Technology, where he pursued all three degrees in materials science. He earned his Ph.D. in Materials in 2018, focusing on advanced material synthesis and applications. Earlier, he completed his Master’s in Materials Physics and Chemistry in 2008, laying the foundation for his work on functional coatings and hybrid materials. His undergraduate degree, completed in 2005, was in Inorganic Non-metallic Materials Engineering—a program emphasizing ceramics, pigments, and structural materials. This consistent academic path has endowed him with a deep, layered understanding of both the theoretical and applied aspects of materials science. The continuity of education at the same institution reflects his long-standing commitment to its academic culture and research goals. His comprehensive training across materials chemistry and engineering now informs his innovative research in energy materials and ceramic-based nanostructures.

🏢Work Experience:

Prof. He Xuanmeng began his professional career in 2008 as a Lecturer at Shaanxi University of Science and Technology. With a passion for research and academic excellence, he was promoted to Associate Professor in 2010, a role he held for eight years. In 2018, he was elevated to the position of Professor in the School of Materials Science and Engineering. Over more than 15 years of service, he has been instrumental in shaping the department’s research direction, focusing on functional nanomaterials and energy applications. He has successfully mentored graduate students, led research initiatives, and published extensively. His multidisciplinary collaborations and expertise in high-entropy oxides, pigment design, and electrode materials have significantly contributed to the university’s reputation in materials science. Prof. He’s progression through academic ranks highlights his dedication to teaching, research, and scientific advancement in the field of advanced functional materials.

🏅Awards: 

While specific awards and honors were not listed in the resume provided, Prof. He Xuanmeng’s academic journey and publication record strongly indicate a career marked by peer recognition and scholarly impact. His multiple first-author papers in top-tier journals like ACS Applied Nano Materials, Journal of Alloys and Compounds, and Journal of Colloid and Interface Science reflect high academic merit. He likely has received internal recognition for excellence in teaching and research within Shaanxi University of Science and Technology. Additionally, contributing to high-impact studies in areas like oxygen evolution reaction and Li-S battery applications suggests involvement in nationally or provincially funded research projects. Given his track record and position, he may also be serving as a reviewer or editorial board member for reputed journals in materials science. Further details of awards can be included upon availability to comprehensively highlight his career achievements.

🔬Research Focus:

Prof. He Xuanmeng’s research focuses on advanced functional materials with applications in energy conversion, storage, and optical properties. He specializes in the synthesis and design of high-entropy oxides, spinel-type nanostructures, and graphene-composite hybrids for electrocatalysts, particularly the oxygen evolution reaction (OER). His work also explores Li-S battery materials, utilizing hollow microspheres and reduced graphene oxide for sulfur hosting. Additionally, Prof. He has made significant contributions to the development of ceramic pigments with core-shell structures for enhanced coloration and NIR reflectance, offering sustainable alternatives with reduced heavy metal content. His interdisciplinary approach bridges material chemistry, solid-state physics, and energy applications, aiming to develop cost-effective and high-performance materials. His research outputs demonstrate innovation in structural control, electronic modulation, and multifunctionality in both energy and optical domains, aligning with global goals for sustainable energy and environmental-friendly technologies.

Publication Top Notes:

1. Enhanced Multienzyme‑like and Antibacterial Activity by Copper Atomically Dispersed into Molybdenum Disulfide for Accelerated Wound Healing

2. Carbon Cloth Supporting (CrMnFeCoCu)₃O₄ High‑Entropy Oxide as Electrocatalyst for Efficient Oxygen Evolution Reactions

Citations: 2

3. Highly Stable Hierarchical Core‑Shell Structure CuMn₀.₅Co₂O₄@CC with Self‑Regulating Electronic and Conductivity for Its Improved OER Performance

Citations: 5

4. Nanocrystalline (CrMnFeCoCu)₃O₄ High‑Entropy Oxide for Efficient Oxygen Evolution Reaction

Citations: 15

Assist. Prof. Dr. Cahofeng Huang | Catalysis | Best Researcher Award

Assist. Prof. Dr. Cahofeng Huang | Catalysis | Best Researcher Award

Assist. Prof. Dr. Cahofeng Huang, Catalysis , Associate Professor at shihezi university, China

Dr. Chaofeng Huang is a dedicated Chinese researcher specializing in materials chemistry, electrochemiluminescence, and electrocatalysis. He currently holds an invited position at Shihezi University since 2019 and has contributed extensively to the development of novel sensing materials and photoelectrochemical systems. Dr. Huang began his academic journey at Shihezi University, later earning his advanced degrees from Southeast University in Nanjing. Over the years, he has become known for innovative strategies in pH sensing, oxygen evolution reaction (OER), and near-infrared biosensing using D-π-A structures. His research integrates nanotechnology with electrochemical principles to enable breakthroughs in catalysis and biosensor platforms. With over 14 scientific publications, including in high-impact journals such as Analytical Chemistry and Chemical Engineering Journal, he has gained a reputable standing in the scientific community. His preprints on ChemRxiv further illustrate his ongoing contributions to electrochemical research and energy conversion materials.

Professional Profile :         

Orcid

Summary of Suitability for Award:

Dr. Chaofeng Huang demonstrates strong credentials that make him a suitable candidate for the Best Researcher Award. With over a decade of academic and research experience, he has shown consistent contributions to the field of materials chemistry, electro chemiluminescence, electrocatalysis, and biosensing technologies. He has authored 14 research publications, including articles in high-impact journals such as Analytical Chemistry and Chemical Engineering Journal, and cutting-edge preprints on ChemRxiv.  Dr. Chaofeng Huang is highly suitable for nomination for the “Best Researcher Award”. His scientific productivity, impactful publications, innovative methodologies, and commitment to research excellence underscore his leadership in the field of chemistry and materials science. His work bridges theory with practical applications, making valuable contributions to both academic knowledge and technological advancement. Based on the quality and relevance of his research, his publication record, and institutional engagements, Dr. Huang deserves serious consideration for the award.

🎓Education:

Dr. Chaofeng Huang earned his Ph.D. in Chemistry from Southeast University, Nanjing, Jiangsu, China, between September 2015 and March 2019. His doctoral studies focused on materials science, nanotechnology, and electrochemical systems with applications in biosensing and catalysis. Prior to this, he completed his Master’s degree at Shihezi University, Xinjiang, from September 2012 to June 2015, where he laid the foundation for his future research interests in applied electrochemistry. This followed his undergraduate education, also at Shihezi University. Through both academic tracks, he demonstrated strong analytical skills and a keen interest in interdisciplinary science. These formative years shaped his expertise in electrochemiluminescent sensing, photoelectrochemical systems, and nanomaterials, ultimately positioning him for a successful research career. His education from two prestigious Chinese institutions provided him with not only deep theoretical knowledge but also hands-on experience with advanced instrumentation and chemical engineering approaches.

🏢Work Experience:

Dr. Huang began his professional career at Shihezi University in 2008, serving until 2015 in various academic roles. During this period, he engaged in both teaching and research activities in the Chemistry and Chemical Engineering domains. In 2015, he transitioned to Southeast University in Nanjing, where he continued his employment until 2019. At Southeast University, Dr. Huang contributed to research on electrocatalysis and advanced sensor development, gaining valuable experience in interdisciplinary collaboration and laboratory innovation. Since September 2019, he has held an invited academic position at Shihezi University, where he remains actively involved in research and mentoring graduate students. His professional trajectory reflects a strong commitment to advancing electrochemical science and fostering academic growth. With extensive experience in academic research, Dr. Huang has developed a niche in electrocatalytic materials and continues to influence the field through scholarly contributions and collaboration on national scientific initiatives.

🏅Awards: 

While specific awards and honors are not explicitly listed in public databases, Dr. Chaofeng Huang’s academic achievements reflect recognition through continued institutional appointments and publication in prestigious journals. His invitation to return to Shihezi University as a faculty member in 2019 signifies peer acknowledgment of his scientific credibility. Being a corresponding author of multiple high-impact journal articles and preprints on platforms like ChemRxiv, Analytical Chemistry, and Chinese Chemical Letters is itself a testament to his research excellence. His work has contributed to advancing electrochemical detection and catalysis, which are key research priorities in China’s scientific development agenda. Furthermore, his early academic trajectory from undergraduate to invited faculty roles at major Chinese institutions suggests a consistent record of merit-based appointments. Future honors are likely as his research continues to impact materials science and chemical engineering disciplines globally.

🔬Research Focus:

Dr. Chaofeng Huang’s research focuses on electrochemical sensing, electrocatalysis, and nanomaterials engineering. A significant portion of his work investigates the behavior of local pH gradients and charge transfer processes during the oxygen evolution reaction (OER), using electrochemiluminescent (ECL) and photoelectrochemical (PEC) techniques. He designs and utilizes carbon nitride-based heterojunctions and D-π-A structures to enhance biosensing performance, especially in near-infrared conditions. His studies also include surface modifications of catalytic materials, such as Cu single-atom sites, to boost reaction efficiency in industrial chemical processes like acetylene hydrochlorination. Dr. Huang often combines non-covalent molecular interactions and advanced nanofabrication strategies to build platforms capable of real-time, selective detection of protons and reactive species. His interdisciplinary approach bridges chemistry, material science, and electrical engineering to provide solutions for sustainable energy, catalysis, and medical diagnostics. Through collaborative and innovative research, he continues to contribute to the evolving landscape of functional materials and sensor development.

Publication Top Notes:

1. Measurements of Local pH Gradients for Electrocatalysts in Oxygen Evolution Reaction by Electrochemiluminescence

2. Enhanced Near-Infrared Photogenerated Carrier Transfer via Doublet-State Excitation in D-π-A Structures for Biosensing

3. Non-Covalent Coupling of Carbon Nitrides and Dyes for Selective and Sensitive Electrochemiluminescent Detection of Local H+ in Oxygen Evolution Reaction

4. Promotion Effect of Epoxy Group Neighboring Single-Atom Cu Site on Acetylene Hydrochlorination

5. Carbon Nitride-Based Heterojunction Photoelectrodes with Modulable Charge-Transfer Pathways toward Selective Biosensing

6. Protonation-Induced Site and Field Reconstruction for Ultrafast Adsorptive Desulfurization over Cu–N–C

7. Manipulating Micro-Electric Field and Coordination-Saturated Site Configuration Boosted Activity and Safety of Frustrated Single-Atom Cu/O Lewis Pair for Acetylene Hydrochlorination

8. Synergistic Desulfurization over Graphitic N and Enzyme-Like Fe–N Sites of Fe–N–C

9. Unraveling Fundamental Active Units in Carbon Nitride for Photocatalytic Oxidation Reactions

10. Preparation of Carbon Nitride Nanoparticles by Nanoprecipitation Method with High Yield and Enhanced Photocatalytic Activity

 

Prof. Dr. Arash Ghorbani-Choghamarani | Catalysis | Best Faculty Award

Prof. Dr. Arash Ghorbani-Choghamarani | Catalysis | Best Faculty Award

Prof. Dr. Arash Ghorbani-Choghamarani , Catalysis , Faculty at Bu-Ali Sina University, Iran

Dr. Arash Ghorbani-Choghamarani,  is a distinguished Professor of Organic Chemistry currently serving at Bu-Ali Sina University. With a career spanning over two decades, he has made significant contributions to the field of synthetic organic chemistry. Dr. Ghorbani-Choghamarani earned his Ph.D., M.Sc., and B.Sc. degrees from Bu-Ali Sina University, demonstrating consistent academic excellence. He further broadened his research experience as a visiting graduate student and professor at the University of Western Ontario, Canada. Known for his innovative work on green chemistry and heterogeneous catalytic systems, he has authored numerous publications in reputed international journals. His dedication to research and teaching has earned him multiple awards and recognition at institutional and provincial levels. A leading name in Iranian academia, Dr. Ghorbani-Choghamarani continues to inspire through his impactful research, dynamic teaching, and exemplary scholarly output in the field of organic synthesis.

Professional Profile :         

Scopus 

Summary of Suitability for Award:

Prof. Arash Ghorbani-Choghamarani is a seasoned academic and researcher in Organic Chemistry, currently serving as a Professor at Bu-Ali Sina University. His distinguished career spans over two decades, with significant contributions in research, teaching, and academic leadership. His academic journey includes a Ph.D. in Organic Chemistry and a visiting research stint in Canada, underlining his international exposure and collaboration. He has published numerous impactful research papers in peer-reviewed journals, particularly in the fields of green chemistry, heterogeneous catalysis, and N-nitrosation reactions, reflecting his sustained contribution to cutting-edge research. Prof. Ghorbani has received over 18 prestigious awards, including recognitions at the university, faculty, and provincial levels, and the title of International Scientist by ISI (ESI). Prof. Arash Ghorbani-Choghamarani exemplifies the ideal candidate for the “Best Faculty Award” due to his exceptional academic achievements, innovative research contributions, and outstanding commitment to education. His consistent recognition by academic and scientific bodies over the years underscores his excellence, dedication, and leadership in the field. He not only meets but exceeds the criteria typically expected for such an honor.

🎓Education:

Dr. Ghorbani-Choghamarani began his academic journey with a B.Sc. in Applied Chemistry (2001) from Bu-Ali Sina University, Hamadan, Iran. He pursued his passion for organic chemistry further by completing his M.Sc. in Organic Chemistry (2003) from the same university, where he was recognized as a distinguished student. He later earned his Ph.D. in Organic Chemistry in 2007, again from Bu-Ali Sina University. As part of his doctoral training, he was a Visiting Graduate Student at The University of Western Ontario, Canada (2005–2006), where he gained international exposure and advanced laboratory experience. His educational background is rooted in rigorous research and innovative synthesis techniques, particularly in green and heterogeneous organic chemistry. His early dedication to academic excellence laid a strong foundation for a prolific career in both teaching and research, with his work receiving accolades for its scientific rigor and practical application.

🏢Work Experience:

Dr. Ghorbani-Choghamarani’s teaching and research career began in 2007 when he joined Ilam University as an Assistant Professor, advancing to Associate Professor in 2013 and Professor in 2017. He served Ilam University until 2020, during which time he significantly enhanced the university’s research output and mentored numerous students. He later joined Bu-Ali Sina University in September 2020, where he continues to serve as a Professor of Organic Chemistry. In 2018, he was a Visiting Professor at the University of Western Ontario, further expanding his international collaborations and exposure. His research expertise lies in green chemistry, catalytic systems, and sustainable synthetic methodologies. Dr. Ghorbani-Choghamarani is known for his dedication to fostering academic excellence through teaching, mentoring, and publishing high-quality research. His progressive career path demonstrates his commitment to advancing science and education in Iran and on the international stage.

🏅Awards: 

Dr. Arash Ghorbani-Choghamarani has been the recipient of numerous prestigious honors recognizing his academic and research excellence. He was a Distinguished Student at Bu-Ali Sina University multiple times (2000–2006) and received commendations such as the Kharazmi Symposium Appreciation Letter (2001). His excellence in research earned him several Distinguished Researcher titles at Ilam University and the Province of Ilam between 2008–2018. He was also acknowledged as the Distinguished Teacher of Ilam University (2009) and was named an International Scientist by ISI (ESI) in December 2017. These honors reflect his impactful scholarly contributions and his leadership in academic circles. His continuous recognition at faculty, university, and provincial levels signifies not only his scientific achievements but also his influence as an educator and innovator in the field of organic chemistry.

🔬Research Focus:

Dr. Ghorbani-Choghamarani’s research primarily focuses on green chemistry, heterogeneous catalysis, and innovative organic synthesis. He is particularly known for his work on N-nitrosation of amines, oxidation of 1,4-dihydropyridines, and the design of efficient, recyclable catalytic systems under mild conditions. His research integrates principles of sustainability and eco-friendliness, contributing to the advancement of clean synthesis methods. He has utilized diverse reagents and support systems like silica chloride, ZrCl₄/NaNO₂, silica-modified sulfuric acid, and trichloroisocyanuric acid in the development of novel chemical transformations. His studies have opened new pathways in heterogeneous reaction systems, often under solvent-free or mild conditions, making them industrially relevant. Dr. Ghorbani-Choghamarani’s innovative work has earned international acclaim, and he continues to publish extensively, mentor young scientists, and contribute to the global research community in organic and green chemistry.

Publication Top Notes:

1. Title: ZnFe₂O₄@SiO₂@n-pr@xanthine-Pr: as a highly versatile catalyst for the preparation of 1H-tetrazoles and sulfoxidation reaction

2. Title: A new Schiff-base-N-propylhydrazine-1-carbothioamide complex of copper on boehmite nanoparticles as a recoverable catalyst in the homoselective synthesis of 5-substituted tetrazoles

Citations: 1

3. Title: ZnFe₂O₄@SiO₂@L-lysine@SO₃H: preparation, characterization, and its catalytic applications in the oxidation of sulfides and synthesis of Bis(pyrazolyl)methanes

Citations: 2

4. Title: Catalytic performance of hexagonal boron Nitride@APTS-SO₃H as heterogeneous nanocatalyst for biodiesel production

Citations: 2

5. Title: One-pot conversion of 2-ethoxycarbonyl-4H-3,1-benzoxazine-4-ones to tetracyclic quinazoline-6,12-diones in the presence of a Pd complex nanocatalyst

Citations: 1

6. Title: The bifunctional and reusable catalyst of cerium/L-arginine on mesoporous KIT-6 in the chemoselective oxidation of sulfides and homoselective synthesis of tetrahydrobenzo[b]pyrans

Citations: 4

7. Title: Magnetically recoverable Fe₃O₄@SiO₂@SBA-3@2-ATP-Cu: an improved catalyst for the synthesis of 5-substituted 1H-tetrazoles

Citations: 2

8. Title: FDU-12@AGA-Pd: A green, novel, recyclable, and highly versatile mesoporous catalyst for C–C coupling reaction and synthesis of tetrazoles

Citations: 2

9. Title: Surfactant-free synthesis of mesoporous silica materials (Using tetraethylorthosilicate and oleic acid): Preparation, characterization, and catalytic applications

Citations: 1

10. Title: Immobilization of Schiff base-Pd complex in mesoporous silica KIT-6 channels: A novel, green, recyclable, and highly versatile mesoporous catalyst for the carbon-carbon cross-coupling reaction

Citations: 8

 

Prof. Shenggang Li | Catalysis | Best Researcher Award

Prof. Shenggang Li | Catalysis | Best Researcher Award

Prof. Shenggang Li | Catalysis | Professor at Shanghai Advanced Research Institute, Chinese Academy of Sciences China

Professor Shenggang Li is a distinguished computational catalysis researcher at the Shanghai Advanced Research Institute, Chinese Academy of Sciences. He earned his Ph.D. in molecular spectroscopy from the University of Kentucky in 2004 and has since contributed significantly to computational catalysis. His research focuses on the mechanism of oxidative coupling of methane, higher alcohol synthesis, and CO₂ hydrogenation using In₂O₃-based catalysts. With over 190 peer-reviewed publications and 40 conference presentations, his work has been widely recognized. He has led multiple funded projects, including collaborations with Shell Global Solutions and the Natural Science Foundation of China. His computational studies have driven the rational design of catalysts for carbon dioxide and biomass valorization, some of which are being tested at the pilot scale for industrial applications. A member of the Chinese Chemical Society and the American Chemical Society, Prof. Li also serves on the editorial board of Heliyon Chemistry.

Professional Profile :                       

Orcid

Scopus  

Summary of Suitability for Award:

Prof. Shenggang Li is a distinguished researcher in computational catalysis with significant contributions to carbon dioxide utilization and heterogeneous catalysis. His research has led to the computer-aided design of high-performance catalysts for CO₂ hydrogenation and biomass valorization, with potential industrial applications. Having published over 180 peer-reviewed papers indexed by SCI and contributed to three book chapters, his impact in the field is evident through a citation index of 47 (Scopus). His collaborations with renowned international scientists and funding from prestigious agencies, including Shell Global Solutions and the Natural Science Foundation of China, further validate his research excellence. He is also an editorial board member of Heliyon Chemistry and an active member of Chinese Chemical Society and American Chemical Society. Prof. Shenggang Li’s exceptional research output, global collaborations, industrial relevance, and pioneering work in computational catalysis make him a highly suitable candidate for the “Best Researcher Award “. His research innovations have direct implications for sustainable energy and green chemistry, aligning with global scientific advancements.

🎓Education:

Shenggang Li obtained his Ph.D. in molecular spectroscopy from the University of Kentucky in 2004. His doctoral research laid a strong foundation for his expertise in computational chemistry and catalysis. Prior to that, he pursued his undergraduate and master’s degrees in chemistry, where he developed a deep understanding of reaction mechanisms and molecular interactions. Throughout his academic journey, he honed skills in quantum chemistry, first-principles simulations, and heterogeneous catalysis. His studies equipped him with a solid theoretical and computational background, enabling him to tackle complex problems in catalysis and reaction engineering. His postdoctoral training at The University of Alabama at Tuscaloosa further refined his research focus, preparing him for a distinguished career in computational catalysis. His academic achievements, combined with strong interdisciplinary knowledge, have allowed him to make pioneering contributions to catalyst design, particularly in CO₂ hydrogenation and methane activation.

🏢Work Experience:

Prof. Shenggang Li has an extensive research career spanning over two decades in computational catalysis. After completing his Ph.D., he worked as a researcher at The University of Alabama at Tuscaloosa, where he collaborated on spectroscopic data interpretation and catalysis studies. He later joined the Shanghai Advanced Research Institute, Chinese Academy of Sciences, where he leads projects in computational catalyst design. His work has focused on CO₂ hydrogenation to methanol, oxidative coupling of methane, and biomass valorization. As a principal investigator, he secured multiple grants from Shell Global Solutions, the National Science Foundation of China, and the Ministry of Science and Technology of China. He has also collaborated with international research groups to advance the understanding of catalytic reaction mechanisms. His 47 Scopus-indexed citations and over 180 SCI-indexed publications highlight his impact in the field. His expertise in computational modeling has driven innovative solutions for sustainable energy applications.

🏅Awards: 

Professor Shenggang Li has received numerous accolades for his pioneering contributions to computational catalysis. He has secured funding from prestigious agencies, including the Natural Science Foundation of China, Ministry of Science and Technology of China, and Shell Global Solutions. His research has been recognized internationally, with invitations to present at over 40 global conferences. His 47 h-index (Scopus) and over 180 SCI-indexed publications underscore the significance of his work in catalysis. As an editorial board member of Heliyon Chemistry, he has contributed to the advancement of chemical research. He is an active member of the Chinese Chemical Society and the American Chemical Society, reflecting his global engagement in the scientific community. His computationally guided catalyst designs have reached the pilot scale, demonstrating industrial viability. His expertise and research excellence position him as a strong candidate for the Best Researcher Award.

🔬Research Focus:

Prof. Shenggang Li specializes in computational catalysis, employing first-principles simulations, density functional theory (DFT), and artificial intelligence to design and optimize catalysts for sustainable chemical processes. His research primarily targets CO₂ hydrogenation to methanol, oxidative coupling of methane, and biomass valorization. His work on In₂O₃-based catalysts has led to significant advancements in CO₂-to-methanol conversion, providing industrially relevant solutions for carbon dioxide utilization. He has also developed bifunctional catalysts for direct CO₂ hydrogenation to gasoline, olefins, aromatics, and higher alcohols, some of which are currently in pilot-scale testing. His computational methodologies assist in the rational design of platinum-tungsten oxide catalysts for biomass conversion, improving efficiency and selectivity. His interdisciplinary approach, integrating quantum chemistry and machine learning, accelerates catalyst discovery and optimization. His innovations contribute to green chemistry, renewable energy, and sustainable industrial practices, making a profound impact on the field of computational catalysis.

Publication Top Notes:

Effects of oxygen vacancy formation energy and Pt doping on the CO2 hydrogenation activity of In2O3 catalysts

Year: 2025

Engineering ZrO2–Ru interface to boost Fischer-Tropsch synthesis to olefins

Citations: 5

Microwave-Assisted Pyrolysis-A New Way for the Sustainable Recycling and Upgrading of Plastic and Biomass: A Review

Citations: 4

Computer-aided design of Pt/In2O3 single-atom catalysts for CO2 hydrogenation to methanol

Citations: 1

Li-promoted C3N4 catalyst for efficient isomerization of glucose into fructose at 50 °C in water

Citations: 3

Mechanism and structure-activity relationship of H2 and CO2 activation at the ZnO/Cu catalyst interface

Citations: 1

Tuning the selectivity of CO2 hydrogenation to alcohols by crystal structure engineering

Citations: 9

CO2-Assisted Dehydrogenation of Propane by Atomically Dispersed Pt on MXenes

Citations: 2

Molten-Salt Electrochemical-Assisted Synthesis of the CeO2-OV@GC Composite-Supported Pt Clusters with a Pt-O-Ce Structure for the Oxygen Reduction Reaction

Citations: 6

Corrigendum to “Understanding surface structures of In2O3 catalysts during CO2 hydrogenation reaction using time-resolved IR, XPS with in situ treatment, and DFT calculations”

Dr. Yuntian Xiao | Coordination Chemistry | Best Researcher Award

Dr. Yuntian Xiao | Coordination Chemistry | Best Researcher Award

Dr. Yuntian Xiao , Tianjin University , China

Yuntian Xiao is a Ph.D. candidate at Tianjin University’s School of Chemical Engineering and Technology, specializing in chemical engineering with a focus on crystallization technology. Guided by Professor Qiuxiang Yin, Xiao’s research emphasizes sustainable pesticide delivery, environmental chemistry, and molecular simulation. His academic journey began with a Bachelor’s degree in Chemical Engineering from Tianjin University of Science and Technology, followed by a Master’s degree in Chemical Engineering at Tianjin University. He has contributed significantly to the fields of cocrystal engineering and agrochemical sustainability, earning numerous accolades such as the National Scholarship and the Tianjin University Major Awards. Xiao has published extensively in top journals like Chem. Eng. J. and Green Chem., showcasing innovations in crystallization and molecular assembly. Proficient in advanced lab techniques and computational tools, Xiao actively engages in research that bridges science and industry, aiming to develop eco-friendly solutions in agriculture and beyond.

Professional Profile

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Yuntian Xiao demonstrates exceptional qualifications that align with the criteria for the “Best Researcher Awards.” As a Ph.D. candidate specializing in chemical engineering at Tianjin University, Xiao has made significant contributions to sustainable agriculture and environmental chemistry through cocrystal engineering and molecular simulation. With 15 high-impact publications in prestigious journals such as Chem. Eng. J. and ACS Appl. Mater. Interfaces, Xiao has advanced innovations in agrochemical delivery systems and crystallization processes. His interdisciplinary research addresses global challenges like environmental sustainability and efficient pesticide usage. Based on his impactful research contributions, proven academic excellence, and innovative approaches to addressing critical environmental issues, Yuntian Xiao is a highly suitable candidate for the “Best Researcher Awards.” His dedication to sustainability and interdisciplinary problem-solving exemplifies the qualities expected of a leading researcher, making him a deserving nominee.

🎓Education:

Yuntian Xiao is pursuing a Ph.D. in Chemical Engineering at Tianjin University’s School of Chemical Engineering and Technology, where he specializes in crystallization technology under the guidance of Professor Qiuxiang Yin. His doctoral research focuses on sustainable agrochemical solutions through cocrystal engineering. Xiao earned his Master’s degree in Chemical Engineering from Tianjin University, working at the National Engineering Research Center of Industry Crystallization Technology under Professor Chuang Xie . During his Master’s program, he deepened his understanding of crystallization processes and molecular simulations. He holds a Bachelor’s degree in Chemical Engineering and Technology from Tianjin University of Science and Technology, where he excelled academically, achieving a GPA of 3.92. His comprehensive curriculum covered subjects like Chemical Thermodynamics, Reaction Engineering, and Phase Diagrams, building a solid foundation in chemical engineering principles. Xiao’s academic journey reflects a commitment to excellence and a passion for advancing sustainable chemical engineering solutions.

🏢Work Experience:

Yuntian Xiao has diverse research experience in crystallization technology and sustainable chemical engineering solutions. His doctoral research includes developing cocrystal engineering strategies for agrochemical delivery, focusing on herbicides with sustained release, reduced leaching, and enhanced efficiency. He has employed molecular simulations to understand these processes at a mechanistic level. Xiao has also contributed to interdisciplinary projects, including the melt crystallization of buty nediol, reactive crystallization of sodium bicarbonate, and cooling crystallization of creatine phosphate sodium. His main responsibilities involved optimizing experimental methods, modeling processes, and analyzing factors influencing industrial crystallization outcomes. Proficient in techniques like PXRD, TGA/DSC, SEM, Raman, and HPLC, Xiao also has advanced computational skills, including MATLAB and Materials Studio. His expertise combines experimental techniques with computational modeling, allowing him to bridge fundamental research with industrial applications. Xiao’s contributions highlight his ability to address real-world challenges in chemical engineering effectively.

🏅Awards: 

Yuntian Xiao has received numerous awards recognizing his academic excellence and research achievements. As a Ph.D. student, he earned the Ph.D. Student Major Award (2021–2022) from Tianjin University for his innovative research in chemical engineering. During his Master’s program, he consistently achieved the Master Student Major Awards (2018–2021) and a Minor Award (2019–2020) for exceptional academic performance and contributions to crystallization research. His undergraduate achievements include the National Scholarship (2017–2018), a prestigious honor awarded for outstanding academic performance and extracurricular involvement. Additionally, Xiao received the Student Major Awards (2015–2018) from Tianjin University of Science and Technology and the Merit Student Award (2015–2016) from Hebei University of Technology. These accolades reflect Xiao’s dedication to excellence and his impactful contributions to chemical engineering research, solidifying his reputation as a top-performing researcher and scholar.

🔬Research Focus:

Yuntian Xiao’s research focuses on sustainable chemical engineering solutions, particularly through cocrystal engineering. His work addresses global challenges in agriculture and environmental chemistry by designing eco-friendly agrochemical delivery systems. By developing novel cocrystals, Xiao aims to achieve sustained-release pesticides and herbicides with reduced environmental leaching and enhanced efficacy. His expertise extends to mechanochemistry and molecular simulations, employing advanced computational tools to predict and optimize crystallization mechanisms. Xiao has also explored solid-state chemistry to enhance the lifecycle efficiency of agrochemicals. His interdisciplinary projects include studies on the crystallization of buty nediol, sodium bicarbonate, and creatine phosphate sodium, demonstrating his ability to translate research into industrial applications. Xiao’s research integrates experimental techniques like PXRD, Raman spectroscopy, and HPLC with computational modeling, ensuring a comprehensive understanding of crystallization processes. His innovative work in sustainable chemical engineering highlights his commitment to addressing pressing environmental and agricultural challenges.

Publication Top Notes:

1. Title: Cocrystals of propylthiouracil and nutraceuticals toward sustained-release: Design, structure analysis, and solid-state characterization
Authors: Y Xiao, L Zhou, H Hao, Y Bao, Q Yin, C Xie
Journal: Crystal Growth & Design
Citations: 47
Year: 2021

2. Title: New salts and cocrystals of pymetrozine with improvements on solubility and humidity stability: Experimental and theoretical study
Authors: D Wu, J Li, Y Xiao, X Ji, C Li, B Zhang, B Hou, L Zhou, C Xie, J Gong, …
Journal: Crystal Growth & Design
Citations: 46
Year: 2021

3. Title: Mechanochemical synthesis of cocrystal: From mechanism to application
Authors: Y Xiao, C Wu, X Hu, K Chen, L Qi, P Cui, L Zhou, Q Yin
Journal: Crystal Growth & Design
Citations: 29
Year: 2023

4. Title: Cocrystal engineering strategy for sustained release and leaching reduction of herbicides: a case study of metamitron
Authors: Y Xiao, C Wu, L Zhou, Q Yin, J Yang
Journal: Green Chemistry
Citations: 24
Year: 2022

5. Title: Pursuing Green and Efficient Agriculture from Molecular Assembly: A Review of Solid-State Forms on Agrochemicals
Authors: Y Xiao, C Wu, P Cui, L Zhou, Q Yin
Journal: Journal of Agricultural and Food Chemistry
Citations: 21
Year: 2023

6. Title: Analysis of solid-liquid equilibrium behavior of highly water-soluble beet herbicide metamitron in thirteen pure solvents using experiments and molecular simulations
Authors: Y Xiao, C Wu, C Zhao, L Qi, Y Bao, L Zhou, Q Yin
Journal: Journal of Molecular Liquids
Citations: 18
Year: 2022

7. Title: Structure analysis and insight into hydrogen bond and van der Waals interactions of etoricoxib cocrystals and cocrystal solvate
Authors: Y Wang, L Wang, F Zhang, N Wang, Y Gao, Y Xiao, Z Wang, Y Bao
Journal: Journal of Molecular Structure
Citations: 16
Year: 2022

8. Title: Comparison Study of KBH4 Spherical Agglomerates Prepared in Different Antisolvents: Mechanisms and Properties
Authors: Z Zhang, L Wang, P Zhao, Y Xiao, H Hao, Y Bao
Journal: Industrial & Engineering Chemistry Research
Citations: 13
Year: 2021

9. Title: Intermolecular interactions and solubility behavior of multicomponent crystal forms of 2,4-D: Design, structure analysis, and solid-state characterization
Authors: L Fang, Y Xiao, C Zhang, Z Gao, S Wu, J Gong, S Rohani
Journal: CrystEngComm
Citations: 13
Year: 2021

10. Title: Enhancing adsorption capacity and herbicidal efficacy of 2,4-D through supramolecular self-assembly: insights from cocrystal engineering to solution chemistry
Authors: Y Xiao, C Wu, P Cui, X Luo, L Zhou, Q Yin
Journal: Chemical Engineering Journal
Citations: 12
Year: 2023