Prof. Dr. Hauh-Jyun Chen | Environmental Chemistry | Best Researcher Award

Prof. Dr. Hauh-Jyun Chen | Environmental Chemistry | Best Researcher Award

Prof. Dr. Hauh-Jyun Chen | Environmental Chemistry | Dept Chemistry and Biochemistry at National Chung Cheng University , Taiwan 

Dr. Hauh-Jyun Candy Chen is a Distinguished Professor in the Department of Chemistry and Biochemistry at National Chung Cheng University, Taiwan. She is a leading expert in organic chemistry, chemical carcinogenesis, and mass spectrometric analysis of biomolecules. Dr. Chen earned her Ph.D. in Organic Chemistry from the State University of New York at Stony Brook in 1988 under the supervision of Professor Iwao Ojima. Her research focuses on using mass spectrometry for biomarker identification in cancer and oxidative stress-related diseases. She has made significant contributions to understanding post-translational modifications in hemoglobin and DNA, particularly in relation to cigarette smoking and carcinogen exposure. Dr. Chen has held various academic and research positions in the U.S. and Taiwan, including at the American Health Foundation and the National Institutes of Health. She has published extensively in high-impact journals and is recognized internationally for her pioneering work in analytical toxicology.

Professional Profile : 

Orcid

Scopus  

Summary of Suitability for Award:

Professor Hauh-Jyun Candy Chen is an outstanding researcher in the field of organic chemistry and biochemical research, with a strong focus on mass spectrometry-based biomonitoring, chemical exposome analysis, and biomarker identification related to cancer and smoking-related diseases. Her academic credentials, extensive research experience, and significant scientific contributions make her a strong candidate for the “Best Researcher Award. “Professor Hauh -J yun Candy Chen’s distinguished career, pioneering research in biomolecular analysis, and commitment to scientific advancements in chemistry and biochemistry make her an exceptional candidate for the “Best Researcher Award.” Her work not only deepens the understanding of chemical exposures and their health effects but also has significant translational potential in clinical diagnostics and public health. Given her research impact, leadership in the field, and continuous contributions to high-quality publications, she is highly suitable for this prestigious recognition.

🎓Education:

Dr. Hauh-Jyun Candy Chen completed her Ph.D. in Organic Chemistry at the State University of New York at Stony Brook in 1988. Her dissertation, titled New and Effective Routes to Optically Pure Aromatic Amino Acids, Peptides, and Their Derivatives via Chiral β-Lactam Intermediates, was conducted under the guidance of Professor Iwao Ojima. She earned her Bachelor of Science degree in Chemistry from National Cheng Kung University, Taiwan, in 1983. Dr. Chen’s academic training provided her with a strong foundation in organic synthesis, bioanalytical chemistry, and mass spectrometry. Her interdisciplinary expertise has allowed her to develop innovative methodologies for studying chemical modifications in biomolecules, particularly in relation to disease biomarkers and environmental toxicology. Throughout her career, Dr. Chen has continuously expanded her research scope, integrating advanced analytical techniques to investigate the biochemical impacts of carcinogens, oxidative stress, and metabolic disorders.

🏢Work Experience:

Dr. Hauh-Jyun Candy Chen has over three decades of research and teaching experience in organic chemistry and bioanalytical sciences. She has been a Distinguished Professor at National Chung Cheng University since 2020, where she previously served as Professor (2004-2020), Associate Professor (1999-2004), and Assistant Professor (1997-1999). Before joining academia, she was an Associate Research Scientist at the American Health Foundation (1994-1997), where she worked on nucleic acid chemistry and chemical carcinogenesis. From 1992 to 1994, she was a Senior Research Fellow at the same institution. She also conducted postdoctoral research at the Rockefeller University (1989-1991), the Picower Institute for Medical Research (1991), and the National Institutes of Health (1988-1989). Her extensive research in analytical toxicology and mass spectrometry has advanced the understanding of oxidative and carcinogenic modifications in biomolecules, leading to breakthroughs in biomarker discovery for cancer and exposure assessment.

🏅Awards: 

Dr. Hauh-Jyun Candy Chen has received numerous awards and recognitions for her outstanding contributions to analytical chemistry and toxicology. Her research on post-translational modifications in hemoglobin and the development of mass spectrometric methodologies has been widely recognized. She has been invited to present at international conferences on biomolecular analysis and chemical carcinogenesis. Dr. Chen has received multiple research grants from prestigious funding agencies, reflecting the impact and significance of her work. Her publications in high-impact journals have garnered substantial citations, further establishing her as a leading figure in analytical toxicology. As a dedicated mentor, she has supervised numerous graduate students and postdoctoral researchers, many of whom have gone on to successful academic and industry careers. Her contributions to environmental health, biomarker discovery, and disease diagnostics continue to shape the field of chemical research and biomedical science.

🔬Research Focus:

Professor Hauh-Jyun Candy Chen’s research primarily focuses on the analysis of chemical exposures and their impact on human health using advanced mass spectrometry techniques. Her work emphasizes the identification and quantification of biomarkers for diseases linked to environmental and lifestyle factors, particularly in the context of cancer and smoking-related illnesses. A significant part of her research explores oxidative and post-translational modifications in proteins, such as hemoglobin, resulting from exposure to toxic chemicals like acrolein and malondialdehyde. Through high-resolution mass spectrometry, Professor Chen investigates how these modifications can serve as biomarkers for disease diagnosis and progression, particularly in cancer patients and smokers. Her research also includes studies on the chemical exposome, connecting environmental exposures to human health outcomes. With a focus on precision biomonitoring and toxicology, her work aims to improve disease prevention, early detection, and therapeutic strategies, providing valuable insights into the relationship between chemical exposures and chronic diseases.

Publication Top Notes:

Multiple Oxidative Modifications on Hemoglobin Are Elevated in Breast Cancer Patients as Measured by Nanoflow Liquid Chromatography-Tandem Mass Spectrometry

Authors: H.J.C. Chen, Hauh Jyun Candy; S. Hu, Shunxiang; C. Tu, Chiwen

Year: 2025

Citations: 0

Connecting Chemical Exposome to Human Health Using High-Resolution Mass Spectrometry-Based Biomonitoring: Recent Advances and Future Perspectives

Authors: Y. Chen, Yuanchieh; J.F. Hsu, Jing Fang; C. Chang, Chihwei; H.J.C. Chen, Hauh Jyun Candy; P. Liao, Pao-Chi

Year: 2023

Citations: 15

Response to “Malondialdehyde-Induced Post-Translational Modification of Human Hemoglobin”

Authors: H.J.C. Chen, Hauh Jyun Candy; Y. Liao, Yanling

Year: 2023

Citations: 0

Mass Spectrometry Analysis of DNA and Protein Adducts as Biomarkers in Human Exposure to Cigarette Smoking: Acrolein as an Example

Authors: H.J.C. Chen, Hauh Jyun Candy

Year: 2023

Citations: 15

Characterization and Quantification of Acrolein-Induced Modifications in Hemoglobin by Mass Spectrometry─Effect of Cigarette Smoking

Authors: H.J.C. Chen, Hauh Jyun Candy; S. Cheng, Shuwei; N. Chen, Naiying; D. Wu, Dengchyang

Year: 2022

Citations: 6

Malondialdehyde-Induced Post-translational Modifications in Hemoglobin of Smokers by NanoLC-NSI/MS/MS Analysis

Authors: H.J.C. Chen, Hauh Jyun Candy; C. Chen, Chauyi; Y. Fang, Yahsuan; K. Hung, Kaiwei; D. Wu, Dengchyang

Year: 2022

Citations: 10

 

 

Assist. Prof. Dr Maryam Khajenoori | Green Extraction Award | Best Researcher Award

Assist. Prof. Dr Maryam Khajenoori | Green Extraction Award | Best Researcher Award

Assist. Prof. Dr Maryam Khajenoori , Semnan University , Iran 

Dr. Maryam Khajenoori is an Assistant Professor of Chemical Engineering at Semnan University, Iran. she is a specialist in subcritical water extraction (SWE) and chemical process engineering. Dr. Khajenoori’s academic career centers around sustainable separation processes and nanoparticle synthesis, with extensive research in solubility analysis, green extraction methods, and thermodynamic modeling. She is an accomplished educator, guiding students through advanced engineering mathematics, mass transfer, and environmental biotechnology. A published author in renowned journals, Dr. Khajenoori’s expertise extends to practical applications in chemical engineering and sustainable energy. She is proficient in multiple programming languages and specialized software, utilizing her technical skills to advance both academic research and applied chemical engineering processes.

Professional Profile: 

Google Scholar

Scopus 

Summary of Suitability for Award:

Dr. Maryam Khajenoori’s combination of academic excellence, significant research contributions, and focus on sustainability makes her a strong contender for the “Best Researcher Awards.” Her research on subcritical water extraction and related sustainable chemical processes is not only innovative but also has practical implications for industries like pharmaceuticals, food, and environmental engineering. Given her proven track record of influential publications, successful projects, and teaching roles, she is highly deserving of this recognition. Her work is set to continue making an important impact in both academic and industrial spheres, reaffirming her status as a leading researcher in the field.

🎓Education:

Dr. Khajenoori holds a Ph.D. in Chemical Engineering from Semnan University, specializing in the thermodynamics and kinetics of chemical reactors. She obtained her M.Sc. in Chemical Engineering with a focus on Separation Processes from the same institution , by  following her B.Sc. in Chemical Engineering (Polymer Branch) from Isfahan University of Technology (IUT) . Her foundational education includes a diploma in Mathematics and Physics from Dehkhoda High School in Kashan, Isfahan, Iran. Her academic journey has been marked by a rigorous focus on chemical processes, separation techniques, and sustainable engineering methodologies, paving the way for her research interests in green extraction and solubility of bioactive compounds.

🏢Work Experience:

Dr. Khajenoori has diverse teaching experience at Semnan University, covering subjects such as advanced mass transfer, environmental biotechnology, unit operations, and engineering mathematics. She has also instructed in specialized labs and workshops, including MATLAB, Aspen, and Hysys, to equip students with practical skills. Additionally, her research projects include studies on the thermokinetics of SWE for her Ph.D., superheated water extraction in her M.Sc., and pollutant studies in groundwater from her undergraduate studies. She has also completed numerous projects in CO2 capture, computational fluid dynamics, and molecular dynamics, applying her expertise in both teaching and research for sustainable chemical engineering solutions.

🏅Awards:

Dr. Khajenoori has earned recognition for her research contributions, particularly in the areas of subcritical water extraction and solubility analysis. Her pioneering work on SWE of essential oils has garnered international attention, and she has been invited to present her findings at leading scientific conferences. She has also been recognized within Semnan University for her dedication to both teaching and research, receiving accolades for her contributions to environmental biotechnology and sustainable chemical engineering practices. Additionally, her efforts in green extraction methods have placed her at the forefront of sustainable engineering, further affirming her as a respected figure in the field.

🔬Research Focus:

Dr. Khajenoori’s research primarily explores sustainable and green extraction methods, particularly subcritical water extraction (SWE) for bioactive compounds. Her interests extend to the solubility of valuable compounds like curcumin in SWE conditions, nanoparticle synthesis using environmentally friendly techniques, and pollution treatment processes. She has conducted extensive studies on thermodynamic modeling and the effect of SWE on various essential oils, aiming to optimize extraction efficiency and purity. Through her focus on sustainable practices, Dr. Khajenoori contributes to advancements in eco-friendly chemical engineering and supports the development of alternative extraction techniques to reduce environmental impact.

Publication Top Notes:

  •  Subcritical water extraction
     Citations: 144
  • Proposed models for subcritical water extraction of essential oils
    Citations: 103
  • Mass Transfer: Advances in Sustainable Energy and Environment Oriented Numerical Modeling
    Citations: 71
  •  Subcritical water extraction of essential oils from Zataria multiflora Boiss
    Citations: 63
  • Extraction of Curcumin and Essential Oil from Curcuma longa L. by Subcritical Water via Response Surface Methodology
    Citations: 58