Mrs. Mercedes Bertotto | Organic Chemistry | Women Researcher Award

Mrs. Mercedes Bertotto | Organic Chemistry | Women Researcher Award

Mrs. Mercedes Bertotto , Organic Chemistry , Researcher in Chemometrics at Wageningen University & Research , Netherlands

Dr. Mercedes Bertotto is a distinguished chemical engineer and food scientist with over 12 years of specialized experience in spectroscopic techniques, chemometrics, and quality control. Based in The Netherlands, she is currently a lecturer at Wittenborg University of Applied Sciences and founder of Vibralytics.nl, promoting sustainable and data-driven innovations in the agri-food sector. Previously, she was a researcher at Wageningen Food and Biobased Research, where she led spectral sensing projects integrating NIR, MIR, and Raman spectroscopy with machine learning. Her earlier role at SENASA, Argentina’s National Reference Laboratory, showcased her leadership in GC-MS residue analysis and chemometric modeling. Fluent in English, Spanish, and Dutch, Dr. Bertotto bridges scientific excellence with cross-cultural communication, driving sustainable solutions in food safety and circular materials. Her contributions to academia, research, and entrepreneurship reflect a strong commitment to innovation, international collaboration, and applied chemical sciences.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Mercedes Bertotto stands out as an exceptionally qualified candidate for the “Women Researcher Award” due to her profound scientific expertise, leadership, and innovation across multiple sectors. With a Doctorate in Chemical Engineering and a strong academic foundation in Food Science and Technology, she exemplifies excellence in applied and theoretical research. Her 12+ years of impactful work—from Argentina’s SENASA National Reference Laboratory to the Netherlands’ Wageningen Food and Biobased Research—reflect her global research footprint. She has made significant contributions in spectral sensing, chemometrics, machine learning, and food quality control. Moreover, her entrepreneurial initiative as the founder and CEO of Vibralytics.nl demonstrates her commitment to translating science into real-world, sustainable solutions. Dr. Mercedes Bertotto is highly suitable for the “Women Researcher Award’. Her multidisciplinary achievements, pioneering role in spectral analytics, dedication to sustainable food systems, and entrepreneurial leadership in a male-dominated field exemplify the qualities the award seeks to recognize. Her career reflects not only scientific merit but also her inspirational impact as a woman in science, making her a deserving and empowering candidate for this honor.

🎓Education:

Dr. Bertotto holds a Doctorate in Chemical Engineering from the University of Buenos Aires, where her thesis focused on modeling drying and tempering processes of rice (IRGA 424). Her research included dynamic mechanical analysis and mathematical modeling of glass transition temperature, achieving an outstanding score of 10/10. She also holds a Master’s in Food Science and Technology from the Faculty of Pharmacy and Biochemistry, University of Buenos Aires. Her academic formation enabled her to work on food preservation, quality control, and raw material analysis using both physical and chemical techniques. Her educational foundation is rooted in experimental precision, mathematical rigor, and industrial application. This robust background has allowed her to seamlessly bridge theory with practical laboratory and industry-based problem-solving. Her education reflects interdisciplinary training, combining engineering, food science, and analytical chemistry—providing her with the ideal base for impactful research in sustainable biobased materials and food safety.

🏢Work Experience:

Dr. Bertotto brings an extensive and diverse professional background. She currently lectures in Information Management and Data Analytics at Wittenborg University and leads Vibralytics.nl, a company pioneering AI-driven spectroscopy for agri-food applications. Between 2022–2024, she was a spectral sensing researcher at Wageningen Food and Biobased Research, using hyperspectral imaging and chemometrics (PCA, PLS, CNN) for quality control. From 2010 to 2022, she worked at SENASA in Argentina, specializing in NIR/FTIR microscopy, GC-MS, and regulatory compliance in food safety. As a university professor, she taught chemometric tools for doctoral candidates, and she also served as a consultant at SoftLab, contributing to petroleum industry applications of NIR. Her expertise encompasses spectroscopy hardware (Specim FX10/17, MicroNIR, LabSpec), data tools (R, MATLAB), and AI-based modeling. This blend of research, teaching, and consulting makes her a well-rounded scientist, with real-world and academic impact across multiple industries.

🏅Awards: 

While specific awards are not explicitly listed, Dr. Mercedes Bertotto’s recognitions include multiple peer-reviewed publications, oral and poster presentations at prestigious conferences, and leadership roles in top-tier research institutions like Wageningen University. Her work was accepted for presentation at the 38th EFFoST International Conference (2024) and ICNIRS 2023, both internationally acclaimed events in food science and spectroscopy. She has also contributed to publicly recognized innovation efforts in Argentina, featured in national science communications (e.g., Argentina.gob.ar and API-Portal). Her appointment as a doctoral-level professor and selection as a founder and CEO of a research-driven company demonstrates academic and entrepreneurial recognition. Moreover, her trilingual fluency and international engagement serve as indicators of her global scientific outreach and influence. These distinctions—academic, institutional, and professional—reflect her commitment to innovation, research excellence, and interdisciplinary problem-solving in chemical engineering and food safety.

🔬Research Focus:

Dr. Bertotto’s research is grounded in analytical chemistry, spectral sensing, and chemometric modeling applied to food and agricultural systems. Her focus lies in leveraging Near-Infrared (NIR), Mid-Infrared (MIR), FTIR microscopy, Raman spectroscopy, and gas chromatography-mass spectrometry (GC-MS) to improve food quality, detect contaminants, and enable circular and sustainable material flows. She specializes in multivariate analysis (PCA, PLS-DA, ANN, CNN) for interpreting complex spectral data in real-time monitoring systems. Her work integrates hyperspectral imaging with AI-driven tools to predict physical and chemical properties of biological materials, such as fungal susceptibility in tomatoes or nutrient profiling in dairy. She is also deeply involved in modeling moisture and thermal behavior in grains like rice. Her research bridges fundamental science with applied industry solutions—creating novel analytical frameworks that optimize safety, quality, and sustainability in bio-based materials, food systems, and environmental monitoring.

Publication Top Notes:

1. Predicting fungal infection sensitivity of sepals in harvested tomatoes using imaging spectroscopy and partial least squares discriminant analysis

2. Comparison between Chemometrics and Machine Learning for the Prediction of Macronutrients in Fresh Cheeses Using Imaging Spectroscopy

3. Detection of Animal By‑Products in Bone Ashes by Near Infrared Spectroscopy Coupled with Microscopy

  citation : 1

 

 

Dr. Qunfeng Luo | Organic Chemistry | Best Researcher Award

Dr. Qunfeng Luo | Organic Chemistry | Best Researcher Award

Dr. Qunfeng Luo , Organic Chemistry ,  Nanchang University, China

Dr. Qunfeng Luo is a dedicated Lecturer at the School of Basic Medical Sciences, Nanchang University, China. With a robust background in organic synthesis and protein chemistry, his research explores innovative approaches in peptide/protein modification and bioorthogonal chemistry. Dr. Luo has made notable contributions to the development of multifunctional bioconjugation reagents and mitochondrion-targeting molecules, with publications featured in top-tier journals like Nature Communications and Organic Letters. He earned his Ph.D. from Nanjing University and has held research positions at prestigious institutions, including Northwestern Polytechnical University. Dr. Luo also brings industry experience from Pharmaron (Ningbo) New Pharmaceutical Technology Co., Ltd. His work bridges chemical biology and therapeutic discovery, particularly focusing on functional biomolecule engineering and natural active ingredient target identification. A proactive researcher with an ORCID profile, he continues to advance translational biomedical science through interdisciplinary innovations.

Professional Profile : 

Orcid

Scopus

Summary of Suitability for Award:

Dr. Luo has demonstrated a solid and progressive academic background, holding a Ph.D. from Nanjing University and postdoctoral experience in both academia and industry. His education from top Chinese institutions equips him with a multidisciplinary foundation in biomedical and pharmaceutical sciences.His research has been published in top-tier journals such as Nature Communications, Organic Letters, and RSC Advances. Notably, his 2019 Nature Communications paper was highlighted in Synfacts, indicating significant recognition in the global scientific community. Dr. Luo’s work spans organic synthesis, peptide/protein modification, mitochondrion-targeting agents, and bioorthogonal chemistry. Dr. Luo has maintained a consistent output of quality research with a clear upward trajectory in the complexity and impact of his work. His continued research activity, mentorship, and involvement in academia strengthen his candidacy. Dr. Qunfeng Luo is a highly suitable candidate for the “Best Researcher Award”. His impactful publications, innovative methodologies in chemical biology, and contributions to targeted therapeutics and diagnostics reflect the qualities sought in a top-tier researcher. His unique blend of academic excellence, industrial insight, and interdisciplinary work makes him not only a prolific scientist but also a future leader in biomedical research. Recognizing Dr. Luo with this award would be both timely and well-deserved.

🎓Education:

Dr. Qunfeng Luo’s academic journey reflects a strong foundation in medical and pharmaceutical sciences. He began his higher education at Harbin Medical University (2005.9–2010.6), where he gained essential knowledge in medical sciences. Building upon this, he pursued a master’s degree at China Pharmaceutical University (2011.9–2014.6), developing a solid base in drug design and bioactive compound synthesis. Driven by a keen interest in chemical biology and therapeutic research, he advanced to Nanjing University (2014.9–2018.12) for his doctoral studies. There, he specialized in organic synthesis and protein/peptide bioconjugation techniques, which laid the groundwork for his current research in bio orthogonal chemistry and target identification. This comprehensive academic training, combining medical, pharmaceutical, and chemical expertise, enables Dr. Luo to contribute significantly to multidisciplinary biomedical research.

🏢Work Experience:

Dr. Qunfeng Luo has held diverse academic and industry positions, enriching his expertise in biomedical sciences. He began his professional journey at Pharmaron (Ningbo) New Pharmaceutical Technology Co., Ltd. (2019.3–2019.9), gaining valuable experience in pharmaceutical R&D. He then transitioned to academia as a research fellow at Northwestern Polytechnical University (2019.9–2020.10), focusing on bioorganic chemistry and molecular modification. Since October 2020, he has served as a Lecturer at the School of Basic Medical Sciences, Nanchang University, where he leads research in peptide modification, mitochondrion-targeting molecules, and functional bioconjugation reagents. Dr. Luo’s balanced experience across academia and industry fosters a translational approach to his research, bridging synthetic chemistry and medical application. His current academic role involves not only high-impact research but also mentoring students and contributing to the university’s biomedical education initiatives.

🏅Awards: 

While specific honors were not detailed, Dr. Qunfeng Luo’s research achievements speak volumes of his recognition in the scientific community. His 2019 Nature Communications publication was highlighted in Synfacts, indicating significant impact in the field of synthetic and chemical biology. Publishing in top-tier journals like Organic Letters and RSC Advances also reflects the high regard in which his work is held. As a young scholar with an innovative portfolio in bioorthogonal chemistry, peptide/protein modification, and mitochondrion-targeting agents, Dr. Luo is well-positioned for future awards and funding opportunities. His diverse background, including experience in pharmaceutical R&D and academia, contributes to his growing influence in biomedical research. As he continues to contribute to high-impact projects and interdisciplinary science, further accolades are expected.

🔬Research Focus:

Dr. Qunfeng Luo’s research lies at the intersection of organic chemistry and biomedical sciences. His primary interests include organic synthesis, peptide and protein modification, and bioorthogonal chemistry—innovative fields that enable precise molecular labeling and therapeutic design. A major focus of his work is developing heterobifunctional cross-linkers that facilitate selective bioconjugation, peptide stapling, and mitochondrial targeting. He also explores target identification of natural active ingredients, contributing to drug discovery and understanding bioactivity mechanisms. His recent publications reveal an emphasis on multifunctional bioconjugation reagents with broad applications in diagnostics and targeted therapies. The integration of small molecule design with functional biomolecules positions his research within both fundamental and translational biomedical innovation. Through interdisciplinary collaborations and advanced chemical techniques, Dr. Luo’s work contributes to the development of precision tools for chemical biology and therapeutic interventions.

Publication Top Notes:

1. Heterobifunctional Cross-Linker with Dinitroimidazole and Azide Modules for Protein and Oligonucleotide Functionalization

2. Heterobifunctional Cross-Linker with Dinitroimidazole and N-Hydroxysuccinimide Ester Motifs for Protein Functionalization and Cysteine–Lysine Peptide Stapling

3. Combination Therapies against COVID-19

4. Dichloroacetophenone Derivatives: A Class of Bioconjugation Reagents for Disulfide Bridging

5. Dinitroimidazoles as Bifunctional Bioconjugation Reagents for Protein Functionalization and Peptide Macrocyclization

6. Recent Advances in Enone and NO-Releasing Derivatives of Oleanolic Acid with Anti-cancer Activity

 

 

Assist. Prof. Dr. Che-Sheng Hsu | Organic Chemistry | Best Researcher Award

Assist. Prof. Dr. Che-Sheng Hsu | Organic Chemistry | Best Researcher Award 

Assist. Prof. Dr. Che-Sheng Hsu , Fu Jen Catholic University , Taiwan

Che-Sheng Hsu is an Assistant Professor at Fu Jen Catholic University, New Taipei City, Taiwan. He specializes in organic synthetic methodologies and natural product synthesis, focusing on developing innovative approaches for high-performance chemistry. With a strong dedication to research, he has contributed significantly to the field by introducing novel iodide-umpolung catalysis systems and efficient methods for synthesizing polysubstituted vinyl sulfones. Known for his commitment to advancing molecular construction techniques, Che-Sheng aims to achieve sustainable and efficient chemical processes. His work has been published in indexed journals, reflecting the impact of his innovative research in organic synthesis.

Professional Profile: 

Orcid 

Summary of Suitability for Award:

Dr. Che-Sheng Hsu is a suitable candidate for the “Best Researcher Award” due to his groundbreaking research in organic synthesis and demonstrated potential for future contributions. His dedication to advancing high-efficiency chemistry through sustainable methodologies is commendable and positions him as an emerging leader in the field. Despite limited professional accolades so far, his innovative work lays a strong foundation for recognition and continued excellence in research. Dr. Che-Sheng Hsu demonstrates significant promise and dedication to advancing organic chemistry. His innovative contributions to organic synthetic methodologies, particularly his discovery of a novel iodide-umpolung catalysis system and efficient synthesis of poly substituted vinyl sulfones, highlight his potential for impactful research.

🎓Education:

Dr. Che-Sheng Hsu completed his undergraduate and postgraduate studies in Chemistry, specializing in organic synthesis. His academic journey is marked by rigorous training in advanced chemical methodologies and a focus on sustainable synthesis. He pursued his doctoral research, emphasizing the development of innovative reaction mechanisms, particularly in iodine reagent-based chemistry. Throughout his academic career, Che-Sheng demonstrated exceptional analytical skills and a keen interest in discovering new chemical reactions, paving the way for his future contributions to organic synthesis. His education has provided a robust foundation for his current research endeavors and academic contributions.

🏢Work Experience:

Dr. Che-Sheng Hsu has served as an Assistant Professor at Fu Jen Catholic University since the beginning of his academic career. With a specialization in organic synthetic methodologies, he combines teaching with active research to guide students and contribute to the field. His work includes the discovery of a novel iodide-umpolung catalysis system and the development of efficient synthetic routes for poly substituted vinyl sulfones. Despite being relatively new in the field, he is committed to advancing research through collaboration and innovation, leveraging his expertise to make meaningful scientific contributions.

🏅Awards:

Dr. Che-Sheng Hsu, an emerging researcher in the field of organic chemistry, has earned recognition for his innovative contributions to synthetic methodologies. While he is at an early stage in his career and has not yet received formal awards, his groundbreaking research in developing a novel iodide-umpolung catalysis system and efficient methods for synthesizing poly substituted vinyl sulfones has garnered appreciation from peers and experts in the field. His publication in a reputed indexed journal highlights the quality and relevance of his work. Dr. Che-Sheng Hsu’s commitment to advancing high-performance and sustainable chemical processes reflects his potential for achieving notable accolades in the future. With his focus on impactful research, he is poised to become a recognized leader in organic synthesis, and his work lays the foundation for achieving honors that acknowledge his contributions to science and innovation.

🔬Research Focus:

Dr. Che-Sheng  Hsu’s research centers on organic synthesis, with an emphasis on high-efficiency reaction mechanisms. He focuses on utilizing iodine reagents to construct complex molecules through innovative methods. His research has led to the development of a novel iodide-umpolung catalysis system, which enables the synthesis of poly substituted vinyl sulfones with remarkable performance. By exploring sustainable and efficient chemical processes, he contributes to advancing the field of organic chemistry. His work seeks to balance innovative research with practical applications, ensuring that his findings are both impactful and accessible for further scientific exploration.

Publication Top Notes:

Iodide-umpolung catalytic system for non-traditional amide coupling from nitroalkanes and amines