Mr. Tomasz Zieliński | Organic Chemistry | Innovative Research Award

Mr. Tomasz Zieliński | Organic Chemistry | Innovative Research Award

Mr. Tomasz Zieliński , Organic Chemistry, Nicolaus Copernicus University in Toruń , Poland

Tomasz Zielińsk , is an experienced chemical technologist with over 16 years in the refining and petrochemical industries. Working primarily at ORLEN S.A. in Płock, he’s contributed extensively to production technology, process optimization, and innovative projects enhancing refinery capacities by up to 40%. As an expert in alternative fuels and sustainable technologies, Tomasz serves on several national groups dealing with alternative fuels, climate regulations, and product quality. He’s currently pursuing a Ph.D. at Nicolaus Copernicus University in Toruń, focusing on innovative processes like microbiological hydrocarbon decomposition. With patented technology to produce valuable compounds like isopropanol and hydrogen, he envisions expanding synthetic fuel production to meet EU directives like RED III and Fit for 55. Known for analytical skills, innovative thinking, and leadership in project execution, Tomasz is a key figure driving technological transformation in Poland’s energy sector.

Professional Profile : 

Orcid 

Summary of Suitability for Award:

Developed a patented microbiological process for decomposing hydrocarbon residues into valuable compounds like isopropanol and hydrogen. Proposed using this technology to boost synthetic fuel production and hydrogen integration, contributing to EU climate goals. Successfully resolved critical fuel quality issues (Jet A-1, diesel), safeguarding production reliability and market reputation. Led projects implementing new fuel formulations (e.g. Efecta fuels), demonstrating practical innovation. Strong analytical skills, innovation mindset, project management, and cross-disciplinary collaboration. Demonstrated ability to translate complex research into real-world applications. Tomasz Zieliński’s track record of technological innovations, impactful problem-solving, and visionary research directions positions him as a very strong candidate for the “Innovative Research Award”. His unique blend of industrial experience, scientific research, and successful technology implementations aligns perfectly with the award’s purpose of recognizing groundbreaking contributions that advance industry and sustainability. His work has the potential to contribute significantly to cleaner fuels, process efficiency, and Europe’s climate goals, underscoring his innovative spirit and leadership in his field.

🎓Education:

Tomasz Zieliński’s educational path reflects his dedication to chemical technology and industrial safety. He began at the Zespół Szkół Centrum Edukacji in Płock, where he qualified as a Technician in Chemical Technology (2002-2006). He then earned his Bachelor’s degree in Chemical Technology (specializing in organic technology) at the Warsaw University of Technology (2006-2010). Continuing at the same university, he completed his Master of Engineering in Chemical Technology in 2012. Recognizing the importance of workplace safety, he pursued postgraduate studies in Occupational Health and Safety at the Cracow University of Technology in 2012-2013. Currently, he’s working toward a Ph.D. at Nicolaus Copernicus University in Toruń, diving deeper into innovative chemical processes and technologies. His diverse education equips him with technical expertise, research capabilities, and a keen understanding of industrial standards, crucial for leading advanced projects in the petrochemical sector.

🏢Work Experience:

Over 16 years, Tomasz Zieliński has built a robust career at ORLEN S.A., gaining hands-on and strategic experience. From 2004-2009, he undertook practical training on various installations like Catalytic Cracking, Olefins II, and butadiene production. Between 2009 and 2014, he worked as a Senior Process Operator on the Claus installation. From 2015 to mid-2023, he held the position of Senior Specialist in the Technology Office, tackling complex issues like diesel fuel stability and Jet A-1 fuel quality. Since July 2023, he’s been an Expert in the Project Coordination Team, overseeing efficiency, development, and revitalization projects. Notable achievements include resolving quality problems in fuels, leading technological trials for HVO blending, and coordinating large-scale innovation projects. His experience spans process optimization, analytical testing, project management, and implementation of new technologies, making him an essential contributor to refining and petrochemical advancements.

🏅Awards: 

Although specific official awards weren’t detailed in the CV text, Tomasz Zieliński’s professional record showcases significant achievements and recognition within ORLEN S.A. and the broader industry. His contributions have been acknowledged through leadership roles in critical projects, particularly resolving quality challenges in diesel and jet fuels and pioneering new fuel blends like Efecta. His patented technology for microbiological decomposition of residual hydrocarbons underscores his innovative drive and commitment to sustainability. Participation in national groups under POPIHN (Polish Organization of Oil Industry and Trade) reflects peer recognition of his expertise in alternative fuels, climate policy, and regulatory matters. His ongoing Ph.D. research also highlights academic pursuit and potential future honors. Tomasz’s career is marked by trust and respect from colleagues and industry leaders, testifying to his reputation as a talented, forward-thinking professional dedicated to technological progress and environmental responsibility.

🔬Research Focus:

Tomasz Zieliński’s research centers on sustainable energy and petrochemical innovation. His current Ph.D. work at Nicolaus Copernicus University explores microbiological decomposition of residual hydrocarbons, leading to production of isopropanol and hydrogen — crucial raw materials for petrochemical processes and synthetic fuels. His focus aligns with EU sustainability goals like RED III and Fit for 55, aiming to decarbonize fuel production and optimize refinery operations. Beyond his academic pursuits, Tomasz engages in practical projects, such as integrating hydrogen and synthetic fuel production into ORLEN’s infrastructure, utilizing innovative methods to maximize plant capacities. He’s deeply involved in evaluating fuel quality, blending biocomponents like HVO with diesel, and advancing new fuel formulations. His work bridges industrial application and scientific research, demonstrating how innovative technologies can drive energy transformation and secure Poland’s position in the evolving global energy market.

Publication Top Notes:

🧪 Synthesis of Silver Nanoparticles by Chemical Vapor Deposition Method and Its Application in Laser Desorption/Ionization Techniques

 

Dr. Ji-Wei Ren | Organic Chemistry | Best Researcher Award

Dr. Ji-Wei Ren | Organic Chemistry | Best Researcher Award

Dr. Ji-Wei Ren, Organic Chemistry, Taishan University , China 

Dr. Ji-Wei Ren is a Lecturer in the College of Chemistry and Chemical Engineering at Taishan University, China. He earned his Ph.D. in Chemical Engineering and Technology from Central South University, where he developed expertise in visible light catalysis, organo catalysis, and green synthesis. Dr. Ren has previously served as a Research Associate at Ningbo University’s Institute of Drug Discovery Technology, engaging in interdisciplinary research on biomimetic reducing agents and chiral resolution. With a strong foundation in heterocyclic construction and peptide synthesis, his work integrates sustainable and biomimetic chemistry with modern synthetic methodologies. Dr. Ren has published multiple high-impact research articles in leading journals such as Org. Lett., J. Org. Chem., and Org. Chem. Front.. His research is characterized by innovation, precision, and relevance to both pharmaceutical and materials chemistry. He actively contributes to academic platforms like ORCID and collaborates with renowned scientists across China.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Ji-Wei Ren exemplifies the qualities of an outstanding researcher through his pioneering work in the field of organic synthesis, particularly in visible light catalysis, organocatalysis, and green chemistry. He has published over 11 peer-reviewed articles in top-tier journals such as Organic Chemistry Frontiers, Journal of Organic Chemistry, Organic Letters, and Chemistry – A European Journal. Several of his works have been highlighted by Synfacts, showcasing their novelty and scientific impact. His innovative contributions include the development of racemization-free synthesis protocols, the application of biomimetic reducing agents, and the design of sustainable methodologies for heterocycle and peptide construction. He brings a fresh perspective to traditional synthetic methods by incorporating visible light and bio-inspired techniques, addressing both the efficiency and environmental responsibility in chemical synthesis. Dr. Ji-Wei Ren is highly suitable for the “Best Researcher Award”. His significant scientific output, innovation in research, recognition by the international community, and dedication to sustainable chemistry clearly distinguish him as a leading researcher in his field. His commitment to impactful and environmentally conscious science makes him not only an excellent candidate but also a role model for emerging researchers. This award would be a deserving recognition of his ongoing contributions to the scientific world.

🎓Education:

Dr. Ji-Wei Ren completed both his undergraduate and doctoral studies at Central South University. He earned his Bachelor of Engineering in Pharmaceutical Engineering in June 2013, where he gained foundational knowledge in pharmaceutical chemistry, drug design, and synthesis. Subsequently, he pursued a Doctorate in Chemical Engineering and Technology (2013–2019) at the same university. His Ph.D. research focused on innovative synthetic strategies using organo catalysis and visible-light-driven methodologies for the construction of functional molecules, especially in the development of peptide and heterocyclic compounds. Under the mentorship of distinguished faculty, he honed his skills in reaction design, stereoselective synthesis, and catalysis. His academic training also included a deep understanding of biomimetic reactions, green synthesis, and photochemical transformations. This robust educational background laid the groundwork for his interdisciplinary research efforts, enabling him to contribute significantly to the fields of sustainable and asymmetric synthesis.

🏢Work Experience:

Dr. Ji-Wei Ren began his academic career as a Research Associate (2019–2022) at the Institute of Drug Discovery Technology, Ningbo University, where he focused on peptide synthesis and the development of bio-inspired reducing agents. His role involved collaborative projects in pharmaceutical chemistry and catalysis, contributing to the advancement of efficient and eco-friendly synthetic methods. In August 2022, he joined Taishan University as a Lecturer in the College of Chemistry and Chemical Engineering. At Taishan University, Dr. Ren continues his research in visible light catalysis and organocatalytic transformations, guiding students in advanced organic chemistry techniques and experimental methodologies. He has also contributed to curriculum development and interdisciplinary research programs. His teaching and research philosophy is rooted in innovation, sustainability, and student engagement. With over a decade of academic training and research, Dr. Ren combines a strong theoretical foundation with hands-on experience in both industrial and academic labs.

🏅Awards: 

Dr. Ji-Wei Ren has been consistently recognized for his impactful contributions to organic chemistry and green synthesis methodologies. His 2021 publication in Organic Letters was highlighted by Synfacts in 2022 for its innovative racemization-free synthesis approach, underlining the originality and practical importance of his work. Additionally, his earlier work in The Journal of Organic Chemistry (2017) was also spotlighted in Synfacts, reflecting his ongoing excellence in visible light-mediated and organocatalytic transformations. During his doctoral studies at Central South University, he was honored with multiple academic excellence awards for his outstanding research and scholarly dedication. His publications in top-tier journals like Organic Chemistry Frontiers, Organic & Biomolecular Chemistry, and Chemistry – A European Journal have further established him as a rising expert in his field. These recognitions underscore both the scientific value and the practical applicability of his research in modern organic synthesis.

🔬Research Focus:

Dr. Ji-Wei Ren’s research is centered on the development of innovative, environmentally friendly methodologies in organic synthesis. His primary interests lie in visible light catalysis, where he designs photochemical processes to enable mild and selective transformations. He is also deeply involved in chiral resolution and organocatalysis, with a particular emphasis on enantioselective reactions that are crucial for pharmaceutical synthesis. A significant part of his work involves constructing complex heterocyclic compounds, often using biomimetic and green synthesis strategies to reduce environmental impact. Dr. Ren has pioneered the use of L-amino acid esters as biomimetic reducing agents and introduced new deoxygenation and amidation protocols that avoid racemization—critical for peptide and amide bond formation. His interdisciplinary approach blends traditional organic chemistry with sustainability, aiming to create scalable, efficient, and selective processes suitable for industrial application. His contributions significantly enhance both academic understanding and practical implementation in organic synthesis.

Publication Top Notes:

“A visible light-mediated deoxygenation protocol for the synthesis of dipeptides, amides and esters without racemization”

“L-Amino acid ester as a biomimetic reducing agent for the reduction of unsaturated C=C bonds”

“Umpolung Strategy for the One-Pot Synthesis of Highly Steric Bispirooxindoles via the L-Amino Acid Ester-Promoted In Situ Reduction/Nucleophilic Addition/Cyclization Cascade Reaction”

“A visible light-induced deoxygenative amidation protocol for the synthesis of dipeptides and amides”

“An organocatalytic enantioselective ring-reorganization domino sequence of methyleneindolinones with 2-aminomalonates”

“Straightforward Synthesis of 3-Selenocyanato-Substituted Chromones through Electrophilic Selenocyanation of Enaminones under Grinding Conditions”

“Organocatalytic, Enantioselective, Polarity-Matched Ring-Reorganization Domino Sequence Based on the 3-Oxindole Scaffold”

“A One‐Pot Ring‐Opening/Ring‐Closure Sequence for the Synthesis of Polycyclic Spirooxindoles”

“L-Pyroglutamic Sulphonamide as Hydrogen-Bonding Organocatalyst: Enantioselective Diels–Alder Cyclization to Construct Carbazolespirooxindoles”

“Acid-Relayed Organocatalytic exo-Diels-Alder Cycloaddition of Cyclic Enones with 2-Vinyl-1H-indoles”

 

Prof. Behrooz Zargar | Analytical Chemistry | Best Researcher Award

Prof. Behrooz Zargar | Analytical Chemistry | Best Researcher Award

Prof. Behrooz Zargar | Analytical Chemistry | Full Professor in Analytical Chemistry/Researcher/Lecturer at Shahid Chamran University of Ahvaz, Iran 

Prof. Behrooz Zargar is a distinguished Full Professor of Analytical Chemistry at Shahid Chamran University of Ahvaz, Iran, with over two decades of academic and research excellence. His expertise spans electrochemistry, nano-chemistry, solar cells, and environmental remediation. He has published over 60 high-impact research papers and actively collaborates with organizations such as ISO and the Iranian Safety and Environment Committee. As the Founder and Head of the Central Laboratory at Shahid Chamran University, he has played a pivotal role in advancing analytical techniques. His research has contributed significantly to pesticide analysis, mycotoxin detection, and nanomaterial-based pollutant degradation. His commitment to academia is reflected in his editorial appointments, research collaborations, and mentorship of numerous students. With an impressive citation index of 2143, Prof. Zargar’s groundbreaking work has influenced various industrial and environmental sectors, making him a leading figure in analytical and environmental chemistry.

Professional Profile :         

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Behrooz Zargar, a distinguished Professor of Analytical Chemistry at Shahid Chamran University of Ahvaz, has made remarkable contributions to analytical chemistry, particularly in nanotechnology, electrochemistry, and environmental chemistry. With over 60 publications in high-impact journals (SCI, Scopus indexed), a citation index of 2143, and extensive research in solar cells, solid-phase extraction, and photo-degradation, his scientific impact is substantial. His research collaborations, including work with ISO Organization and national standardization committees, demonstrate his leadership in applied scientific advancements. Additionally, his industry projects on food safety and environmental toxin analysis highlight his contributions to public health and sustainability. With a proven track record of pioneering research, industry collaborations, and leadership in analytical chemistry, Prof. Zargar stands as a highly deserving candidate for the “Best Researcher Award.” His groundbreaking research in nano-chemistry and solar cell technology continues to drive innovation, making him an excellent choice for this prestigious recognition.

🎓Education:

Prof. Behrooz Zargar holds a Ph.D. in Analytical Chemistry (2001) from Shahid Chamran University of Ahvaz. He earned his Master’s degree in Analytical Chemistry (1996) from the same institution, building a strong foundation in instrumental analysis and environmental monitoring. His Bachelor’s degree in Applied Chemistry (1992) from Isfahan University of Technology laid the groundwork for his interest in chemical applications for industrial and environmental solutions. Prior to university education, he completed a Diploma in Experimental Sciences, fostering his analytical skills early on. His academic journey reflects a commitment to precision, innovation, and interdisciplinary research. Over the years, he has integrated electrochemical, spectroscopic, and chromatographic techniques into his research, making significant contributions to chemical science. His education has been instrumental in shaping his expertise in nano-chemistry, separation sciences, and environmental remediation, areas where he continues to make impactful discoveries.

🏢Work Experience:

Prof. Zargar’s academic career spans over two decades at Shahid Chamran University of Ahvaz, where he has held various positions. He served as an Assistant Professor (2002-2009), progressing to Associate Professor (2009-2017), and was promoted to Full Professor in 2017. With a Grade 32 ranking, he has contributed extensively to teaching, research, and institutional leadership. He has collaborated with ISO, developed national safety and environmental standards, and played a key role in nanotechnology advancements. His consultancy work has influenced industries by assessing toxic residues in food, environmental contaminants, and industrial pollutants. As the Founder and Head of the Central Laboratory at Shahid Chamran University, he has enhanced research infrastructure, fostering innovation. His experience extends to mentoring Ph.D. and Master’s students, shaping the next generation of chemists. His expertise in solar cells, electroless plating, corrosion, and electrochemical preconcentration has made him a respected figure in analytical and industrial chemistry.

🏅Awards: 

Prof. Behrooz Zargar’s contributions to analytical chemistry and environmental sciences have earned him numerous accolades. He was recognized for 10 years of excellent service to ISO/TC 17/SC 1/ WG 74 in 2025 for his contributions to steel chemical composition analysis. His work in nanotechnology and environmental monitoring has been acknowledged by national and international scientific committees. As a key member of the Iranian Safety and Environment Committee, he has shaped national policies on chemical safety and environmental sustainability. His editorial appointments in high-impact journals further highlight his scholarly influence. His innovative work in photo-degradation, nano-based solid-phase extraction, and pesticide residue analysis has led to several research grants and industrial collaborations. His role in the development of national analytical standards in Khuzestan, Iran, reflects his commitment to advancing chemical safety regulations. Prof. Zargar’s outstanding research contributions and institutional leadership make him a highly esteemed scientist.

🔬Research Focus:

Prof. Zargar’s research spans analytical, environmental, and industrial chemistry, with a strong emphasis on nanotechnology applications. His work in electrochemical preconcentration and separation techniques has improved trace-level detection of contaminants in food and water. His nano-chemistry expertise has advanced solar cell technology, particularly FeS₂/TiO₂-based solar cells. He has pioneered printed-based voltammetric selective electrodes for precise electrochemical analysis. His work in photo-degradation of cyanide ions using nanomaterials has significant environmental implications. He has developed aerogel-based solid-phase extraction methods for efficient pollutant removal. His industrial research includes toxic residue detection in grains, milk, and bread. His collaboration with ISO and the Iranian Nanotechnology Committee has led to the establishment of new safety and environmental guidelines. His research continues to bridge analytical chemistry with environmental sustainability, contributing to the development of safer chemical practices and advanced material applications.

Publication Top Notes:

A nano curcumin–multi-walled carbon nanotube composite as a fluorescence chemosensor for trace determination of celecoxib in serum samples

An effervescence-assisted dispersive liquid–liquid micro-extraction of captopril based on hydrophobic deep eutectic solvent

Citations: 8

Determination of Tetracycline Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Followed by HPLC–UV System​​

Over-oxidized carbon paste electrode modified with pretreated carbon nanofiber for the simultaneous detection of epinephrine and uric acid in the presence of ascorbic acid​​

Dendrimer-modified magnetic nanoparticles as a sorbent in dispersive micro-solid phase extraction for preconcentration of metribuzin in a water sample​​

Synthesis and dye adsorption studies of the {dibromo(1,1′-(1,2-ethanediyl)bis(3-methyl-imidazole-2-thione)dicopper(i)}n polymer and its conversion to CuO nanospheres for photocatalytic and antibacterial applications​​

Adsorption and removal of ametryn using graphene oxide nano-sheets from farm waste water and optimization using response surface methodology​​

Application of vortex-assisted solid-phase extraction for the simultaneous preconcentration of Cd(ii) and Pb(ii) by nano clinoptilolite modified with 5(p-dimethylaminobenzylidene) rhodanine​​

Metal oxide/TiO₂ nanocomposites as efficient adsorbents for relatively high temperature H₂S removal​​

Novel magnetic hollow zein nanoparticles for preconcentration of chlorpyrifos from water and soil samples prior to analysis via high-performance liquid chromatography (HPLC)

**Synthesis of an ion-imprinted sorbent by surface imprinting of magnetized carbon nanotubes for determination

Assist. Prof. Dr. Mohammad Taghi Nazeri | Organic Chemistry | Best Researcher Award

Assist. Prof. Dr. Mohammad Taghi Nazeri | Organic Chemistry | Best Researcher Award

Assist. Prof. Dr. Mohammad Taghi Nazeri , Shahid Beheshti University, Iran

Dr. Mohammad Taghi Nazeri, born in Qazvin, Iran, is a distinguished faculty member at Shahid Beheshti University, Tehran. He earned his Ph.D. under the mentorship of Prof. Ahmad Shaabani, followed by a postdoctoral fellowship in the same research group. With a robust academic portfolio, he focuses on the synthesis of bioactive compounds, multicomponent reactions, and material functionalization. Dr. Nazeri has authored over 40 impactful papers and reviews, showcasing his expertise in organic chemistry. His innovative approaches to green chemistry and sustainable synthesis have garnered recognition in the scientific community, contributing significantly to advancements in pseudopeptidic and heterocyclic chemistry.

Professional Profile:

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Mohammad Taghi Nazeri exemplifies the qualities of an outstanding researcher, making him a strong candidate for the “Best Researcher Awards.” With a focus on sustainable synthesis and green chemistry, Dr. Nazeri has significantly advanced the field of organic chemistry, particularly in isocyanide-based multicomponent reactions and pseudopeptidic compound synthesis. His innovative methodologies emphasize eco-friendly processes, reflecting a commitment to addressing global sustainability challenges.Dr. Nazeri’s exceptional research achievements, innovative methodologies, and contributions to advancing sustainable chemistry establish him as a deserving recipient of the “Best Researcher Awards.” His work not only enriches the academic community but also addresses pressing environmental and societal challenges, making him an exemplary model of scientific excellence and impactful research.

🎓Education:

Dr. Nazeri completed his M.Sc. in organic chemistry at Tehran University, where he cultivated his foundational expertise in chemical sciences. He pursued his Ph.D. at Shahid Beheshti University, specializing in advanced multicomponent reactions and pseudopeptidic compounds under the guidance of Prof. Ahmad Shaabani. His doctoral work revolved around designing efficient, sustainable synthetic pathways for bioactive heterocycles. Building upon this, Dr. Nazeri undertook a postdoctoral fellowship at Shahid Beheshti University, further refining his expertise in green chemistry and material functionalization. His educational journey reflects a commitment to developing innovative solutions for complex synthetic challenges, integrating sustainability and efficiency.

🏢Work Experience:

Dr. Nazeri began his academic career with extensive research in isocyanide-based multicomponent reactions, focusing on the synthesis of heterocyclic compounds and pseudopeptides. After earning his Ph.D., he joined Prof. Ahmad Shaabani’s research group for postdoctoral studies, emphasizing sustainable chemistry. Since 2022, he has been a faculty member at Shahid Beheshti University, where he teaches, mentors students, and leads groundbreaking research projects. His contributions include developing eco-friendly synthetic methodologies and functionalizing materials for applications in green catalysis and CO₂ fixation. With over 40 publications, Dr. Nazeri’s experience showcases his innovative approach to organic chemistry and materials science.

🏅Awards: 

Dr. Nazeri has received widespread recognition for his contributions to organic chemistry. His awards highlight excellence in green chemistry and multicomponent reactions, showcasing his innovative approach to sustainable synthesis. His postdoctoral fellowship, under the esteemed guidance of Prof. Ahmad Shaabani, reflects his exceptional research capabilities. Dr. Nazeri’s work has earned accolades from the scientific community, underscoring his commitment to advancing eco-friendly methodologies. His role as a faculty member at Shahid Beheshti University further attests to his impact in shaping the next generation of researchers in organic chemistry.

🔬Research Focus:

Dr. Nazeri’s research interests include the design and synthesis of bioactive compounds through novel multicomponent reactions, with a particular emphasis on pseudopeptidic and heterocyclic scaffolds. He explores sustainable methods for the functionalization and modification of materials, employing green chemistry principles. His work focuses on isocyanide-based reactions in water, aiming to create efficient synthetic routes for medicinally relevant compounds. Dr. Nazeri also investigates applications in CO₂ fixation and antibacterial nanocomposites, contributing to eco-friendly advancements in materials science. His research bridges organic synthesis, green catalysis, and material functionalization for sustainable development.

Publication Top Notes:

5-Amino-pyrazoles: potent reagents in organic and medicinal synthesis

Authors: A. Shaabani, M.T. Nazeri, R. Afshari

Citations: 78

Year: 2019

Multicomponent reactions as a potent tool for the synthesis of benzodiazepines

Authors: H. Farhid, V. Khodkari, M.T. Nazeri, S. Javanbakht, A. Shaabani

Citations: 67

Year: 2021

Cyclic imines in Ugi and Ugi-type reactions

Authors: M.T. Nazeri, H. Farhid, R. Mohammadian, A. Shaabani

Citations: 57

Year: 2020

Deep eutectic solvent as a highly efficient reaction media for the one-pot synthesis of benzo-fused seven-membered heterocycles

Authors: A. Shaabani, S.E. Hooshmand, M.T. Nazeri, R. Afshari, S. Ghasemi

Citations: 46

Year: 2016

Green one-pot synthesis of multicomponent-crosslinked carboxymethyl cellulose as a safe carrier for the gentamicin oral delivery

Authors: S. Javanbakht, M.T. Nazeri, A. Shaabani, M. Ghorbani

Citations: 40

Year: 2020

5-aminopyrazole-conjugated gelatin hydrogel: A controlled 5-fluorouracil delivery system for rectal administration

Authors: M.T. Nazeri, S. Javanbakht, A. Shaabani, M. Ghorbani

Citations: 38

Year: 2020

An efficient one-pot, regio-and stereoselective synthesis of novel pentacyclic-fused pyrano[3,2,c] chromenone or quinolinone benzosultone derivatives in water

Authors: M. Ghandi, M.T. Nazeri, M. Kubicki

Citations: 35

Year: 2013

Multi‐component reaction‐functionalized chitosan complexed with copper nanoparticles: An efficient catalyst toward A3 coupling and click reactions in water

Authors: A. Shaabani, M. Shadi, R. Mohammadian, S. Javanbakht, M.T. Nazeri

Citations: 34

Year: 2019

Isocyanide-based multicomponent reactions in water: Advanced green tools for the synthesis of heterocyclic compounds

Authors: T. Nasiriani, S. Javanbakht, M.T. Nazeri, H. Farhid, V. Khodkari, A. Shaabani

Citations: 33

Year: 2022

Synthesis of polysubstituted pyrroles via isocyanide-based multicomponent reactions as an efficient synthesis tool

Authors: M.T. Nazeri, A. Shaabani

Citations: 32

Year: 2021

 

 

 

 

Dr. Hongjian Qin | Organic Chemistry | Best Researcher Award

Dr. Hongjian Qin | Organic Chemistry | Best Researcher Award

Dr. Hongjian Qin , Shanghai Institute of Materia Medica, CAS , China

Dr. Hongjian Qin is an accomplished researcher in sustainable and green chemistry, with expertise in drug process development and medicinal administration. He earned his Ph.D. in Organic Chemistry from the Chinese Academy of Sciences, being recognized as an Excellent Graduate in 2024. Dr. Hongjian Qin’s contributions to the field span over three years, emphasizing environmentally friendly pharmaceutical synthesis and active pharmaceutical ingredient (API) development. Currently serving as Research Director at Topharman Company Limited, he continues to advance innovative solutions in drug development. His work includes mentoring students, enhancing resource recovery, and participating in COVID-19 research. With numerous impactful publications, Dr. Hongjian Qin is a dedicated professional committed to promoting sustainability and advancing solutions for global environmental challenges.

Professional Profile:

Scopus 

Summary of Suitability for Award:

Dr. Hongjian Qin is an exemplary candidate for the “Best Researcher Awards,” with a distinguished career in sustainable and green chemistry. His pioneering research in eco-friendly pharmaceutical synthesis has significantly contributed to reducing industrial waste and enhancing process efficiency, aligning with global sustainability objectives. Dr. Hongjian Qin’s innovative work on ligand-free catalysis, large-scale API production, and impurity profiling reflects his expertise in developing practical solutions for complex challenges in organic chemistry and medicinal chemistry. Dr. Hongjian Qin’s research excellence, innovative contributions, and global impact make him a highly deserving candidate for the “Best Researcher Awards.” His work not only addresses critical scientific challenges but also fosters sustainable practices in drug development, making a lasting impact on both academia and industry.

🎓Education:

Dr. Hongjian Qin holds a Ph.D. in Organic Chemistry from the Chinese Academy of Sciences , specializing in process development of drug substances and medicinal administration. His doctoral work was conducted at the Key Laboratory of Plant Resources and Chemistry in Arid Regions, showcasing expertise in sustainable pharmaceutical synthesis. He completed a Master of Engineering in Organic Chemistry from Guangxi University, focusing on the process development of drug substances. Dr. Qin’s academic journey began with a Bachelor of Science in Organic Chemistry from Guangxi University . His educational foundation combines rigorous theoretical knowledge with practical applications, preparing him to address complex challenges in green and sustainable chemistry.

🏢Work Experience:

Dr. Hongjian Qin’s professional journey spans over a decade, focusing on pharmaceutical synthesis and sustainable chemistry. As Research Director at Topharman Company Limited (2024–present), he spearheads innovations in active pharmaceutical ingredients (APIs) and emphasizes good manufacturing practices (GMP). Previously, as a Research Assistant at the Shanghai Institute of Materia Medica (2021–2024), he supported COVID-19 research projects, trained students, and enhanced pharmaceutical waste recovery techniques. At the Xinjiang Engineering Research Centre for Key Technologies and Processes of Ethnomedicine (2015–2021), Dr. Hongjian Qin led projects on sustainable API production and industrial resource recovery. His experiences reflect a blend of academic research and industrial application, driving advancements in pharmaceutical science.

🏅Awards: 

Dr. Hongjian Qin has received numerous accolades for his contributions to sustainable chemistry. He was honored as an Excellent Graduate in 2024 by the University of Chinese Academy of Sciences for his outstanding academic achievements during his Ph.D. studies. His work on sustainable pharmaceutical synthesis earned him recognition at various national and international conferences. Dr. Hongjian Qin has been instrumental in developing innovative processes for drug substances, garnering appreciation from industrial partners. Additionally, his mentorship roles and administrative contributions at research institutions have been commended, underscoring his commitment to advancing science and education.

🔬Research Focus:

Dr. Hongjian Qin’s research focuses on sustainable and green chemistry, particularly in the process development of drug substances. He has worked extensively on optimizing synthesis methods for pharmaceutical intermediates, reducing waste, and improving efficiency in drug manufacturing. His innovative approaches emphasize the use of eco-friendly reagents and catalysts, aligning with global sustainability goals. His recent work includes developing ligand-free copper-catalyzed cyclization methods, novel iron-catalyzed cross-coupling reactions, and efficient large-scale processes for active pharmaceutical ingredients (APIs). Dr. Hongjian Qin is dedicated to advancing environmentally responsible techniques in pharmaceutical synthesis, ensuring both industrial viability and ecological preservation.

Publication Top Notes:

1. Direct Esterification of Amides by the Dimethylsulfate-Mediated Activation of Amide C–N Bonds

Authors: Qin, H.; Han, Z.; Bonku, E.M.; Shen, J.; Aisa, H.A.

Year: 2024

Citations: 0

2. An Alternative Approach to Synthesize Sildenafil via Improved Copper-Catalyzed Cyclization

Authors: Odilov, A.; Gong, X.; Qin, H.; Yang, F.; Shen, J.

Year: 2024

Citations: 0

3. Impurity Study of Tecovirimat (Open Access)

Authors: Bonku, E.M.; Qin, H.; Odilov, A.; Wang, X.; Shen, J.

Year: 2024

Citations: 1

4. Improved and Ligand-Free Copper-Catalyzed Cyclization for an Efficient Synthesis of Benzimidazoles from o-Bromoarylamine and Nitriles (Open Access)

Authors: Bonku, E.M.; Qin, H.; Odilov, A.; Aisa, H.A.; Shen, J.

Year: 2024

Citations: 2

5. Direct Reductive N-Alkylation of Amines with Carboxylic Esters

Authors: Zhang, Y.; Bonku, E.M.; Yang, X.; Shen, J.; Qin, H.

Year: 2024 (In Press)

Citations: 0

6. Iron-Catalyzed Cross-Coupling Reactions of Alkyl Grignard Reagents with Alkenyl Carbonate

Authors: Qin, H.; Yang, X.; Mintah Bonku, E.; Shen, J.; Akber Aisa, H.

Year: 2024 (In Press)

Citations: 0

7. A Review of the Synthetic Strategies Toward the Antiviral Drug Tecovirimat (Review Article)

Authors: Bonku, E.M.; Qin, H.; Odilov, A.; Zhu, F.; Shen, J.

Year: 2024 (In Press)

Citations: 0

8. An Improved Iodine-Catalyzed Aromatization Reaction and Its Application in the Synthesis of a Key Intermediate of Cannabidiol

Authors: Abduahadi, S.; Bonku, E.M.; Qin, H.; Aisa, H.A.; Shen, J.

Year: 2024 (In Press)

Citations: 0

9. Optimized Synthesis of the Key Intermediate of Telmisartan via the Cyclization of 2-Bromoarylamine with n-Butyronitrile

Authors: Qin, H.; Mintah Bonku, E.; Odilov, A.; Zhu, F.; Aisa, H.A.

Year: 2023

Citations: 1

10. Efficient Large-Scale Process for Tecovirimat via Reactive Distillation for the Preparation of Cycloheptatriene

Authors: Bonku, E.M.; Qin, H.; Odilov, A.; Guma, S.D.; Shen, J.

Year: 2023

Citations: 4

 

 

 

 

 

Assist. Prof. Dr. Che-Sheng Hsu | Organic Chemistry | Best Researcher Award

Assist. Prof. Dr. Che-Sheng Hsu | Organic Chemistry | Best Researcher Award 

Assist. Prof. Dr. Che-Sheng Hsu , Fu Jen Catholic University , Taiwan

Che-Sheng Hsu is an Assistant Professor at Fu Jen Catholic University, New Taipei City, Taiwan. He specializes in organic synthetic methodologies and natural product synthesis, focusing on developing innovative approaches for high-performance chemistry. With a strong dedication to research, he has contributed significantly to the field by introducing novel iodide-umpolung catalysis systems and efficient methods for synthesizing polysubstituted vinyl sulfones. Known for his commitment to advancing molecular construction techniques, Che-Sheng aims to achieve sustainable and efficient chemical processes. His work has been published in indexed journals, reflecting the impact of his innovative research in organic synthesis.

Professional Profile: 

Orcid 

Summary of Suitability for Award:

Dr. Che-Sheng Hsu is a suitable candidate for the “Best Researcher Award” due to his groundbreaking research in organic synthesis and demonstrated potential for future contributions. His dedication to advancing high-efficiency chemistry through sustainable methodologies is commendable and positions him as an emerging leader in the field. Despite limited professional accolades so far, his innovative work lays a strong foundation for recognition and continued excellence in research. Dr. Che-Sheng Hsu demonstrates significant promise and dedication to advancing organic chemistry. His innovative contributions to organic synthetic methodologies, particularly his discovery of a novel iodide-umpolung catalysis system and efficient synthesis of poly substituted vinyl sulfones, highlight his potential for impactful research.

🎓Education:

Dr. Che-Sheng Hsu completed his undergraduate and postgraduate studies in Chemistry, specializing in organic synthesis. His academic journey is marked by rigorous training in advanced chemical methodologies and a focus on sustainable synthesis. He pursued his doctoral research, emphasizing the development of innovative reaction mechanisms, particularly in iodine reagent-based chemistry. Throughout his academic career, Che-Sheng demonstrated exceptional analytical skills and a keen interest in discovering new chemical reactions, paving the way for his future contributions to organic synthesis. His education has provided a robust foundation for his current research endeavors and academic contributions.

🏢Work Experience:

Dr. Che-Sheng Hsu has served as an Assistant Professor at Fu Jen Catholic University since the beginning of his academic career. With a specialization in organic synthetic methodologies, he combines teaching with active research to guide students and contribute to the field. His work includes the discovery of a novel iodide-umpolung catalysis system and the development of efficient synthetic routes for poly substituted vinyl sulfones. Despite being relatively new in the field, he is committed to advancing research through collaboration and innovation, leveraging his expertise to make meaningful scientific contributions.

🏅Awards:

Dr. Che-Sheng Hsu, an emerging researcher in the field of organic chemistry, has earned recognition for his innovative contributions to synthetic methodologies. While he is at an early stage in his career and has not yet received formal awards, his groundbreaking research in developing a novel iodide-umpolung catalysis system and efficient methods for synthesizing poly substituted vinyl sulfones has garnered appreciation from peers and experts in the field. His publication in a reputed indexed journal highlights the quality and relevance of his work. Dr. Che-Sheng Hsu’s commitment to advancing high-performance and sustainable chemical processes reflects his potential for achieving notable accolades in the future. With his focus on impactful research, he is poised to become a recognized leader in organic synthesis, and his work lays the foundation for achieving honors that acknowledge his contributions to science and innovation.

🔬Research Focus:

Dr. Che-Sheng  Hsu’s research centers on organic synthesis, with an emphasis on high-efficiency reaction mechanisms. He focuses on utilizing iodine reagents to construct complex molecules through innovative methods. His research has led to the development of a novel iodide-umpolung catalysis system, which enables the synthesis of poly substituted vinyl sulfones with remarkable performance. By exploring sustainable and efficient chemical processes, he contributes to advancing the field of organic chemistry. His work seeks to balance innovative research with practical applications, ensuring that his findings are both impactful and accessible for further scientific exploration.

Publication Top Notes:

Iodide-umpolung catalytic system for non-traditional amide coupling from nitroalkanes and amines