Muhammad Rizwan | Environmental Chemistry | Best Researcher Award

Dr. Muhammad Rizwan | Environmental Chemistry | Best Researcher Award

Postdoc Researcher, Changsha University of Science & Technology, China

Dr. Muhammad Rizwan is a seasoned soil and environmental scientist from Pakistan, specializing in sustainable green materials and engineered biochars for environmental management. With over a decade of experience, he has led research in nanomaterial synthesis, environmental chemistry, resource recovery, and climate change mitigation. Currently, he is a Senior Postdoctoral Fellow at Changsha University of Science and Technology, China, where he leads independent and collaborative research projects, mentors students, and contributes significantly to environmental science literature. He has held positions at Central South University, China Agricultural University, and the University of Okara, Pakistan. His scientific contributions include numerous high-impact publications, editorial roles, and peer-review activities for leading journals. Dr. Rizwan is dedicated to advancing environmental sustainability through innovative research solutions and maintains strong international collaborations, aiming to tackle global environmental challenges and improve ecological health worldwide.

Professional Profile

Google Scholar

Education 

Dr. Muhammad Rizwan began his academic journey with a Bachelor of Science degree from PMAS-Arid Agriculture University, Rawalpindi, Pakistan, between 2007 and 2011, where he excelled as a merit scholarship holder. He continued his studies at the same institution, completing a Master of Science in Soil and Environmental Sciences from 2011 to 2013, supported by the USAID Merit Scholarship. Eager to expand his expertise internationally, he pursued a Ph.D. in Soil and Environmental Sciences at China Agricultural University, Beijing, from 2015 to 2019, under a prestigious full scholarship from the Chinese Scholarship Council (CSC). In addition to his scientific training, he undertook a Chinese language course at China Agricultural University in 2014-2015 to support his academic and professional integration in China. His educational journey has equipped him with a deep multidisciplinary understanding of soil science, environmental remediation, and sustainable resource management.

Experience 

Dr. Muhammad Rizwan’s professional experience spans academia and research across Pakistan and China. As a Senior Postdoctoral Fellow at Changsha University of Science and Technology since December 2024, he designs experiments, conducts data analysis, publishes research, and teaches undergraduate courses in Environmental Sciences. From June 2021 to November 2024, he served as a Postdoctoral Fellow at Central South University, where he specialized in engineered biochars, experimental research, and student mentoring. Earlier, he worked as an IPFP Fellow (equivalent to Assistant Professor) at the University of Okara, Pakistan, teaching courses, securing research funding, and managing departmental responsibilities. His career began as a University Research Assistant at China Agricultural University from 2016 to 2019, focusing on biochar research and publication writing. He is also actively engaged in editorial roles for journals and peer-review activities, further strengthening his profile as a leading environmental scientist.

Awards and Honors 

Dr. Muhammad Rizwan has earned multiple accolades reflecting his research excellence and academic commitment. He was selected as a Distinguished Postdoctoral Fellow at Central South University in 2024, recognizing his impactful contributions to environmental science. During his doctoral studies, he held a full scholarship from the Chinese Scholarship Council (CSC) from 2015 to 2019, and he was honored with the “Excellent Research Achievement Award” by China Agricultural University for two consecutive years, 2015 and 2016. He won the Best Presentation Award at the 4th Asia Pacific Biochar Conference in Foshan, China, in 2018. Earlier in his academic journey, he consistently secured merit scholarships during his Bachelor’s and Master’s studies at PMAS-Arid Agriculture University, Rawalpindi, Pakistan, including the prestigious USAID Merit Scholarship between 2011 and 2013. These honors underscore his dedication, innovative research spirit, and contributions to sustainable environmental solutions.

Research Interests 

Dr. Muhammad Rizwan’s research interests span diverse yet interconnected fields within environmental science. His primary focus lies in the synthesis and engineering of advanced biochars for sustainable environmental management, addressing pollution remediation, soil health improvement, and resource recovery. He is deeply engaged in nanomaterial synthesis and exploring the environmental chemistry of pollutants and emerging contaminants. His work also emphasizes developing green materials and innovative sorbents for water and soil remediation, contributing to climate change mitigation strategies through carbon sequestration and circular economy approaches. He is keenly interested in using biochar-based composites and functional materials for removing heavy metals, organic pollutants, and emerging contaminants from ecosystems. His interdisciplinary research bridges environmental chemistry, materials science, sustainable agriculture, and environmental engineering, reflecting a strong commitment to sustainable development goals. Dr. Rizwan aims to pioneer solutions that advance environmental sustainability while addressing pressing global ecological challenges.

Research Skills 

Dr. Muhammad Rizwan possesses extensive research skills in experimental design, nanomaterial synthesis, and the engineering of biochar-based materials for environmental applications. He excels in advanced techniques for synthesis and characterization of biochars, including surface functionalization, magnetic modification, and steam explosion pretreatments. His expertise covers analytical methods like spectroscopy, electron microscopy, adsorption analysis, and thermal analysis for evaluating material properties and pollutant interactions. Dr. Rizwan is adept at data analysis using statistical tools and machine learning approaches, contributing to predictive modeling in environmental studies. He is skilled in writing high-quality research publications, preparing project proposals, and delivering scientific presentations. His experience includes supervising students, leading collaborative research projects, and coordinating multi-institutional studies. Additionally, he actively contributes to scientific journals as an editor and reviewer, ensuring rigorous peer-review standards. His research skills uniquely position him to develop innovative solutions for environmental sustainability and pollution remediation.

Publication Top Notes

  • Synthesis, characterization and application of magnetic and acid modified biochars following alkaline pretreatment of rice and cotton straws

  • A review of mechanism and adsorption capacities of biochar-based engineered composites for removing aquatic pollutants from contaminated water

  • Biochar as a green sorbent for remediation of polluted soils and associated toxicity risks: a critical review

  • Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants

  • Steam explosion of crop straws improves the characteristics of biochar as a soil amendment

  • Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass

  • Potential value of biochar as a soil amendment: A review

  • Sustainable manufacture and application of biochar to improve soil properties and remediate soil contaminated with organic impurities: a systematic review

  • Exogenously applied melatonin enhanced chromium tolerance in pepper by up-regulating the photosynthetic apparatus and antioxidant machinery

  • Tuning active sites on biochars for remediation of mercury-contaminated soil: A comprehensive review

  • Biochar enhances the growth and physiological characteristics of Medicago sativa, Amaranthus caudatus and Zea mays in saline soils

  • Manganese-modified biochar promotes Cd accumulation in Sedum alfredii in an intercropping system

  • Lead-Immobilization, transformation, and induced toxicity alleviation in sunflower using nanoscale Fe°/BC: Experimental insights with Mechanistic validations

  • Innovative dual-active sites in interfacially engineered interfaces for high-performance S-scheme solar-driven CO2 photoreduction

  • Interfacially Modulated S‐Scheme Van der Waals Heterojunctional Photocatalyst for Selective CO2 Photoreduction Coupled with Organic Pollutant Degradation

  • Simultaneous dopants and defects synergistically modulate the band structure of CN in Z-scheme heterojunctional photocatalysts for simultaneous HER and OER production

  • Rational Design Strategy for High‐Valence Metal‐Driven Electronically Modulated High‐Entropy Co–Ni–Fe–Cu–Mo (Oxy) Hydroxide as Superior Multifunctional Electrocatalysts

  • Characteristics of Cd2+ sorption/desorption of modified oilrape straw biochar

  • Synergistic effect of biochar and intercropping on lead phytoavailability in the rhizosphere of a vegetable-grass system

  • COMPARISON OF PB2+ ADSORPTION AND DESORPTION BY SEVERAL CHEMICALLY MODIFIED BIOCHARS DERIVED FROM STEAM EXPLODED OIL-RAPE

Dr. Vemula Madhavi | Environmental Chemistry | Women Researcher Award

Dr. Vemula Madhavi | Environmental Chemistry | Women Researcher Award

Dr. Vemula Madhavi , Environmental Chemistry , Assistant Professor at BVRIT HYDERABAD College of Engineering for Women, India

Dr. S. Madhavi V is an accomplished chemist with a Ph.D. from Sri Venkateswara University, Tirupati, India. She has cultivated a solid academic and research career focused on nanomaterials, environmental remediation, and analytical chemistry. Currently serving as an Assistant Professor at BVRIT Hyderabad, Dr. Madhavi brings more than 15 years of teaching and research experience. Her work includes a granted Indian patent and multiple high-impact publications in reputed journals. She has also secured funding for research under TEQIP-III, JNTUH. With an h-index of 11 and over 500 citations, her contributions to green synthesis and environmental nanotechnology are widely recognized. A passionate educator and innovator, she continually strives to bridge the gap between research and societal application, especially in the field of water purification using sustainable materials.

Professional Profile : 

Google Scholar

Orcid 

Scopus 

Summary of Suitability for Award:

Dr. S. Madhavi V is highly suitable for the “Women Researcher Award” due to her significant and sustained contributions to the field of chemistry, particularly in nanotechnology and environmental applications. She has over 15 years of combined research and teaching experience, a granted Indian patent on sustainable water purification using graphene oxide from rice husk, and a funded research project under TEQIP-III on green nanomaterials for wastewater treatment. Her scholarly impact includes 540+ citations, h-index of 11, and 12+ research publications in high-impact journals spanning areas such as nanocomposites, MOFs, biomarker sensors, and agricultural nanotechnology. She integrates innovative eco-friendly methodologies in her work and demonstrates leadership as an academic and researcher. Dr. Madhavi has also contributed to science education through multiple academic positions, helping foster the next generation of chemists. Dr. S. Madhavi V embodies the spirit and excellence celebrated by the “Women Researcher Award”. Her impactful research, interdisciplinary approach, and commitment to sustainable science position her as a leading woman in the chemical sciences. Her achievements in patenting, publishing, and funded research underscore her excellence and innovation. She is not only an accomplished scientist but also a role model for aspiring women researchers in India and beyond.

🎓Education:

Dr. Madhavi V pursued her academic journey at Sri Venkateswara University, Tirupati, where she earned her Ph.D. in Chemistry in 2014. Her research was grounded in environmental and materials chemistry, focusing on the synthesis and application of nanomaterials for remediation. She holds an M.Sc. in Chemistry (2008) with a stellar score of 78.9%, and a B.Sc. in Mathematics, Physics, and Chemistry (2006) with an impressive 84%. Her earlier education includes Intermediate (2003) with 90% and SSC (2001) with 88%, showcasing consistent academic excellence throughout. These solid foundations in science and mathematics equipped her with critical analytical skills, enabling her to explore interdisciplinary challenges across chemistry and environmental science. Her academic progression reflects a deep commitment to learning, teaching, and developing sustainable scientific innovations.

🏢Work Experience:

Dr. Madhavi V began her academic career as an Academic Consultant in Chemistry at Yogi Vemana University (2008–2009). She then served as an Assistant Professor at Annamacharya Engineering College, Tirupati (2009–2010), and a Teaching Assistant at S.V. University (2010–2013). Her pedagogical contributions continued at CMRIT, Hyderabad (2013–2014), before joining BVRITH Hyderabad in 2014, where she continues to inspire students. Over 15 years, she has demonstrated excellence in curriculum delivery, research supervision, and innovation-driven education. Her interdisciplinary teaching spans general chemistry, environmental science, nanotechnology, and green chemistry. She has also guided students in research-based learning, integrating academic content with practical applications. Her teaching is marked by a commitment to quality education, fostering critical thinking and sustainable innovation among learners.

🏅Awards: 

Dr. S. Madhavi V has received several honors that underscore her excellence in research and innovation. Notably, she was granted an Indian patent (No. 410482) for her invention titled “Pretreated Rice Husk for Sustainable Graphene Oxide for Adsorptive Removal of Chromium from Water”, which highlights her commitment to sustainable environmental solutions. She also secured a funded research grant under the TEQIP-III collaborative scheme (JNTUH, 2019) for her project focused on synthesizing graphene from agricultural waste for the remediation of heavy metals in wastewater. Her scholarly impact is evidenced by a Google Scholar h-index of 11, i10 index of 11, and over 540 citations, recognizing her influential contributions to nanochemistry and environmental science. She is listed on major research platforms including Scopus, ORCID, and Google Scholar, which reflects her active engagement with the global scientific community. These accolades mark her as a distinguished and impactful woman researcher in the chemical sciences.

🔬Research Focus:

Dr. Madhavi V’s research is centered on green synthesis of nanomaterials, graphene production from biomass, and removal of heavy metals and dyes from wastewater using low-cost adsorbents. Her studies explore the eco-friendly conversion of agricultural waste into high-efficiency nanomaterials, with a focus on water remediation. She is deeply invested in adsorptive technologies, biomass-derived graphene, metal-organic frameworks (MOFs), and environmental sensors. Her work also extends to computational docking of metal complexes, magnetic and optical characterization of ferrites, and controlled release formulations for agricultural sustainability. By integrating sustainable materials science, environmental protection, and analytical techniques, her research contributes significantly to green chemistry and nanotechnology. With a strong inclination toward applications with social and environmental impact, Dr. Madhavi is a dedicated advocate for translating lab-scale innovations into real-world solutions.

Publication Top Notes:

1. Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium

Citations: 221

2. An overview on research trends in remediation of chromium

Citations: 94

3. Remediation of chlorpyrifos-contaminated soils by laboratory-synthesized zero-valent nano iron particles: effect of pH and aluminium salts

Citations: 75

4. Synthesis and spectral characterization of iron-based micro and nanoparticles

Citations: 54

5. Chapter 8 – Recent improvements in the extraction, cleanup and quantification of bioactive flavonoids

Citations: 47

6. A selective and sensitive UPLC–MS/MS approach for trace level quantification of four potential genotoxic impurities in zolmitriptan drug substance

Citations: 36

7. Electrochemical investigations of lipase enzyme activity inhibition by methyl parathion pesticide: voltammetric studies

Citations: 33

8. Conjunctive effect of CMC–zero-valent iron nanoparticles and FYM in the remediation of chromium-contaminated soils

Citations: 30

9. Method development and validation study for quantitative determination of 2-chloromethyl-3,4-dimethoxy pyridine hydrochloride a genotoxic impurity in pantoprazole active …

Citations: 26

10. Liquid chromatography–tandem mass spectrometry method for simultaneous quantification of urapidil and aripiprazole in human plasma and its application to human pharmacokinetic …

Citations: 22

 

Mr. Seth Adusei | Environmental Chemistry | Best Researcher Award

Mr. Seth Adusei | Environmental Chemistry | Best Researcher Award

Mr. Seth Adusei , Environmental Chemistry , Graduate Research Assistant at Department of Materials Engineering, Kwame Nkrumah University of Science and Technology, Ghana

Seth Adusei is a passionate environmental and water resource management professional from Ghana, with a strong multidisciplinary background in aquaculture, project management, and materials engineering. With academic roots from Kwame Nkrumah University of Science and Technology (KNUST) and certifications from European Business University, Luxembourg, Seth combines technical expertise with project execution skills. His professional journey spans research, data analysis, business development, and environmental monitoring roles across various reputable institutions. He has demonstrated excellence in academic research, stakeholder engagement, and technical coordination. Seth’s work, especially in heavy metal pollution and sustainable aquaculture, reflects his commitment to environmental resilience and data-driven problem-solving. Beyond academia, he has volunteered as a peer counselor and actively contributed to institutional growth through innovative solutions. He continues to seek opportunities to merge environmental science, community development, and data analytics to tackle pressing environmental chemistry and resource management challenges across Africa and beyond.

Professional Profile : 

Orcid 

Summary of Suitability for Award:

Seth Adusei is a promising early-career researcher whose multidisciplinary expertise in environmental resources management, aquaculture, and materials engineering positions him as a strong contender for the “Best Researcher Award”. His academic journey through KNUST and the European Business University reflects a commitment to both scientific excellence and practical project leadership. He has conducted impactful research on heavy metal pollution due to illegal mining and its effects on aquatic life, particularly Clarias gariepinus, addressing a major environmental chemistry concern in West Africa . As a Graduate Research Assistant, Seth has demonstrated excellence in literature review, experimental design, data analysis, and collaborative research. His voluntary peer counseling, professional trainings, and customer-centric achievements further highlight his balanced growth as a researcher and societal contributor. Seth Adusei is highly suitable for the “Best Researcher Award” in the early-career or emerging researcher category. His research tackles urgent regional environmental issues with global relevance, and his track record—though still growing—is marked by strong academic rigor, practical impact, and professional integrity. Recognizing him at this stage will not only honor his achievements but also inspire further contributions to sustainable environmental research and leadership in Africa.

🎓Education:

Seth Adusei holds an MPhil in Environmental Resources Management (Materials Engineering) and a BSc in Aquaculture and Water Resource Management from Kwame Nkrumah University of Science and Technology (KNUST), Ghana 🎓. His academic career is marked by excellence in environmental science, with strong competencies in sustainability, pollution control, and materials engineering. Additionally, he obtained a Master’s Certificate in Project Management and a CP100 Business Management credential from the European Business University, Luxembourg 🇱🇺. Seth also holds a Diplôme d’Études en Langue Française from Alliance Française 🇫🇷, showcasing his linguistic versatility. His multidisciplinary education has equipped him with a rare blend of environmental insight, technical management, business acumen, and cross-cultural communication. His strong academic foundation supports his dynamic career, helping him integrate scientific research with practical project implementation and business development.

🏢Work Experience:

Seth Adusei has held impactful roles across academia, government, and private sectors. As a Graduate Research Assistant at KNUST’s Department of Materials Engineering 🧪, he engaged in scientific investigations, research communication, and project coordination. He freelanced as a Data Analyst at the African Institute of Business and Leadership Excellence 📊, extracting insights and building dashboards for institutional growth. At Ama Duncan Consulting 💼, he excelled as a Business Development Executive, earning recognition for outstanding customer service and expanding the firm’s clientele through strategic initiatives. He also served the Ghana Cocoa Board 🌱 during his national service, where he co-supervised the production of over 2 million cocoa seedlings. In earlier roles with Ghana Water Company Limited 💧, he contributed to technical water distribution and administrative functions. Volunteering as a Peer Counselor at KNUST, Seth displayed leadership, empathy, and student engagement, demonstrating his dedication to community support and professional development.

🏅Awards: 

Seth Adusei has been recognized for his outstanding contributions in professional and academic settings. At Ama Duncan Consulting, he received accolades for being the Best Customer Service Personnel, reflecting his ability to blend client engagement with business growth 🌟. His role in producing over 2 million cocoa seedlings at the Ghana Cocoa Board is considered a milestone in environmental sustainability and agricultural productivity 🌱. His volunteer work as a Peer Counselor at KNUST was highly valued, as he provided emotional and academic support to students, strengthening student wellness and retention ❤️. His dedication to environmental research and technical support has earned him trust among peers, supervisors, and institutional partners. Through training programs such as the Project Management Masterclass and Customer Service Training for Professionals, Seth continually enhances his skill set and has become a well-rounded professional who contributes meaningfully to both institutional objectives and community impact.

🔬Research Focus:

Seth Adusei’s research focuses on environmental chemistry , particularly in the assessment of aquatic ecosystems, heavy metal pollution, and the impacts of illegal mining on water quality and aquatic life 🌍🐟. His interdisciplinary approach combines principles from aquaculture, environmental engineering, and data science to investigate pollution effects and propose remediation strategies. His work has emphasized the viability of Clarias gariepinus (African catfish) in polluted rivers, advancing scientific understanding of aquatic toxicity in mining-affected regions. At KNUST, Seth contributes to materials engineering research, incorporating resource management and sustainability analytics into project execution 🔎📈. He is also passionate about using data visualization and statistical modeling to communicate complex environmental data to diverse audiences. Seth’s goal is to influence sustainable development policies and enhance water resource governance in Ghana and across Africa. His research aligns with the Sustainable Development Goals (SDGs), particularly clean water, responsible consumption, and life below water 🌐.

Publication Top Notes:

📘 Heavy Metal Pollution From Illegal Mining ‘Galamsey’ Activities on the Viability of Clarias gariepinus in the Oda River, Ghana

Authors: Seth Adusei; Emmanuel Gikunoo; Emmanuel Kwesi Arthur; William Amponsah; Frank Ofori Agyemang; Godfred Ohemeng‑Boahen scholar.google.co.uk+5sciety.org+5labs.sciety.org+5

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki , Environmental Chemistry , Jan Evangelista Purkyne University , Czech Republic

Dr. Karim Al Souki is a postdoctoral researcher and assistant professor at the Faculty of Environment, Jan Evangelista Purkyne University (UJEP), Czechia. With a Ph.D. in Earth and Universe Sciences from Lille 1 University, France, his academic journey reflects a strong foundation in plant biology and environmental sciences. Dr. Al Souki’s research spans phytoremediation, bioremediation, biochar utilization, and climate change mitigation through sustainable phytotechnology. He is a key contributor to international projects funded by NATO, Erasmus+, and Interreg, focusing on ecosystem restoration, water management, and environmental biotechnology. As an educator, he has taught courses across Europe on subjects such as environmental biotechnology, phytotechnology, and bio-economy. Dr. Al Souki’s interdisciplinary approach blends ecological theory with applied environmental solutions, making significant contributions to marginal land restoration and water pollution mitigation. His work promotes sustainability, ecological awareness, and environmental resilience through innovation and education.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

With a Ph.D. in Earth and Universe Sciences from Lille 1 University (France), and two Master’s degrees in Phyto-ecology and Plant Biology from Lebanese University, Dr. Karim Al Souki demonstrates a solid and multidisciplinary academic foundation. Dr. Karim Al Souki  leads and contributes to cutting-edge projects on phytoremediation, biochar technology, and environmental biotechnology—directly addressing climate change, pollution mitigation, and sustainable soil management. His research covers analytical techniques (FTIR, TGA, stable isotopes, DNA extraction), linking practical fieldwork with lab-based precision, ensuring both academic rigor and societal relevance. His role as project supervisor in initiatives like IDEAL and NATO-SPS illustrates leadership in shaping future environmental policies and technologies. Dr. Karim Al Souki is an ideal candidate for the “Best Researcher Award”, given his consistent, interdisciplinary contributions to environmental sciences. His research directly supports global sustainability goals through practical, innovative, and scalable solutions. Furthermore, his educational outreach, cross-border collaborations, and commitment to solving real-world ecological problems distinguish him as a researcher of international repute. This award would recognize and further empower his impactful scientific journey.

🎓Education:

Dr. Al Souki pursued his academic studies in biology and environmental sciences. He earned his Bachelor’s degree in General Biology (2008–2010), followed by a Master 1 in Plant Biology and Environment (2010–2011), and a Master 2 in Phyto-ecology, Resources, and Security Applications (2011–2012), all from Lebanese University, Lebanon. He then completed his Ph.D. in Earth and Universe Sciences at LGCgE, ISA-Lille, Lille 1 University of Sciences and Technologies, France (2014–2017). His academic foundation combines ecological sciences, environmental applications, and molecular understanding of plant-soil interactions. This educational pathway equipped him with the necessary tools to integrate ecological theory with practical environmental solutions. His training in Europe and the Middle East enabled him to adopt a multidisciplinary perspective and work in cross-cultural academic and research environments. His education has laid the groundwork for his specialization in environmental biotechnology, phytoremediation, and biochar applications.

🏢Work Experience:

Since October 2018, Dr. Karim Al Souki has been serving as a Post-doctoral researcher and Assistant Professor at UJEP, Czechia, where he teaches and conducts advanced research in environmental sciences. His prior experience includes teaching roles at ESME Sudria (France) and private institutions in Lille, where he lectured in phytoecology, molecular biology, and environmental science. He has supervised and contributed to numerous EU- and NATO-funded projects related to phytotechnology, biochar, soil-plant interactions, and wastewater treatment. His pedagogical contributions span multiple European universities and platforms, such as Erasmus, COIL, and ISA-Lille. He has taught subjects including Bioremediation, Bio-economy, Environmental Biotechnology, and Climate Change. Dr. Al Souki’s interdisciplinary teaching and research experience enable him to link theoretical knowledge with field-based applications, fostering student engagement and scientific problem-solving skills relevant to contemporary ecological challenges.

🏅Awards: 

Dr. Karim Al Souki has been recognized for his impactful research and cross-border educational initiatives. He is the Principal Investigator or Supervisor on several prestigious projects funded by international agencies such as NATO Science for Peace and Security Programme, Interreg (IDEAL project), and Erasmus+, highlighting his leadership in environmental science and sustainability education. He received the UJEP Internal Grant Agency funding multiple times (2021–2023), supporting his innovative work on biochar and Miscanthus x giganteus in soil restoration. He was awarded the Usti nad Labem region grant for young researchers for his study on quinoa in polluted soils. His consistent success in securing competitive research grants attests to the scientific merit and societal relevance of his projects. These accolades recognize his commitment to ecosystem services, educational outreach, and environmental restoration, and affirm his role as a rising figure in applied environmental sciences and international academic collaboration.

🔬Research Focus:

Dr. Al Souki’s research centers on phytotechnology, bioremediation, biochar characterization, and ecosystem service enhancement in marginal and contaminated soils. He specializes in using Miscanthus x giganteus and quinoa to rehabilitate former military lands and toxic-element-polluted environments. His research integrates stable isotope analysis, DNA-based microbial community profiling, and plant physiological assessments to explore rhizospheric interactions, nutrient cycling, and carbon sequestration. His work on biochar, especially its physico-chemical and ecotoxicological properties, supports sustainable agricultural and water reuse practices. His active projects include NATO-funded studies on climate change mitigation and EU-supported educational modules for water sustainability in the Elbe/Labe basin. His interdisciplinary approach links environmental microbiology, plant ecophysiology, and green chemistry, targeting real-world environmental problems with practical, nature-based solutions. His goal is to bridge science and education to improve soil health, water quality, and resilience against climate change.

Publication Top Notes:

1. An overview of potentially toxic element pollution in soil around lead–zinc mining areas

2. A comprehensive evaluation of the environmental and health risks associated with the potential utilization of chars produced from tires, electro-waste plastics and biomass

3. Characterizations of ash derived from the crops’ waste biomass for soil improvement and assisted phytoremediation

4. A 6-year review status on soil pollution in coal mining areas from Europe

5. Extracted rapeseed meal biochar combined with digestate as a soil amendment: Effect on lettuce (Lactuca sativa L.) biomass yield and concentration of bioavailable element fraction in the soil

6. Miscanthus x giganteus stress tolerance and phytoremediation capacities in highly diesel contaminated soils

7. The influence of diesel contaminated soil on Miscanthus x giganteus biomass thermal utilization and pyrolysis products composition

8. Evaluation of Miscanthus × giganteus Tolerance to Trace Element Stress: Field Experiment with Soils Possessing Gradient Cd, Pb, and Zn Concentrations

9. Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate

10. Utilization of Biochar for Eliminating Residual Pharmaceuticals from Wastewater Used in Agricultural Irrigation: Application to Ryegrass