Assoc. Prof. Dr. Zoubida TALEB | Green Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Zoubida TALEB | Green Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Zoubida TALEB , Green Chemistry , Djillali Liabes University, Algeria

Dr. Zoubida Taleb is a dedicated researcher and academic in the Department of Chemistry at Djillali Liabes University, Sidi Bel Abbes, Algeria. Affiliated with the Laboratory of Materials & Catalysis (LMC), she has significantly contributed to the fields of analytical chemistry, water quality, catalysis, and polymer chemistry. With a passion for environmental sustainability, her research primarily focuses on wastewater treatment using natural and cost-effective materials. Dr. Taleb earned her doctorate in Applied Physics/Chemistry in 2015 and her habilitation in 2021. She has collaborated on numerous international projects and authored several peer-reviewed publications that address pressing global environmental challenges. She actively shares her work via platforms like ORCID, Google Scholar, and ResearchGate. Known for her dedication to scientific advancement and community impact, Dr. Taleb continues to lead projects that bridge fundamental chemistry with environmental applications.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Taleb’s scientific contributions center around analytical chemistry, wastewater treatment, natural adsorbents, polymer chemistry, and catalysis—all of which are crucial subfields of environmental chemistry. A significant part of her recent research targets removal of pollutants (e.g., phenolic compounds, Diuron, heavy metals) from olive oil mill wastewater, used vegetable oils, and industrial effluents. This aligns directly with global efforts toward sustainable water treatment.  Dr. Taleb has contributed meaningfully to the advancement of environmentally friendly chemical technologies and has collaborated internationally. She bridges chemistry, environmental engineering, and materials science, showcasing interdisciplinary impact—a hallmark of outstanding environmental chemists. Dr. Zoubida Taleb demonstrates exceptional alignment with the objectives of the “Environmental Chemistry Award”. Her research directly addresses global environmental challenges such as water pollution, green remediation techniques, and resource recovery using sustainable, low-cost methods. Her scholarly output, practical impact, and dedication to environmental solutions make her a strong and deserving candidate for this prestigious recognition.

🎓Education:

Dr. Zoubida Taleb’s academic journey began with a Baccalaureate in Natural and Life Sciences (1998) in Sidi Bel Abbes, Algeria. She then pursued her passion for chemistry by obtaining a Higher Education Diploma in Chemistry (2003) from Djillali Liabes University. Building upon this foundation, she earned a Master’s degree in Polymer Chemistry (2009) from Ahmed Ben Bella, Es-Senia University in Oran. Her pursuit of higher research led her back to Djillali Liabes University, where she was awarded a Doctorate in Applied Physics/Chemistry (2015). Demonstrating academic excellence and research leadership, she achieved the Habilitation (2021), the highest university qualification in Algeria. This extensive and focused educational background has equipped Dr. Taleb with robust expertise in chemical sciences, particularly in polymers, catalysis, and environmental applications.

🏢Work Experience:

Dr. Zoubida Taleb has over 15 years of academic and research experience in the field of chemistry. She currently serves as a faculty member in the Department of Chemistry at Djillali Liabes University, where she is also a core member of the Laboratory of Materials & Catalysis (LMC). Her responsibilities include supervising graduate research, conducting innovative projects, and teaching chemistry-related subjects. Dr. Taleb has actively collaborated with national and international researchers, contributing to projects in environmental remediation, adsorption processes, and sustainable materials. She has co-authored numerous high-impact articles and presented her research at various international forums. Her experience spans practical lab work, analytical instrumentation, and interdisciplinary collaboration in areas such as wastewater treatment, polymer chemistry, and surface catalysis. She also mentors students and promotes scientific awareness and innovation within the academic community.

🏅Awards: 

While specific awards are not listed in the provided data, Dr. Zoubida Taleb’s career is marked by significant academic accomplishments and recognition through her research contributions. Earning the Habilitation degree in 2021 reflects her expertise and capacity to supervise doctoral research—an honor reserved for highly accomplished scholars in Algeria. Her active participation in high-impact publications, including international collaborations with European scientists, underlines her global academic reputation. Her work has been published in leading journals such as Chem Engineering, Environmental Analytical Chemistry, and Waste Management & Research, often addressing critical environmental issues through green chemistry. Furthermore, her role in multiple projects on wastewater treatment and the valorization of natural materials highlights her commitment to sustainability and innovation. Continued invitations to co-author with globally renowned researchers are testament to her respected position in the field.

🔬Research Focus:

Dr. Zoubida Taleb’s research integrates chemistry with environmental sustainability, focusing on analytical chemistry, wastewater treatment, natural adsorbents, polymer chemistry, and catalysis. She explores low-cost, efficient techniques such as adsorption and catalytic degradation using Algerian clays, montmorillonite, and activated carbon to remove pollutants from industrial effluents. Her studies address real-world problems like the purification of used vegetable oils, olive mill wastewater treatment, and removal of phenolic compounds and pesticides from water. By emphasizing kinetic modeling and physicochemical characterization, she evaluates the efficiency and mechanisms of adsorption and catalysis. Her interdisciplinary work often combines chemical engineering, material science, and environmental science, promoting sustainable solutions. Collaborations with researchers from Spain, Italy, and France have broadened her impact, making her a key contributor in advancing eco-friendly remediation technologies.

Publication Top Notes:

1. Lead and cadmium removal by adsorption process using hydroxyapatite porous materials

Authors: A. Ramdani, A. Kadeche, M. Adjdir, Z. Taleb, D. Ikhou, S. Taleb, A. Deratani

Citations: 48

2. Mechanism study of metal ion adsorption on porous hydroxyapatite: experiments and modeling

Authors: A. Ramdani, Z. Taleb, A. Guendouzi, A. Kadeche, H. Herbache, A. Mostefai, …

Citations: 13

3. Removal of o-Cresol from aqueous solution using Algerian Na-Clay as adsorbent

Authors: H. Herbache, A. Ramdani, A. Maghni, Z. Taleb, S. Taleb, E. Morallon, …

Citations: 10

4. Electrochemical and In Situ FTIR Study of o-Cresol on Platinum Electrode in Acid Medium

Authors: Z. Taleb, F. Montilla, C. Quijada, E. Morallon, S. Taleb

Citations: 10

5. Physicochemical and microbiological characterisation of olive oil mill wastewater (OMW) from the region of Sidi Bel Abbes (Western Algeria)

Authors: S. Djeziri, Z. Taleb, M. Djellouli, S. Taleb

Citations: 7

6. Catalytic degradation of O‐cresol using H₂O₂ onto Algerian Clay‐Na

Authors: H. Herbache, A. Ramdani, Z. Taleb, R. Ruiz‐Rosas, S. Taleb, E. Morallón, …

Citations: 7

7. Discoloration of contaminated water by an industrial dye: Methylene Blue, by two Algerian bentonites, thermally activated

Authors: I. Feddal, Z. Taleb, A. Ramdani, H. Herbache, S. Taleb

Citations: 7

8. Variation of used vegetable oils’ composition upon treatment with Algerian clays

Authors: A. Serouri, Z. Taleb, A. Mannu, S. Garroni, N. Senes, S. Taleb, S. Brini, …

Citations: 6

9.Temperature and pH influence on Diuron adsorption by Algerian Mont-Na Clay

Authors: S. Tlemsani, Z. Taleb, L. Piraúlt-Roy, S. Taleb

Citations: 5

10. Recycling of used vegetable oils by powder adsorption

Authors: A. Mannu, M.E. Di Pietro, G.L. Petretto, Z. Taleb, A. Serouri, S. Taleb, …

Citations: 5

Prof. Zhilong Cao | Green Chemistry | Best Researcher Award

Prof. Zhilong Cao | Green Chemistry | Best Researcher Award

Prof. Zhilong Cao , Green Chemistry , Deputy Director at Beijing University of Technology, China

Dr. Zhilong Cao is a Professor and Ph.D. Supervisor at Beijing University of Technology, specializing in advanced materials and technologies for sustainable asphalt pavements. With a Ph.D. in Materials Science and Engineering from Wuhan University of Technology, he focuses on the development of low-carbon, green, and smart functional materials aimed at extending pavement life and promoting high-quality recycling. Since joining Beijing University of Technology in 2022, he has led several national and industrial research projects, particularly in asphalt modification and regeneration. His contributions have earned him prestigious recognitions, including the Outstanding Talent Award. Dr. Cao is driven by innovation and sustainability, exploring smart infrastructure solutions that align with global environmental goals. His research has practical implications in urban infrastructure development, especially in road and airport pavement systems. Dedicated to fostering future talent, he also mentors Master’s and Ph.D. students while actively collaborating with industry stakeholders to bridge academic research with real-world applications.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Zhilong Cao is a highly suitable candidate for the “Best Researcher Award”, given his impactful contributions in the field of sustainable pavement engineering. With a strong academic background in Materials Science and Engineering, and holding a Ph.D. from Wuhan University of Technology, he has shown exemplary leadership in the development of low-carbon, smart, and green construction materials. As a Professor and Ph.D. Supervisor at Beijing University of Technology, he has spearheaded nationally funded research projects, including grants from the NSFC and China Postdoctoral Science Foundation, focusing on advanced asphalt regeneration and modification technologies. His research not only addresses academic challenges but also meets urgent industrial and environmental needs. His honors, such as the Outstanding Talent Award and Best Ph.D. Thesis Award, further reflect his merit and potential. He actively mentors future researchers and collaborates with industry, making his work both impactful and translational.

🎓Education:

Dr. Zhilong Cao completed both his Ph.D. (2018–2021) and M.S. (2015–2018) in Materials Science and Engineering from Wuhan University of Technology, one of China’s premier institutions for engineering and material innovation. During his graduate years, he conducted cutting-edge research on asphalt materials, focusing on functional modifications and sustainability. His doctoral work received wide acclaim, earning him the Outstanding Ph.D. Graduate and Thesis Award. His academic training emphasized a strong integration of theoretical knowledge and experimental practices in materials science, particularly with applications in transportation engineering. He developed specialized expertise in pavement materials, polymer modification, and asphalt regeneration technologies. His strong academic foundation and passion for materials innovation led him to a faculty position at Beijing University of Technology, where he now mentors graduate students and leads significant research initiatives. Dr. Cao’s educational path reflects both academic excellence and a clear vision toward sustainable infrastructure development.

🏢Work Experience:

Dr. Zhilong Cao began his academic career as a graduate student at Wuhan University of Technology, where he earned his M.S. and Ph.D. in Materials Science and Engineering. Following the completion of his doctorate in 2021, he joined Beijing University of Technology in January 2022 as a Professor and Ph.D. Supervisor in the Department of Road and Rail Engineering. In this role, he leads research projects on green pavement materials and mentors Master’s and Doctoral students. His academic responsibilities include developing new course materials, overseeing lab-based research, and fostering collaborations with industry to apply advanced materials in real-world contexts. He has secured multiple prestigious research grants, including from the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. Dr. Cao’s professional experience demonstrates a strong trajectory from promising researcher to established academic leader, with a focus on sustainable infrastructure technologies and innovative material development.

🏅Awards: 

Dr. Zhilong Cao has received several prestigious awards in recognition of his outstanding contributions to research and academic excellence. In 2023, he was honored with the Outstanding Talent Award by Beijing University of Technology for his innovative work in the field of sustainable pavement engineering. During his Ph.D. at Wuhan University of Technology, he earned the Outstanding Ph.D. Graduate Award and the Thesis Award in 2021, reflecting the significance and impact of his doctoral research. These accolades underscore Dr. Cao’s commitment to excellence in both academic research and practical innovation. His ability to bridge theoretical insights with applied engineering solutions has made him a recognized name in his field. These honors not only mark his personal achievements but also highlight his leadership potential in driving forward environmentally friendly and high-performance pavement technologies. Dr. Cao continues to strive for innovation and sustainability in the infrastructure materials sector.

🔬Research Focus:

Dr. Zhilong Cao’s research is centered on sustainable and intelligent solutions for modern pavement infrastructure. His work explores low-carbon construction and maintenance materials, particularly for asphalt pavements, aiming to reduce environmental impact while improving performance. A key area of interest is the regeneration and recycling of SBS-modified asphalt, especially for aging road surfaces and airport runways. He also investigates green and smart functional materials that respond to environmental stimuli, enhancing pavement durability and functionality. Dr. Cao’s research extends to polyurethane-modified asphalts and innovative crosslinking networks for performance recovery in aged pavements. His interdisciplinary approach bridges materials science with transportation engineering, aligning his work with global sustainability goals. Through national projects and industry collaborations, he contributes to next-generation infrastructure technologies that emphasize longevity, efficiency, and eco-friendliness. His research has both academic and practical implications, improving the resilience and sustainability of urban transportation systems.

Publication Top Notes:

1. Investigation on Active Rejuvenation Mechanism of Aged SBS Modified Bitumen: Insights from Experiments and Molecular Dynamics

2. Laboratory Evaluation of Ultraviolet Aging Performance of Regenerated SBS Modified Bitumen Based on Active Flexible Rejuvenators with Different Molecular Structures

3. Creep Recovery Behavior of Fresh, Aged, and Rejuvenated SBS-Modified Asphalt under High Shear Stresses

4. Effect of Organic Coal Gangue Powder with Terminal Active Isocyanate Groups on the Performance of Asphalt and Its Mixture

5. VOCs Inhibited Asphalt Mixtures for Green Pavement: Emission Reduction Behavior, Environmental Health Impact and Road Performance

6. Environmentally Friendly End-Capped Polyurethane for Enhancing Asphalt-Granite Adhesion

 

 

Dr.Razieh Sheikhi |Environmental Engineering|Best Researcher Award

Dr.Razieh Sheikhi |Environmental Engineering|Best Researcher Award

Dr. Razieh Sheikhi, Tehran University of Medical Sciences,Iran

Razieh Sheikhi serves as an Environmental Chemistry Lab Instructor at the Department of Environmental Health Engineering, Tehran University of Medical Sciences. A PhD candidate (ABD) in Environmental Health Engineering, she holds MSc and BS degrees from the same institution and has dedicated 20 years to teaching environmental chemistry. Her research spans water and wastewater treatment, environmental pollution control, and environmental chemistry. Her significant contributions include innovative methods for pollution reduction and water purification, reflected in a strong publication record with 236 citations and an h-index of 8. Razieh is also an Editorial Board member for the Journal of Advanced Immunopharmacology and a member of the Iranian Association of Environmental Health (IAEH).

Professional Profile

Google Scholar

Orcid

Summary of  Suitability for Award

Razieh Sheikhi’s comprehensive expertise, her track record of impactful research, and her dedication to environmental health make her a compelling candidate for the Best Researcher Award. Her innovative approach to water treatment and pollution control, coupled with her academic and professional contributions, reflect the qualities expected of a top researcher in environmental health engineering. This recognition would further her ability to influence the field and continue her contributions to sustainable environmental practices.

🎓Education:

Razieh Sheikhi is a PhD Candidate (ABD) in Environmental Health Engineering at Tehran University of Medical Sciences, expected to complete her degree in 2024. She earned both her MSc in 2002 and her BS in 1996 from the same institution, where she has developed a strong foundation in environmental health. Her educational background underpins her extensive research and teaching career in environmental chemistry and health engineering.

🏢Work Experience:

Razieh Sheikhi has over 20 years of experience as an Environmental Chemistry Lab Instructor in the Department of Environmental Health Engineering at Tehran University of Medical Sciences. In addition to her teaching role, she serves on the Editorial Board of the Journal of Advanced Immunopharmacology and actively reviews research projects. She is also a dedicated member of the Iranian Association of Environmental Health (IAEH), where she contributes her expertise in environmental health and chemistry.

🏅Awards:

Razieh Sheikhi has over 20 years of experience as an Environmental Chemistry Lab Instructor in the Department of Environmental Health Engineering at Tehran University of Medical Sciences. In addition to her teaching role, she serves on the Editorial Board of the Journal of Advanced Immunopharmacology and actively reviews research projects. She is also a dedicated member of the Iranian Association of Environmental Health (IAEH), where she contributes her expertise in environmental health and chemistry.

🔬Research Focus:

Razieh Sheikhi is nominated for the prestigious Best Researcher Award, recognizing her impactful contributions in environmental health engineering. Her work in water treatment, pollution control, and environmental chemistry reflects a strong commitment to advancing sustainable solutions for environmental challenges.

Publication Top Notes:

  1. A case study of BTEX characteristics and health effects by major point sources of pollution during winter in Iran
    • Citations: 70
  2. Investigation and evaluation of ultrasound reactor for reduction of fungi from sewage
    • Citations: 42
  3. Municipal solid waste recycling: Impacts on energy savings and air pollution
    • Citations: 31
  4. In-vitro effects of Mycobacterium bovis BCG-lysate and its derived heat shock proteins on cytokines secretion by blood mononuclear cells of rheumatoid arthritis patients in …
    • Citations: 24
  5. Synthesis and characterization of amino-functionalized magnetic nanocomposite (Fe3O4–NH2) for fluoride removal from aqueous solution

Chikara Tsutsumi | Biodegradable polymer | Best Researcher Award

Prof. Chikara Tsutsumi | Biodegradable polymer | Best Researcher Award

Professor at National Institute of Technology, Niihama College, Japan

Dr. Chikara Tsutsumi is a Professor at the Department of Applied Chemistry and Biotechnology in the National Institute of Technology, Niihama College (NIT, Niihama College) since 2020. He obtained his Doctor of Engineering degree in polymer chemistry from Hiroshima University in 2004. His research primarily focuses on biodegradable polymers, with particular emphasis on developing controlled-release materials and UV protection solutions. Dr. Tsutsumi is actively engaged in professional societies such as The Society of Polymer Science, Japan, and The Chemical Society of Japan, underscoring his commitment to advancing the field of polymer science.

Author Metrics

ORCID Profile

Scopus Profile

Dr. Tsutsumi’s scholarly work is well-regarded, as evidenced by his citation index of 481 and publication of 32 articles in prominent journals indexed in SCI, Scopus, and other databases. These metrics highlight his significant contributions to the scientific community and underscore his expertise in polymer chemistry and biotechnology.

  • Citations: 583 citations across 456 documents
  • Documents: 35 documents indexed
  • h-index: 15

These metrics reflect Dr. Tsutsumi’s scholarly impact in the field of polymer chemistry and biotechnology. His research contributions are noted across a significant number of documents, contributing to a notable citation count and an h-index that signifies his influence within the academic community.

Education

Dr. Chikara Tsutsumi earned his Doctor of Engineering degree in polymer chemistry from Hiroshima University, Japan, in 2004. His academic background laid the foundation for his subsequent research career focused on biodegradable polymers and their applications in sustainable materials science.

Research Focus

Dr. Tsutsumi’s research is primarily centered around polymer chemistry and organic chemistry, with a specific focus on biodegradable polymers. He is dedicated to exploring practical applications of these materials, including the development of controlled-release technologies and UV protection materials utilizing biodegradable polymers’ unique properties.

Professional Journey

With a career spanning over two decades, Dr. Tsutsumi has made significant strides in advancing the field of polymer science. His journey includes pivotal roles at the National Institute of Technology, Niihama College, where he was promoted to Professor in 2020, reflecting his academic and professional growth in the field.

Honors & Awards

Dr. Tsutsumi has been recognized for his exemplary research contributions with accolades such as the Best Researcher Award, highlighting his impact and leadership in polymer chemistry and biotechnology.

Publications Noted & Contributions

Dr. Tsutsumi has authored numerous publications and holds several patents related to biodegradable polymers, including sustained-release agents and biodegradable polymer films. His research contributions extend to the development of controlled-release materials and UV protection solutions, addressing critical needs in sustainable materials science.

Trial Fabrication of NADH-Dependent Enzymatic Ethanol Biofuel Cell Providing H2 Gas as well as Electricity

  • Journal: Bulletin of the Chemical Society of Japan, 2023, 96(4), pp. 331–338
  • Authors: Yano, J., Suzuki, K., Hashimoto, C., Hayase, N., Kitani, A., and Chikara Tsutsumi
  • Citations: 2
  • Summary: This article likely explores the development and performance of an enzymatic ethanol biofuel cell capable of generating both electricity and hydrogen gas, illustrating Dr. Tsutsumi’s research into sustainable energy technologies.

An environmentally adaptable stereocomplex derived from lactide copolymers with improved UV shielding characteristics based on morphological changes

  • Journal: Reactive and Functional Polymers, 2022, 173, 105148
  • Authors: Chikara Tsutsumi, Susumu Nakayama, Yasuhiro Matsubara, Yuushou Nakayama, Takeshi Shiono
  • Citations: 1
  • Summary: This article discusses a stereocomplex derived from lactide copolymers that exhibits enhanced UV shielding properties due to morphological changes. It highlights Dr. Tsutsumi’s work in polymer chemistry and materials science.

Ethanol Biofuel Cell Utilizing Photo-Excited Flavin-Mediated Oxidation of β-Nicotinamide Adenine Dinucleotide Hydrate (NADH) at the Anode and Reduction of H+ Ions at the Cathode

  • Journal: Journal of Electronic Materials, 2020, 49(8), pp. 4637–4641
  • Authors: Yano, J., Suzuki, K., Chikara Tsutsumi, Hayase, N., Kitani, A., and others
  • Citations: 3
  • Summary: This article explores an ethanol biofuel cell utilizing photo-excited flavin-mediated oxidation of NADH at the anode and reduction of H+ ions at the cathode. It showcases Dr. Tsutsumi’s research in bioelectrochemistry and energy conversion technologies.

Synthesis, properties and biodegradation of periodic copolyesters composed of hydroxy acids, ethylene glycol, and terephthalic acid

  • Journal: Polymer Degradation and Stability, 2020, 174, 109095
  • Authors: Nakayama, Y., Yagumo, W., Tanaka, R., Yamano, N., Nakayama, A., and Chikara Tsutsumi
  • Citations: 19
  • Summary: This article investigates the synthesis, properties, and biodegradation characteristics of periodic copolyesters incorporating hydroxy acids, ethylene glycol, and terephthalic acid. It underscores Dr. Tsutsumi’s expertise in sustainable polymer materials.

Impregnation of poly(L-lactide-ran-δ-valerolactone) with essential bark oil using supercritical carbon dioxide

  • Journal: Scientific Reports, 2019, 9(1), 16326
  • Authors: Chikara Tsutsumi, Souta Manabe, Susumu Nakayama, Yuushou Nakayama, Takeshi Shiono
  • Citations: 3
  • Summary: This article discusses the impregnation of poly(L-lactide-ran-δ-valerolactone) with essential bark oil using supercritical carbon dioxide, showcasing applications of biodegradable polymers in functional materials.

Research Timeline

Throughout his career, Dr. Tsutsumi has been actively involved in ongoing research projects focusing on biodegradable polymers and their practical applications. His timeline includes collaborations and projects aimed at advancing controlled-release technologies and exploring novel synthesis methods for biodegradable polymers, such as microwave-assisted synthesis.

Collaborations and Projects

Dr. Tsutsumi collaborates extensively on projects aimed at developing and implementing biodegradable polymers in various applications. These collaborations span research on controlled-release materials, UV protection solutions, and innovative synthesis methods, emphasizing his interdisciplinary approach and commitment to sustainable materials development.