Iyakutti Kombiah | Materials Chemistry | Lifetime Achievement Award

Dr. Iyakutti Kombiah | Materials Chemistry | Lifetime Achievement Award

Dr. Iyakutti Kombiah | SRM Institute of Science and Technology | India

Dr. Iyakutti Kombiah, an eminent physicist and computational materials scientist, has made outstanding contributions to condensed matter physics, nanomaterials, and energy storage research, with a career spanning over four decades. He obtained his M.Sc. and Ph.D. in Physics from the University of Madras, followed by postdoctoral research in quantum chemistry at Uppsala University, Sweden, supported by SIDA. He served as Lecturer at the University of Madras, Reader and Professor at Madurai Kamaraj University, and later as Professor Emeritus and CSIR Emeritus Scientist at SRM University. His pioneering expertise lies in computational design and experimental validation of nanomaterials for hydrogen storage, photovoltaics, and CO₂ conversion, demonstrated through his leadership of multiple AOARD and ONRG-funded international projects. A prolific scholar with over 229 publications, 1,804 citations, and an h-index of 24, his research continues to influence the fields of energy materials and quantum chemistry. Dr. Iyakutti has held visiting positions at leading institutions in Japan, Canada, and the USA, fostering global collaborations. His recent works (2020–2025) focus on graphene-based hydrogen storage, Heusler alloys, and 2D nanomaterials, combining density functional theory with experimental studies. Honored with CSIR and UGC Emeritus Fellowships, he remains a leading figure advancing computational and sustainable energy materials research in India and beyond.

Profile: ORCID  | Scopus 

Featured Publications

  • Iyakutti, K., Reji, R. P., Rajeswarapalanichamy, R., & Kawazoe, Y. (2025). DFT based computational investigation of 2D monolayer gold (Au)–the goldene. Computational Condensed Matter, 25, e01132.

  • Iyakutti, K., Reji, R. P., Jayan, S., AjayJawahar, K., Karthigeyan, A., Rajeswarapalanichamy, R., & Kawazoe, Y. (2025). Heterostructuring, electronic and hydrogen storage properties of boron, carbon, nitrogen based 2D nanomaterials – A DFT study. International Journal of Computational Materials Science and Engineering, 14(3), 2550028.

  • Iyakutti, K., Reji, R. P., Rajeswarapalanichamy, R., & Kawazoe, Y. (2025, February 26). DFT based computational investigation of 2D monolayer gold (Au)–the goldene. Preprint.

  • Kaliyaperumal, A., Periyasamy, G., Iyakutti, K., & Annamalai, K. (2024). Effect of a mesoporous NiCo₂O₄ urchin-like structure catalyzed with a surface oxidized LiBH₄ system for reversible hydrogen storage applications. RSC Advances, 14, 12345–12354.

  • Iyakutti, K., Reji, R. P., AjayJawahar, K., Lakshmi, I., Rajeswarapalanichamy, R., Surya, V. J., Karthigeyan, A., & Kawazoe, Y. (2024). Interaction of H, H₂, and MgH₂ with graphene and possible application to hydrogen storage—A density functional computational investigation. International Journal of Quantum Chemistry, 124(15), e27467.

 

 

 

Mr. ROSHAN KUMAR | Materials Chemistry | Best Researcher Award

Mr. ROSHAN KUMAR | Materials Chemistry | Best Researcher Award

Mr. ROSHAN KUMAR , Materials Chemistry , Senior Scientist at CSIR – National Metallurgical Laboratory, India

Dr. Roshan Kumar is a highly accomplished Senior Scientist at CSIR–National Metallurgical Laboratory, Jamshedpur. With an academic foundation from premier institutes like IIT Delhi and NIT Jamshedpur, he brings over a decade of research and industrial experience in materials science, mechanical design, and manufacturing. His expertise spans from engine integration design at Tata Motors to pioneering research in biodegradable implants, hydrogen energy, and advanced metallurgy at CSIR-NML. He is actively involved in national research projects including DRDO, DST, and CSIR initiatives. Known for his innovative thinking and multidisciplinary research capabilities, he has significantly contributed to the development of green hydrogen solutions and advanced manufacturing processes. Dr. Kumar is also a passionate advocate for technology-driven social change, participating in programs like Women Technology Park. With multiple publications in reputed international journals and awards to his credit, he continues to bridge academic excellence and applied engineering for societal advancement.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Roshan Kumar exemplifies the qualities of an outstanding researcher, with a strong academic background from premier institutions like IIT Delhi and NIT Jamshedpur, and over a decade of professional experience across industry and research. Currently a Senior Scientist at CSIR–National Metallurgical Laboratory, he has made significant contributions to materials research, particularly in biodegradable implants, hydrogen energy, computational modeling, and metal corrosion studies. His work bridges computational science with experimental materials design, reflecting innovation and societal relevance. Recognized with an All India Rank 3 in CSIR-NET and a Best Poster Award at an international hydrogen conference, he has authored impactful publications in high-ranking journals. His leadership in interdisciplinary CSIR and DST projects underscores his collaborative and forward-looking research approach. With a clear focus on materials science and clean energy, Dr. Kumar’s achievements demonstrate excellence, innovation, and real-world application. Dr. Roshan Kumar is highly suitable for the “Best Researcher Award”, given his exemplary track record in research innovation, publication impact, national-level project leadership, and meaningful contributions to sustainable and advanced technologies.

🎓Education:

Dr. Roshan Kumar’s educational journey showcases academic brilliance and technical depth. He earned his M.Tech in Design Engineering from Indian Institute of Technology (IIT) Delhi in 2015 with an impressive CGPA of 9.115, demonstrating strong command in mechanical design and computational engineering. He completed his B.Tech in Production Engineering and Management from NIT Jamshedpur in 2010, securing a GPA of 8.65, laying a robust foundation in manufacturing and production systems. His schooling reflects consistent academic performance with 72% in CBSE (2005) from VBCV, Jamshedpur, and 69.2% in Class X (2003) under the Jharkhand Board from SJS, Jamshedpur. His early academic achievements were further validated by an All India Rank 3 in CSIR-NET, earning him eligibility for the prestigious Shyama Prasad Mukherjee Fellowship (2013). This strong educational background has fueled his contributions to scientific research, innovation, and national R&D missions.

🏢Work Experience:

Dr. Roshan Kumar currently serves as a Senior Scientist at the Engineering Division of CSIR–NML, Jamshedpur (Dec 2019 – Present), where he leads and contributes to projects involving materials science, hydrogen energy, and biodegradable implants. Before joining CSIR, he worked as a Senior Manager at Tata Motors Limited (Sept 2015 – Nov 2019) in the Engine Integration Design department at the Engineering Research Centre, Jamshedpur. His role involved design validation, component analysis, and optimization in automotive engineering. Earlier, he began his career at Mahindra and Mahindra Limited (July 2010 – June 2011) as a Graduate Apprentice Trainee in the Engine Department at Rudrapur. Across these roles, Dr. Kumar has built a strong reputation in integrating academic research with industrial applications, especially in engine systems, manufacturing technology, and metallurgical engineering. His experience spans both applied research and industrial innovation, making him a valuable contributor to national science missions.

🏅Awards: 

Dr. Roshan Kumar has received notable recognition for his research excellence and academic accomplishments. He secured an All India Rank 3 in the CSIR-NET Examination, qualifying him for the Shyama Prasad Mukherjee Fellowship in 2013, one of the most prestigious fellowships for young researchers in India. In 2023, he was honored with the Best Poster Award at the 1st International Conference on Green Hydrogen for Global De-carbonization, recognizing his innovative work in clean energy research. His award-winning contributions span materials design, hydrogen generation, and advanced manufacturing. Additionally, his work is frequently cited and featured in reputed international journals, establishing his scholarly impact. These accolades highlight his dedication to solving global engineering challenges and his capacity to influence cutting-edge research in sustainable technologies, materials development, and design engineering. His involvement in national-level projects and active membership in multiple CSIR initiatives further solidify his reputation as a leading researcher in his field.

🔬Research Focus:

Dr. Roshan Kumar’s research is focused on materials engineering, design optimization, and clean energy technologies, with a keen interest in sustainable manufacturing. His key contributions include the development of biodegradable Mg/Zn-based implants, atomic-scale corrosion studies, and hydrogen generation through metal–water reactions. At CSIR–NML, he has led and co-led projects on machinability of Mg alloys, electroplating systems for medical applications, and weldability of high-strength steels in collaboration with DRDO and Tata Steel. His work blends computational simulations, molecular dynamics, and experimental validations to explore fracture toughness, fatigue behavior, and additive manufacturing processes. He also contributes to the CSIR Integrated Skill Training and Phenome India Health Cohort initiatives. His interdisciplinary approach leverages simulation, materials science, and product design to create real-world engineering solutions. Dr. Kumar’s work plays a pivotal role in India’s R&D landscape, especially in advancing green hydrogen energy, smart materials, and medical-grade alloys.

Publication Top Notes:

1. Atomic Investigation of Corrosion Mechanism and Surface Degradation of Fe–Cr–Ni Alloy in Presence of Water: Advanced Reactive Molecular Dynamics Simulation

Citations: 2

2. Atomistic Characterization of Multi Nano‑Crystal Formation Process in Fe–Cr–Ni Alloy During Directional Solidification: Perspective to the Additive Manufacturing

 

 

Assoc. Prof. Dr. Hexin Zhang | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Hexin Zhang | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Hexin Zhang , Materials Chemistry ,  Harbin Engineering University, China

Dr. Hexin Zhang is an Associate Professor and Doctoral Supervisor at the School of Materials Science and Chemical Engineering, Harbin Engineering University. She holds a Doctorate in Engineering and has developed a robust academic profile in high-temperature materials and additive manufacturing. With over 60 peer-reviewed SCI-indexed publications and five invention patents, Dr. Zhang’s work significantly contributes to the field of advanced alloys and composite materials. She has successfully led numerous prestigious projects funded by the National Natural Science Foundation of China and other provincial and institutional bodies. As a guest editor for Metals and a senior member of the Chinese Society of Composite Materials, she plays an influential role in shaping research directions. Her ongoing projects involve cutting-edge research in nano-TiC reinforced molybdenum-based superalloys. Her leadership extends to military-grade materials research, and she currently spearheads a multi-million-yuan defense technology initiative with wide application potential in marine gas turbines.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Hexin Zhang is an Associate Professor and Doctoral Supervisor at Harbin Engineering University. She holds a Doctorate in Engineering and has extensive expertise in high-temperature composite materials, superalloys, and additive manufacturing—fields of critical importance in advanced materials research.With over 60 SCI-indexed publications, 5 invention patents, and 2 authored monographs, Dr. Zhang has demonstrated consistent and significant contributions to materials science. Her work addresses both fundamental science and industrial application challenges, particularly in marine gas turbines.She serves as Guest Editor for the journal Metals, is a Senior Member of the Chinese Society for Composite Materials, and holds leadership roles in multiple national professional organizations.Dr. Hexin Zhang’s exceptional track record in high-impact research, leadership in national-level projects, patent portfolio, and editorial and professional service make her a standout candidate for the “Best Researcher Award.” Her contributions align well with the award’s objective of honoring researchers who exhibit innovation, leadership, and societal impact through their work.

🎓Education:

Dr. Hexin Zhang pursued her Doctorate in Engineering with a specialization in materials science, focusing on the mechanical behavior and processing of high-temperature alloys. Her academic training emphasized advanced manufacturing techniques including additive manufacturing (AM) and laser-based fabrication technologies. Her graduate work laid the foundation for exploring novel metal matrix composites and developing expertise in microstructural analysis, thermal stability, and mechanical performance enhancement under extreme conditions. She was trained in a multidisciplinary environment, combining theoretical materials science with practical engineering and thermodynamic modeling. As a part of her academic journey, she engaged in collaborative lab work, conference presentations, and published extensively in SCI-indexed journals, honing both technical skills and academic writing. Her formal education and consistent excellence have positioned her as a specialist in nickel-based and molybdenum-based superalloys, enabling her to tackle real-world challenges in aerospace and marine turbine applications.

🏢Work Experience:

Dr. Zhang currently serves as Associate Professor and Doctoral Supervisor at Harbin Engineering University. With extensive experience leading and contributing to key research projects, she has spearheaded over ten major scientific initiatives, including two funded by the National Natural Science Foundation of China and one basic research project targeting the processing of molybdenum-based materials. She has published over 60 high-impact SCI papers, secured 5 national patents, and authored 2 technical monographs. As the principal investigator of a military-focused project supported by the Central Military Commission, she managed a 2-million-yuan segment of a larger 7.5-million-yuan initiative. In addition to her research contributions, she serves as a guest editor for the journal Metals and has held important roles in several academic committees. Her hands-on expertise covers nano-reinforced materials, additive manufacturing, and failure analysis under thermo-mechanical fatigue.

🏅Awards: 

Dr. Hexin Zhang has received multiple accolades for her contributions to materials science and engineering. She has been honored with competitive research grants from the National Natural Science Foundation of China, a testament to her innovative work in the field. She also serves in distinguished capacities including Senior Member of the Chinese Society of Composite Materials and Director of the Ecological Civilization Branch of the China Association of Higher Education. In recognition of her academic leadership and commitment to advancing materials research, she was appointed as a Member of the Materials Gene Engineering Expert Committee of the National Materials and Devices Scientists Think Tank. Additionally, her editorial role for Metals highlights her influence in peer-reviewed publishing. Her work in defense applications of high-temperature materials has further earned her distinction in government and institutional circles.

🔬Research Focus:

Dr. Zhang’s research focuses on the design, processing, and performance of nickel-based and molybdenum-based super alloys, especially for high-temperature and corrosive environments. She specializes in additive manufacturing techniques, particularly laser selective melting and nano-TiC reinforcement, to enhance mechanical strength and thermal resistance. Her investigations include thermo-mechanical fatigue, oxidation resistance, and hot corrosion mechanisms, crucial for the development of next-generation aerospace and marine turbine materials. A highlight of her work is the innovation in laser forming of Mo-based superalloys, solving issues like brittle fracture at room temperature. Her projects, including those funded by the Central Military Commission, involve cutting-edge structural materials aimed at military propulsion systems. Dr. Zhang also integrates computational modeling and experimental validation to understand microstructural evolution and failure modes under extreme conditions.

Publication Top Notes:

1. Impact of Secondary γ’ Precipitate on the High-Temperature Creep Properties of DD6 Alloy

2. Microstructural Evolution and Its Effect on Tensile Properties of 10Cr-2W-3Co Martensitic Steel During Thermal Exposure

3. Microstructure Evolution and Mechanical Properties of Ti-6Al-4V Alloy Fabricated by Directed Energy Deposition Assisted with Dual Ultrasonic Vibration

Citations: 2

4. Effect of Powder Particle Size on the Microscopic Morphology and Mechanical Properties of 316L Stainless Steel Hollow Spheres

5. Study on Hot-Compressive Deformation Behavior and Microstructure Evolution of 12Cr10Co3MoWVNbNB Martensitic Steel

6. Lattice Disorder Driving the Electron Migration from Tetracycline to TiO₂ via Ligand-to-Metal Charge Transfer to Generate Superoxide Radical

Citations: 2

7. Hydrangea-like MnO₂@Sulfur-Doped Porous Carbon Spheres with High Packing Density for High-Performance Supercapacitor

Citations:

8. La Doped-Fe₂(MoO₄)₃ with the Synergistic Effect Between Fe²⁺/Fe³⁺ Cycling and Oxygen Vacancies Enhances the Electrocatalytic Synthesizing NH₃

9. Influence of Aging Heat Treatment on Microstructure and Mechanical Properties of a Novel Polycrystalline Ni₃Al-Based Intermetallic Alloy

Citations: