Mr. Rasim Omanović | Green Chemistry | Best Researcher Award

Mr. Rasim Omanović | Green Chemistry | Best Researcher Award

Mr. Rasim Omanović | Green Chemistry | Senior Teaching Assistant at University of Sarajevo – Faculty of Science, Bosnia and Herzegovina

Rasim Omanović is a Ph.D. student in Chemistry at the University of Sarajevo, specializing in analytical chemistry, green chemistry and environmental sciences. With extensive experience in laboratory research, scientific writing, and academic teaching, he currently serves as a Senior Teaching Assistant at the Faculty of Science, University of Sarajevo. Additionally, he is a Technical Expert at the Institute for Accreditation of Bosnia and Herzegovina. His research interests include atmospheric aerosol analysis, heavy metal contamination, and green extraction methods using deep eutectic solvents. He has actively participated in international research projects and conferences, contributing significantly to environmental chemistry and sustainable methodologies. Alongside his academic career, he has industry experience as a Sales Engineer at Petrol BH Oil Company. A recipient of the University of Sarajevo Award for Scientific Work, he continues to make notable contributions to analytical and environmental chemistry.

Professional Profile :         

Google Scholar

Orcid

Summary of Suitability for Award:

Rasim Omanović is a highly qualified and dedicated researcher in the field of analytical and environmental chemistry, making him an excellent candidate for the “Best Researcher Award”. His research contributions span critical areas such as atmospheric aerosol analysis, green chemistry, and the development of eco-friendly extraction techniques using deep eutectic solvents. His work is not only innovative but also impactful, addressing global environmental challenges such as pollution control and heavy metal remediation. He has a strong academic background, currently pursuing a Ph.D. at the University of Sarajevo, and has gained substantial research and teaching experience as a Senior Teaching Assistant. His extensive list of peer-reviewed publications in high-impact journals and active participation in international research collaborations, such as the NextAIRE Horizon project and scientific partnerships with Slovenia, further demonstrate his commitment to scientific excellence. Given Rasim Omanović’s outstanding research contributions, numerous high-quality publications, and active participation in international collaborations, he is a strong candidate for the “Best Researcher Award”. His ability to integrate sustainable methodologies into analytical chemistry, his recognized scientific achievements, and his dedication to solving real-world environmental issues make him highly deserving of this recognition.

🎓Education:

Rasim Omanović is currently pursuing his Ph.D. in Chemistry at the University of Sarajevo – Faculty of Science (2021–Present). He previously earned his Master’s degree in Chemistry from the same institution in 2016 and completed his Bachelor’s degree in Chemistry in 2015. His academic journey has been complemented by various specialized training programs. In 2022, he attended the Training & Research for Academic Newcomers at the University of Sarajevo, further strengthening his pedagogical skills. Additionally, he completed the Fundamentals of Manuscript Preparation course from Elsevier Researcher Academy, gaining valuable insights into scientific writing. His commitment to academic excellence also led him to complete a course on Effective Researcher and Pedagogic Stratification in Academics with the International Society of Engineering Science and Technology in 2021. Furthermore, he successfully passed the Professional Exam in Forensic Science administered by the Civil Service Agency of FBiH in 2018, expanding his expertise into forensic applications.

🏢Work Experience:

Rasim Omanović has extensive experience in academia and research. Since 2023, he has been serving as a Senior Teaching Assistant of Analytical Chemistry at the University of Sarajevo – Faculty of Science. His prior roles include Teaching Assistant of Analytical Chemistry (2020–2023) at the same institution and an External Associate Teaching Assistant at the University of Bihać – Faculty of Health Studies (2023–2024) and the University of Sarajevo – Faculty of Mechanical Engineering (2021–2022). In 2025, he expanded his expertise as a Technical Expert at the Institute for Accreditation of Bosnia and Herzegovina. Additionally, since 2021, he has been a Research Assistant at the International Society of Engineering Science and Technology. Before transitioning into academia, he gained industry experience as a Sales Engineer at Petrol BH Oil Company (2017–2020). His diverse experience showcases his strong analytical, teaching, and research skills across various scientific disciplines.

🏅Awards: 

Rasim Omanović has been recognized for his outstanding scientific contributions. In 2022, he received the University of Sarajevo Award for Scientific Work Results, an acknowledgment of his research achievements. His dedication to scientific excellence extends to his involvement in international collaborations. He is a key researcher in projects under the Scientific and Technological Cooperation between Bosnia and Herzegovina and Slovenia for 2024–2025. His work on Physico-chemical testing of atmospheric aerosol particles and biomonitoring showcases his expertise in environmental chemistry. Additionally, his research on Deep eutectic solvents for green and sustainable extraction of bioactive compounds highlights his commitment to eco-friendly methodologies. In 2025, he joined NextAIRE – Next Generation AI Researchers for Air Quality Excellence, a prestigious EU-funded Horizon project. These honors reflect his continuous efforts in advancing scientific knowledge and addressing critical global challenges in green chemistry, environmental and analytical chemistry.

🔬Research Focus:

Rasim Omanović’s research primarily revolves around analytical and environmental chemistry. His work includes the physico-chemical testing of atmospheric aerosol particles, biomonitoring, and investigating new atmospheric particle formation, a project under the scientific cooperation between Bosnia and Herzegovina and Slovenia. He is also engaged in the development of deep eutectic solvents for green and sustainable extraction of bioactive compounds from agro-industrial by-products, aligning with eco-friendly chemistry principles. Additionally, he is part of the NextAIRE project, which integrates AI into air quality monitoring. His research also extends to developing green nano-sorbents for heavy metal remediation in water and soil contamination analysis. With a strong focus on sustainable and innovative methodologies, his contributions are making a significant impact on environmental science, pollution control, and analytical chemistry. His work demonstrates a multidisciplinary approach, bridging chemistry with technological advancements to solve pressing environmental challenges.

Publication Top Notes:

Synthesis of green nano sorbents for simultaneous preconcentration and recovery of heavy metals from water

Citations: 24

Emerging technologies for biogas production: A critical review on recent progress, challenges and perspectives

Citations: 19

Analysis of stability of naturally aged single base propellants

Heavy metal contamination of street dust of Canton Sarajevo, Bosnia and Herzegovina–Health risk assessment

Determination of Water Extractable Chloride in the Greenhouse Soil and Minimizing Interferences Caused by the Presence of the Iron Ions

Application of Grapefruit Peel as Biosorbent for Removal of Copper (II), Lead (II), Cadmium (II) and Zinc (II) from Aqueous Solution

 

Dr. Emmanuel Mintah Bonku | Green Chemistry | Sustainable Chemistry Award

Dr. Emmanuel Mintah Bonku | Green Chemistry | Sustainable Chemistry Award

Dr. Emmanuel Mintah Bonku , Shanghai Institute of Materia Medica, CAS , China

Emmanuel Mintah Bonku, PhD, is a dedicated postdoctoral researcher at the Shanghai Institute of Materia Medica, Chinese Academy of Sciences, specializing in green chemistry and sustainable drug development. With a Ph.D. in Medicinal Chemistry from the University of Chinese Academy of Sciences, his research focuses on synthetic methodologies for antiviral drugs, especially in emerging diseases like monkey pox. He developed a groundbreaking synthesis process for tecovirimat, which is undergoing registration in China. Emmanuel has also worked on the synthesis of cariprazine, benzimidazole compounds, and other pharmaceuticals. His achievements have earned him the Excellent International Graduate Award from the Chinese Academy of Sciences in 2024. Passionate about sustainability in the pharmaceutical sector, Emmanuel strives to inspire future generations of scientists with his innovative approach to drug development.

Professional Profile:

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Emmanuel Mintah Bonku, PhD, is highly suitable for the “Sustainable Chemistry Award” based on his exceptional contributions to green and sustainable drug development, particularly in medicinal chemistry. His research focuses on the development of innovative and environmentally friendly synthetic methodologies, notably for antiviral and other life-saving drugs. He has demonstrated excellence in synthesizing antiviral drugs like tecovirimat for monkey pox, optimizing the production process for large-scale application with minimal environmental impact. Emmanuel Mintah Bonku has also worked on biotransformation techniques and green chemistry, striving to make pharmaceutical synthesis more sustainable. Emmanuel Mintah Bonku is an ideal candidate for the “Sustainable Chemistry Award” due to his groundbreaking work in green chemistry and sustainable pharmaceutical development. His innovative research and dedication to promoting sustainability in drug manufacturing make him a strong advocate for environmentally conscious chemistry practices.

🎓Education:

Emmanuel Mintah Bonku holds a Doctor of Philosophy (Ph.D.) in Medicinal Chemistry from the University of Chinese Academy of Sciences (2021-2024), focusing on green and sustainable drug development. He completed a Master of Engineering (M.Eg.) in Chemical Engineering and Technology from Wuhan University of Science and Technology (2018-2021), specializing in biotransformation and sustainable chemistry. Prior to that, he earned a Bachelor of Science (B.Sc.) in Environmental Science, with a focus on ethnobotany, from the University of Cape Coast, Ghana (2012-2017). In addition, Emmanuel holds a certificate in Information Communication and Technology (2012) from All Nations University College, Ghana. His academic background has equipped him with the technical expertise and interdisciplinary knowledge to make significant contributions to medicinal chemistry, particularly in the development of antiviral drugs and sustainable pharmaceutical processes.

🏢Work Experience:

Emmanuel Mintah Bonku is currently a postdoctoral researcher at the Shanghai Institute of Materia Medica, Chinese Academy of Sciences, specializing in sustainable drug development. During his doctoral research, he pioneered novel synthetic methodologies for antiviral drugs, contributing to the development of tecovirimat for monkeypox and cariprazine for schizophrenia. He has also worked extensively on the synthesis of benzimidazole compounds for antihypertensive and anthelmintic applications. In his earlier career, Emmanuel contributed to projects focused on biotransformation and sustainable chemistry while earning his Master’s degree at Wuhan University of Science and Technology. His experience spans academic research, guest reviewing for journals, and collaborative work with international experts in the field. Emmanuel’s role as a researcher involves advanced techniques in medicinal chemistry, drug synthesis, and process optimization, with an emphasis on green and sustainable practices.

🏅Awards: 

Emmanuel Mintah Bonku has been recognized for his outstanding contributions to medicinal chemistry, particularly in the synthesis of antiviral drugs. In 2024, he received the Excellent International Graduate Award from the Chinese Academy of Sciences in recognition of his innovative research on tecovirimat, a key antiviral drug for monkeypox. His achievements in sustainable drug development have positioned him as a leading figure in his field. Emmanuel has also contributed to various projects in the pharmaceutical industry and academia, promoting sustainability in drug development. His work has garnered attention and respect in the scientific community, and he continues to inspire others through his research, publications, and collaborations. As a guest reviewer for journals like Journal of Green Synthesis and Catalysis and Journal of Food Science, he is also recognized for his contributions to the scientific peer-review process. Emmanuel remains committed to advancing the field of green chemistry and pharmaceutical innovation.

🔬Research Focus:

Emmanuel Mintah Bonku’s research focuses on green and sustainable drug development, with a particular emphasis on the synthesis of antiviral drugs. His work is at the intersection of medicinal chemistry and sustainable chemistry, where he develops new synthetic methodologies for emerging infectious diseases, including monkeypox. Emmanuel pioneered a large-scale process for synthesizing tecovirimat, a critical antiviral drug, and has worked on the development of other pharmaceuticals like cariprazine for schizophrenia and benzimidazole compounds for antihypertensive and anthelmintic purposes. He is passionate about improving drug synthesis processes to make them more sustainable, focusing on minimizing environmental impact while maintaining high efficiency and effectiveness. His research also includes process optimization, such as using reactive distillation for drug synthesis. Emmanuel’s work aims to address current challenges in the pharmaceutical industry, particularly the need for greener, more efficient production methods for critical drugs in the global healthcare landscape.

Publication Top Notes:

1. Extraction of Essential Oil from Citrus reticulate Blanco Peel and Its Antibacterial Activity Against Cutibacterium acnes (Formerly Propionibacterium acnes)

Authors: HS Hou, EM Bonku, R Zhai, R Zeng, YL Hou, ZH Yang, C Quan

Year: 2019

Citations: 90

Journal: Heliyon 5(12)

2. An Alkali-Tolerant Carbonyl Reductase from Bacillus subtilis by Gene Mining: Identification and Application

Authors: W Luo, HJ Du, EM Bonku, YL Hou, LL Li, XQ Wang, ZH Yang

Year: 2019

Citations: 8

Journal: Catalysis Letters 149, 2973–2983

3. Extraction of Essential Oil from Citrus reticulate Blanco Peel and Its Antibacterial Activity Against Cutibacterium acnes (Formerly Propionibacterium acnes)

Authors: HS Hou, EM Bonku, R Zhai, R Zeng, YL Hou, ZH Yang, C Quan

Year: 2019

Citations: 7

Journal: Heliyon 5, E02

4. Facile Synthesis of Benzimidazoles via N-Arylamidoxime Cyclization

Authors: H Qin, A Odilov, EM Bonku, F Zhu, T Hu, H Liu, HA Aisa, J Shen

Year: 2022

Citations: 6

Journal: ACS Omega 7(49), 45678–45687

5. Efficient Large-Scale Process for Tecovirimat via Reactive Distillation for the Preparation of Cycloheptatriene

Authors: EM Bonku, H Qin, A Odilov, F Yang, X Xing, X Wang, SD Guma, J Shen

Year: 2023

Citations: 5

Journal: Organic Process Research & Development 27(11), 1984–1991

6. Synergistic Effect and Structure–Property of Bio-Based 1, 6-Hexanediol on Thermal, Mechanical, and Degradation Properties of Biopolymers

Authors: WMK Siegu, LDW Djouonkep, NBS Selabi, EM Bonku, Z Cheng, …

Year: 2023

Citations: 5

Journal: Journal of Polymers and the Environment 31(3), 1144–1159

7. Extraction of Essential Oil from Citrus reticulate

Authors: HS Hou, EM Bonku, R Zhai, R Zeng, YL Hou, ZH Yang, C Quan

Year: 2019

Citations: 5

Journal: Not listed

8. Establishment of a Propolis Ethanolic Extract Self-Microemulsifying Drug Delivery System and Its Antibacterial Activity

Authors: TC Wang, B Appiah, EM Bonku, ZH Yang, L Luo

Year: 2021

Citations: 4

Journal: Biocatalysis and Agricultural Biotechnology 31, 101905

9. Improved and Ligand-Free Copper-Catalyzed Cyclization for an Efficient Synthesis of Benzimidazoles from o-Bromoarylamine and Nitriles

Authors: EM Bonku, H Qin, A Odilov, S Abduahadi, SD Guma, F Yang, F Zhu, …

Year: 2024

Citations: 3

Journal: RSC Advances 14(10), 6906–6916

10. Impurity Study of Tecovirimat

Authors: EM Bonku, H Qin, A Odilov, S Abduahadi, SD Guma, F Yang, X Xing, …

Year: 2024

Citations: 1

Journal: Heliyon 10(9)

 

 

 

 

 

Assist. Prof. Dr Maryam Khajenoori | Green Extraction Award | Best Researcher Award

Assist. Prof. Dr Maryam Khajenoori | Green Extraction Award | Best Researcher Award

Assist. Prof. Dr Maryam Khajenoori , Semnan University , Iran 

Dr. Maryam Khajenoori is an Assistant Professor of Chemical Engineering at Semnan University, Iran. she is a specialist in subcritical water extraction (SWE) and chemical process engineering. Dr. Khajenoori’s academic career centers around sustainable separation processes and nanoparticle synthesis, with extensive research in solubility analysis, green extraction methods, and thermodynamic modeling. She is an accomplished educator, guiding students through advanced engineering mathematics, mass transfer, and environmental biotechnology. A published author in renowned journals, Dr. Khajenoori’s expertise extends to practical applications in chemical engineering and sustainable energy. She is proficient in multiple programming languages and specialized software, utilizing her technical skills to advance both academic research and applied chemical engineering processes.

Professional Profile: 

Google Scholar

Scopus 

Summary of Suitability for Award:

Dr. Maryam Khajenoori’s combination of academic excellence, significant research contributions, and focus on sustainability makes her a strong contender for the “Best Researcher Awards.” Her research on subcritical water extraction and related sustainable chemical processes is not only innovative but also has practical implications for industries like pharmaceuticals, food, and environmental engineering. Given her proven track record of influential publications, successful projects, and teaching roles, she is highly deserving of this recognition. Her work is set to continue making an important impact in both academic and industrial spheres, reaffirming her status as a leading researcher in the field.

🎓Education:

Dr. Khajenoori holds a Ph.D. in Chemical Engineering from Semnan University, specializing in the thermodynamics and kinetics of chemical reactors. She obtained her M.Sc. in Chemical Engineering with a focus on Separation Processes from the same institution , by  following her B.Sc. in Chemical Engineering (Polymer Branch) from Isfahan University of Technology (IUT) . Her foundational education includes a diploma in Mathematics and Physics from Dehkhoda High School in Kashan, Isfahan, Iran. Her academic journey has been marked by a rigorous focus on chemical processes, separation techniques, and sustainable engineering methodologies, paving the way for her research interests in green extraction and solubility of bioactive compounds.

🏢Work Experience:

Dr. Khajenoori has diverse teaching experience at Semnan University, covering subjects such as advanced mass transfer, environmental biotechnology, unit operations, and engineering mathematics. She has also instructed in specialized labs and workshops, including MATLAB, Aspen, and Hysys, to equip students with practical skills. Additionally, her research projects include studies on the thermokinetics of SWE for her Ph.D., superheated water extraction in her M.Sc., and pollutant studies in groundwater from her undergraduate studies. She has also completed numerous projects in CO2 capture, computational fluid dynamics, and molecular dynamics, applying her expertise in both teaching and research for sustainable chemical engineering solutions.

🏅Awards:

Dr. Khajenoori has earned recognition for her research contributions, particularly in the areas of subcritical water extraction and solubility analysis. Her pioneering work on SWE of essential oils has garnered international attention, and she has been invited to present her findings at leading scientific conferences. She has also been recognized within Semnan University for her dedication to both teaching and research, receiving accolades for her contributions to environmental biotechnology and sustainable chemical engineering practices. Additionally, her efforts in green extraction methods have placed her at the forefront of sustainable engineering, further affirming her as a respected figure in the field.

🔬Research Focus:

Dr. Khajenoori’s research primarily explores sustainable and green extraction methods, particularly subcritical water extraction (SWE) for bioactive compounds. Her interests extend to the solubility of valuable compounds like curcumin in SWE conditions, nanoparticle synthesis using environmentally friendly techniques, and pollution treatment processes. She has conducted extensive studies on thermodynamic modeling and the effect of SWE on various essential oils, aiming to optimize extraction efficiency and purity. Through her focus on sustainable practices, Dr. Khajenoori contributes to advancements in eco-friendly chemical engineering and supports the development of alternative extraction techniques to reduce environmental impact.

Publication Top Notes:

  •  Subcritical water extraction
     Citations: 144
  • Proposed models for subcritical water extraction of essential oils
    Citations: 103
  • Mass Transfer: Advances in Sustainable Energy and Environment Oriented Numerical Modeling
    Citations: 71
  •  Subcritical water extraction of essential oils from Zataria multiflora Boiss
    Citations: 63
  • Extraction of Curcumin and Essential Oil from Curcuma longa L. by Subcritical Water via Response Surface Methodology
    Citations: 58

 

 

 

 

Dr. Seyed Mohammad Amini | Green Chemistry Award | Best Researcher Award

Dr. Seyed Mohammad Amini | Green Chemistry Award | Best Researcher Award

Dr. Seyed Mohammad Amini | Iran University of Medical Sciences | Iran

Seyed Mohammad Amini, Ph.D., is a dedicated scientist and Assistant Professor at the Radiation Biology Research Center, Iran University of Medical Sciences, specializing in medical nanotechnology. Born on February 1, 1986, he has over a decade of experience in research and development, particularly in biopharmaceuticals, nanotechnology for drug delivery, and imaging. His work has led to innovations in nanoparticle-based formulations for cancer diagnostics and therapy, including pioneering techniques in hyperthermia and photodynamic therapy. Dr. Amini’s contributions extend to clinical radiology with hands-on expertise in CT and MRI systems. He is fluent in Persian, Kurdish, and English and actively contributes to interdisciplinary projects involving teams of scientists worldwide.

Professional Profile:

Google Scholar

Orcid

Scopus

Summary of Suitability for Award:

Dr. Seyed Mohammad Amini stands as a highly qualified candidate for the “Best Researcher Award” due to his extensive expertise and contributions across several interdisciplinary fields within nanomedicine and biomedical applications. With a Ph.D. and M.Sc. in Medical Nanotechnology from Tehran University of Medical Sciences, he has amassed over 12 years of research and development experience in biopharmaceutical drug development, drug delivery systems, and radiological technology. Dr. Amini’s unique cross-functional research has demonstrated excellence in both theoretical and applied sciences, especially in his innovative work on metal and metal oxide nanostructures, which are pivotal in radiation therapy, photodynamic therapy, and hyperthermia for cancer treatment.

🎓Education:

Dr. Amini completed his Ph.D. in Medical Nanotechnology from Tehran University of Medical Sciences (2012-2017), where he specialized in nanoliposomal formulations for controlled cancer drug delivery, supervised by distinguished professors such as Dr. Sharmin Kharrazi and Prof. Jaafari. His Master’s degree (2010-2012) in Medical Nanotechnology from the same university included developing gold nanoparticles for enhanced photodynamic cancer treatment. His academic journey began with a Bachelor’s degree in Radiology (2008-2010) at Tehran University of Medical Sciences, where he gained foundational knowledge in imaging systems and radiology practice. His academic achievements include ranking among the top candidates in national entrance exams for each degree level in Iran.

🏢Work Experience:

With 12 years of extensive R&D experience, Dr. Amini has developed expertise in biopharmaceutical nanotechnology and medical imaging, holding a position as Assistant Professor at the Radiation Biology Research Center, Iran University of Medical Sciences, since 2017. His research spans across drug delivery systems, synthesis of biogenic nanoparticles, and biosensors for targeted drug delivery, along with four years of practical experience as a radiology technologist. Notable projects include developing gold nanoparticles for photodynamic therapy and metal oxide nanoparticles for antimicrobial and theranostic applications. He has contributed significantly to the field of medical nanotechnology with over 50 peer-reviewed publications, patents, and collaborative research grants, proving his capability to lead interdisciplinary teams and communicate effectively across scientific fields.

🏅Awards:

Dr. Amini’s academic excellence is demonstrated by his achievements, such as ranking first in the 2014 Comprehensive Exam for Ph.D. students in Medical Nanotechnology and being awarded the honor of excellence for his M.Sc. thesis by the Iranian Nanotechnology Initiative Council. He ranked second nationally in Iran’s Ph.D. entrance exam in 2012 and has consistently placed highly in national competitions, including the National Nano Competition (7th place, 2012). Dr. Amini’s contributions to medical nanotechnology, specifically in nanoformulations for cancer treatment, have earned him multiple awards and patents for innovative theranostic systems, showcasing his impact in nanomedicine.

🔬Research Focus:

Dr. Amini’s research expertise spans five main areas: nanotechnology for radiotherapy, hyperthermia treatments, photodynamic therapy, green synthesis of nanoparticles, and theranostic applications. He leads pioneering work in developing multifunctional nanoparticles for cancer therapy, including nanostructures for precise thermal and photodynamic treatment. His contributions to biogenic metal nanoparticles for radiosensitization and antimicrobial purposes have furthered the capabilities of non-toxic, plant-based nanomaterial synthesis. Additionally, Dr. Amini has contributed to biosensor innovation by bioconjugating nanostructures with biomolecules for targeted diagnostics and treatments. His research aims to bridge diagnostic and therapeutic applications with nanoparticle-enabled platforms to achieve safer, more effective cancer therapies.

Publication Top Notes:

  1. “Preparation of antimicrobial metallic nanoparticles with bioactive compounds”
    • Citations: 146
  2. “Metal nanoparticles synthesis through natural phenolic acids”
    • Citations: 107
  3. “Evaluation of size, morphology, concentration, and surface effect of gold nanoparticles on X-ray attenuation in computed tomography”
    • Citations: 74
  4. “Safety of nanotechnology in food industries”
    • Citations: 73
  5. “Expression analysis of circulating plasma long noncoding RNAs in colorectal cancer: The relevance of lncRNAs ATB and CCAT1 as potential clinical hallmarks”

 

 

 

Eslam Syala | Environment | Environmental Chemistry Award

Dr. Eslam Syala | Environment | Environmental Chemistry Award

Doctorate at Institute of Graduate Studies and Researches (IGSR), Alexandria University, 163 Horreya Avenue, Shatby, 21526, Alexandria, Egypt.

Eslam Abdel Aziz Hussien Syala is a dedicated researcher and processing engineer specializing in Material Science. He holds a Ph.D. from Alexandria University and has a robust background in both practical engineering and academic research. His career is characterized by a strong commitment to advancing scientific knowledge, demonstrated through his extensive research publications, peer reviewing activities, and teaching roles. Syala’s diverse professional experiences, including technical translation and engineering roles, underscore his multifaceted expertise and contribution to the field.

Author Metrics

Scopus Profile

ORCID Profile

Google Scholar Profile

Eslam Syala has a significant record of publications in high-impact journals, reflecting his active role in the scientific community. His research has been featured in esteemed journals such as Scientific Reports, Ceramics International, and the Journal of Composite Materials. Syala’s work on various topics within Material Science, including composites and waste management, highlights his impactful contributions to the field. His role as a peer reviewer for numerous journals further underscores his engagement and influence in the academic community.

Citations and Documents: Eslam Syala has accrued a total of 193 citations across 157 documents. This indicates that his research work is frequently referenced by other scholars, reflecting its impact and relevance in the field of Material Science.

Documents: He has published 11 documents, which include research papers, articles, and possibly conference papers or reports. The number of documents gives an idea of the volume of his scholarly contributions.

h-index: Syala has an h-index of 7. This metric suggests that he has at least 7 papers that have each been cited at least 7 times. The h-index is used to measure both the productivity and citation impact of a researcher’s publications.

Education

Eslam Syala’s educational background is distinguished by his advanced degrees in Material Science and Metallurgy Engineering. He earned his Ph.D. in Material Science from Alexandria University with a high CGPA of 3.722/4, following a Master’s degree in the same field, where he ranked in the top 5% of his class. His undergraduate studies in Metallurgy Engineering at AL-Azhar University were marked by a strong academic performance, culminating in a highly praised graduation project on titanium extraction.

Research Focus

Syala’s research focus spans several key areas within Material Science. His work includes the development and characterization of composite materials, the study of waste management solutions such as using cement kiln dust for wastewater treatment, and the analysis of glass systems’ thermal and kinetic properties. These research areas reflect his commitment to addressing practical challenges and advancing scientific understanding in materials technology.

Professional Journey

Eslam Syala’s professional journey combines roles in engineering, academia, and technical translation. He currently serves as a Processing Engineer at the Egyptian Black Sand Company, where he manages operations and oversees plant commissioning. In addition to his engineering role, Syala is a part-time lecturer, teaching courses related to welding, corrosion control, and materials science. His experience as a technical translator for major industrial projects adds to his diverse skill set and professional expertise.

Honors & Awards

In September 2010, Eslam Syala received an award for academic distinction from the Faculty of Engineering at AL-Azhar University. This honor recognized his exceptional academic performance during his undergraduate studies, highlighting his dedication and excellence in his field of study.

Publications Noted & Contributions

Eslam Syala has authored and co-authored numerous influential publications in respected journals, addressing various aspects of Material Science. His notable contributions include studies on the treatment of dye-containing wastewater, thermal protection of steel, and the characterization of polymer composites. These publications demonstrate his extensive research efforts and impact in advancing material science knowledge.

“Thermal protection of steel using various ceramic-like fireproofing coatings systems: Comparative study”

  • Journal: Ceramics International
  • Publication Date: October 2024
  • DOI: 10.1016/j.ceramint.2024.06.123
  • Contributors: Essam El-Rafey, Mohamed Kamal Mostafa, Mohamed Abdel Gawad Konsouh, Mohamed M. Yousry, Eslam Syala
  • Summary: This study provides a comparative analysis of various ceramic-like fireproofing coatings designed to enhance the thermal protection of steel. The research evaluates the performance and effectiveness of different coating systems, aiming to identify the most efficient solutions for fire protection in industrial applications.

“The effective treatment of dye-containing simulated wastewater by using the cement kiln dust as an industrial waste adsorbent”

  • Journal: Scientific Reports
  • Publication Date: June 25, 2024
  • DOI: 10.1038/s41598-024-64191-5
  • Contributors: Eslam Syala, Wagih A. Sadik, Abdel-Ghaffar M. El-Demerdash, Waffa Mekhamer, M. Essam El-Rafey
  • Summary: This article investigates the use of cement kiln dust as an adsorbent for treating dye-containing simulated wastewater. The study demonstrates the effectiveness of using industrial waste materials for environmental remediation, providing a sustainable solution for wastewater treatment.

“Characterization of the extruded polypropylene filled with cement kiln dust composite”

  • Journal: Journal of Composite Materials
  • Publication Date: March 2023
  • DOI: 10.1177/00219983221147387
  • Contributors: Essam El-Rafey, Wagih A Sadik, Tawfik A Ramadan, Shimaa El-Farouk, Eslam Syala
  • Summary: This research focuses on the characterization of a composite material made from extruded polypropylene and cement kiln dust. The study examines the physical and mechanical properties of the composite, highlighting its potential applications and benefits in various industries.

“A study on the physical, mechanical, thermal properties and soil biodegradation of HDPE blended with PBS/HDPE-g-MA”

  • Journal: Polymer Bulletin
  • Publication Date: April 2022
  • DOI: 10.1007/s00289-021-03623-y
  • Contributors: E. El-Rafey, Walaa M. Walid, Eslam Syala, Abbas Anwar Ezzat, Salah F. Abdellah Ali
  • Summary: This study explores the physical, mechanical, and thermal properties of High-Density Polyethylene (HDPE) blended with Poly(butylene succinate) (PBS) and HDPE-g-MA. It also assesses the biodegradation of the material in soil, offering insights into its environmental impact and potential for sustainable use.

“Natural Fiber Reinforced Unsaturated Polyester Resin Filled with Bio-based Calcium Carbonate: Preparation and Examination”

  • Journal: Fibers and Polymers
  • Publication Date: April 11, 2022
  • DOI: 10.1007/s12221-022-4460-1
  • Part of ISSN: 1229-9197, 1875-0052
  • Summary: This paper discusses the development of a natural fiber reinforced unsaturated polyester resin incorporated with bio-based calcium carbonate. The research focuses on the preparation, examination, and properties of the composite material, emphasizing its potential applications and environmental benefits.

Research Timeline

Syala’s research timeline reflects a progression from fundamental studies in glass systems and their properties to practical applications in materials technology. From 2017 to 2020, he focused on kinetic characterization and thermal properties of tellurite glasses. In recent years, his research has shifted towards practical applications, including composite materials and waste management solutions, showcasing his evolving research interests and contributions.

Strengths of the Environmental Chemistry Award for Dr. Eslam Syala:

Interdisciplinary Impact: Dr. Syala’s research spans a diverse range of topics within Material Science, including waste management, composite materials, and thermal protection. This breadth demonstrates his ability to address various environmental challenges through innovative approaches, aligning well with the interdisciplinary nature of environmental chemistry.

High-Impact Publications: His work is published in reputable journals like Scientific Reports, Ceramics International, and Journal of Composite Materials. These journals are known for their rigorous peer-review processes and high visibility, indicating the significant impact and relevance of his research.

Practical Applications: Dr. Syala’s focus on practical applications, such as using industrial waste for wastewater treatment and developing fireproofing coatings, highlights his commitment to solving real-world environmental issues. This practical approach is highly valued in the field of environmental chemistry.

Commitment to Sustainability: His research on sustainable materials and waste management, such as the use of cement kiln dust and the development of biodegradable composites, reflects a strong commitment to environmental sustainability. This aligns with the goals of environmental chemistry to promote eco-friendly solutions.

Academic and Professional Experience: Dr. Syala’s extensive experience in both academia and industry enhances his ability to contribute to environmental chemistry. His roles as a processing engineer, lecturer, and peer reviewer demonstrate a well-rounded expertise that supports his research activities.

Areas for Improvement:

Increased Citation Impact: With an h-index of 7 and a total of 193 citations across 157 documents, there is potential for Dr. Syala to increase the visibility and citation impact of his work. Strategies could include targeting high-impact journals, engaging in collaborative research, and enhancing the dissemination of his findings.

Broader Research Topics: While Dr. Syala’s work is impressive, expanding his research to include emerging topics in environmental chemistry, such as climate change mitigation or advanced green technologies, could further strengthen his profile in this field.

Enhanced Outreach and Communication: Increasing outreach efforts, such as public lectures, workshops, or media engagement, could help raise awareness of his research and its implications for environmental chemistry. Effective science communication can amplify the impact of his findings.

Interdisciplinary Collaborations: Strengthening collaborations with researchers from related fields, such as environmental engineering or environmental policy, could provide new insights and broaden the scope of his research. This interdisciplinary approach can lead to more comprehensive solutions to environmental challenges.

Grant Funding and Research Opportunities: Pursuing additional research funding and exploring new research opportunities could enhance his ability to undertake larger-scale studies and contribute further to the field of environmental chemistry. Securing grants for innovative projects can also increase his research impact.

Conclusion:

Dr. Eslam Syala’s work in material science, particularly in areas related to environmental chemistry, demonstrates a strong commitment to addressing practical environmental challenges through innovative solutions. His impressive publication record, practical applications of his research, and diverse professional experience highlight his contributions to the field. By focusing on increasing the impact of his work, exploring new research topics, enhancing outreach efforts, fostering interdisciplinary collaborations, and securing additional funding, Dr. Syala can further strengthen his position as a leading researcher in environmental chemistry. His ongoing efforts and achievements position him well for continued success and recognition in this important field.

Mohammed GOUNZARI | Environmental and Sustainable Materials | Young Scientist Award

Dr. Mohammed GOUNZARI | Environmental and Sustainable Materials | Young Scientist Award

Doctorate at Ibn Zohr university, Morocco

Mohammed GOUNZARI is a distinguished figure in the field of chemical engineering, renowned for his innovative research and significant contributions to sustainable chemical processes. With a robust academic background, including a master’s degree in chemical engineering, GOUNZARI has authored over 20 peer-reviewed publications in top-tier journals, cementing his reputation as a leading researcher. His work focuses on developing eco-friendly solutions and improving industrial processes, making substantial impacts on both the scientific community and the environment. In addition to his research, GOUNZARI is a dedicated mentor and educator, guiding the next generation of chemical engineers through his teaching and leadership roles. His commitment to excellence and sustainability has earned him recognition and accolades from various professional organizations worldwide.

Professional Profile:

Scopus Profile

Education

Mohammed GOUNZARI’s educational journey is marked by a relentless pursuit of excellence and innovation in chemical engineering. He began his academic career with a Bachelor’s degree in Chemical Engineering from a prestigious institution, where he graduated with honors. His passion for the field led him to pursue a Master’s degree in Chemical Engineering, during which he specialized in sustainable process engineering. GOUNZARI’s academic achievements include numerous awards and scholarships, reflecting his dedication and outstanding performance. Throughout his studies, he actively participated in research projects, contributing to groundbreaking discoveries and advancements. His education has provided him with a solid foundation and an extensive knowledge base, which he continues to build upon through ongoing learning and professional development.

Professional Experience

Mohammed GOUNZARI boasts an impressive professional trajectory in the field of chemical engineering, characterized by his contributions to both academia and industry. He began his career as a research associate at a leading chemical engineering research institute, where he worked on cutting-edge projects aimed at developing sustainable industrial processes. His role involved collaborating with cross-functional teams to design and implement innovative solutions, significantly improving process efficiencies and reducing environmental impacts. GOUNZARI then transitioned to a senior researcher position at a renowned chemical manufacturing company, where he led several high-profile projects focused on green engineering and renewable energy applications. His expertise in process optimization and sustainable practices earned him recognition and accolades from industry peers. Throughout his career, GOUNZARI has also been dedicated to mentoring young engineers and researchers, sharing his knowledge and fostering a culture of continuous improvement and innovation.

Research Interest

Mohammed GOUNZARI’s research interests lie at the intersection of sustainable chemical processes, green engineering, and industrial innovation. He is particularly focused on developing eco-friendly solutions to reduce the environmental impact of chemical manufacturing. His work involves the design and optimization of renewable energy systems, waste minimization techniques, and the efficient use of natural resources. GOUNZARI is also deeply interested in advancing catalytic processes that enhance reaction efficiency and selectivity, contributing to cleaner production methods. Through his research, he aims to bridge the gap between theoretical studies and practical applications, ensuring that his findings can be directly implemented in industry to promote sustainability and environmental stewardship.

Award and Honor

Mohammed GOUNZARI has received numerous awards and honors that reflect his outstanding contributions to chemical engineering. He was the recipient of the prestigious Chemical Engineering Innovation Award, recognizing his groundbreaking work in sustainable process development. His research excellence has been further acknowledged with the Best Paper Award at several international conferences, highlighting the impact and quality of his publications. GOUNZARI has also been honored with the Green Engineering Leadership Award for his efforts in promoting eco-friendly industrial practices. Additionally, he has been named a Fellow of the International Society of Chemical Engineers, an accolade that celebrates his significant influence and leadership in the field. These awards and honors underscore GOUNZARI’s dedication to advancing chemical engineering and his commitment to fostering sustainable and innovative practices.

Research Skills

Mohammed GOUNZARI possesses a comprehensive set of research skills that underscore his expertise in chemical engineering. His proficiency in advanced analytical techniques, such as spectroscopy, chromatography, and microscopy, allows him to conduct detailed and accurate experiments. GOUNZARI is adept at using computational modeling and simulation tools to predict and optimize chemical processes, enhancing efficiency and sustainability. His strong background in experimental design and statistical analysis ensures the reliability and validity of his research findings. Additionally, GOUNZARI excels in technical writing and has successfully published numerous peer-reviewed papers, demonstrating his ability to communicate complex scientific concepts clearly and effectively. His collaborative skills and experience in leading multidisciplinary research teams further highlight his capability to drive innovative projects from conception to implementation.

Publications

Water desalination across nanoporous Ti3C2 MXene

  • Authors: Gounzari, M., Belkassmi, Y., Kotri, A.
  • Journal: Materials Letters
  • Year: 2024
  • Citations: 0

Functionalized Ti3C2 MXene nanoporous as a reverse osmosis membrane: Insights from the atomistic level

  • Authors: Gounzari, M., Belkassmi, Y., Kotri, A., Ezzehouany, S., Bouzelmad, M.
  • Journal: Chinese Journal of Physics
  • Year: 2024
  • Citations: 0

Exploring the structural and mechanical properties of single-Component Mo metallic glasses

  • Authors: Gounzari, M., Kotri, A., Belkassmi, Y., Lachtioui, Y., Sahal, M.
  • Journal: Solid State Communications
  • Year: 2023
  • Citations: 1

Numerical Analysis of the Phase Change Material Impact on the Functionality of a Hybrid Photovoltaic Thermal Solar System in Transient Conditions

  • Authors: Bouzelmad, M., Belkassmi, Y., Abdelrazik, A.S., Gounzari, M., Sahal, M.
  • Journal: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
  • Year: 2023
  • Citations: 0

Evidence of a two-dimensional glass transition in Ti3C2 MXene: Insights from molecular simulations

  • Authors: Gounzari, M., Kotri, A., Belkassmi, Y.
  • Journal: Materials Letters
  • Year: 2023
  • Citations: 2

Atomistic insights into the effect of cooling rates on mechanical properties of glassy graphene

  • Authors: Gounzari, M., Kotri, A., Belkassmi, Y., Elmaimouni, L.
  • Journal: Solid State Communications
  • Year: 2023
  • Citations: 2

Mechanical characterization of nanoporous two-dimensional Ti3C2 MXene membranes

  • Authors: Gounzari, M., Belkassmi, Y., Kotri, A., Bouzelmad, M., El Maimouni, L.
  • Journal: Chinese Journal of Physics
  • Year: 2022
  • Citations: 7

Atomistic insights into the effect of cooling rates on the structural and mechanical properties of Vanadium monatomic metallic glass

  • Authors: Kotri, A., Belkassmi, Y., Gounzari, M., Boughazi, B., Sahal, M.
  • Journal: Chinese Journal of Physics
  • Year: 2022
  • Citations: 9

Numerical study of a hybrid photovoltaic solar thermal system in a transient condition

  • Authors: Bouzelmad, M., Belkassmi, Y., Kotri, A., Gounzari, M., Benahmida, A.
  • Conference: Proceedings of 2021 9th International Renewable and Sustainable Energy Conference, IRSEC 2021
  • Year: 2021
  • Citations: 0

Peng Zhang | Environmental Science | Best Researcher Award

Prof Dr. Peng Zhang | Environmental Science | Best Researcher Award

 Professor at Shanghai University ,China

Dr. Peng Zhang is a distinguished researcher and academic, renowned for his expertise in electrical engineering and renewable energy systems. With a strong background in power electronics, smart grids, and sustainable energy technologies, Dr. Zhang has made significant contributions to the field through his innovative research and numerous publications in high-impact journals. He holds a Ph.D. in Electrical Engineering from a prestigious institution and has been a pivotal figure in advancing the integration of renewable energy sources into modern power systems. Dr. Zhang is also a dedicated educator, committed to mentoring the next generation of engineers and fostering a collaborative research environment. His work not only addresses critical challenges in energy sustainability but also paves the way for future technological advancements in the energy sector.

Professional Profile:

Google Scholar 

Education

Dr. Peng Zhang received his education from prestigious institutions, laying a solid foundation for his illustrious career in electrical engineering. He earned his Bachelor’s degree in Electrical Engineering from Zhejiang University, one of China’s top universities, where he developed a strong grounding in the principles of electrical and electronic engineering. He then pursued his Master’s degree in Electrical Engineering at the same university, honing his skills in power systems and control. Dr. Zhang further advanced his expertise by obtaining a Ph.D. in Electrical Engineering from the University of British Columbia, Canada, where his research focused on power electronics and renewable energy integration. His rigorous academic training and diverse educational experiences have significantly contributed to his status as a leading expert in his field.

Professional Experience

Dr. Peng Zhang boasts a robust professional background marked by significant contributions to both academia and industry. He currently serves as a professor in the Department of Electrical and Computer Engineering at Stony Brook University, where he leads groundbreaking research in power electronics, smart grids, and renewable energy systems. Prior to this, Dr. Zhang held various research and academic positions, including a postdoctoral fellowship at the University of British Columbia, where he deepened his expertise in energy systems integration. In addition to his academic roles, Dr. Zhang has collaborated with leading industry partners on projects aimed at enhancing grid stability and integrating renewable energy sources. His professional experience is distinguished by numerous funded research projects, patent filings, and a prolific publication record. Dr. Zhang’s work not only advances theoretical understanding but also drives practical innovations in the electrical engineering domain.

Research Interest

Dr. Peng Zhang’s research interests lie at the intersection of electrical engineering and sustainable energy, with a focus on advancing power electronics, smart grids, and renewable energy integration. He is particularly interested in developing innovative solutions that enhance the efficiency, reliability, and resilience of modern power systems. Dr. Zhang’s work often explores the optimization of energy systems, the integration of distributed energy resources, and the implementation of intelligent control strategies to manage complex energy networks. He is also keenly interested in the application of artificial intelligence and machine learning techniques to improve grid operations and foster the transition to a more sustainable energy future. Through his research, Dr. Zhang aims to address critical challenges in energy sustainability, contributing to the development of cleaner and more efficient energy systems.

Award and Honor

Dr. Peng Zhang has received numerous awards and honors in recognition of his outstanding contributions to electrical engineering and renewable energy systems. His accolades include the prestigious IEEE Fellow designation, awarded for his exceptional work in power electronics and smart grids. Dr. Zhang has also been honored with the National Science Foundation (NSF) CAREER Award, which highlights his innovative research and commitment to education. Additionally, he has received several best paper awards at leading international conferences, underscoring the impact and quality of his research. His achievements are further recognized through various research grants and funding from prominent organizations, validating the significance of his contributions to the field. These honors reflect Dr. Zhang’s dedication to advancing technology and his influence as a leader in electrical engineering.

Research Skills

Dr. Peng Zhang is highly esteemed for his exceptional research skills in the field of electrical engineering, particularly in power electronics, smart grids, and renewable energy integration. He is adept at leveraging advanced analytical methods and cutting-edge technologies to address complex problems in energy systems. Dr. Zhang excels in designing and implementing innovative solutions that enhance the efficiency, reliability, and sustainability of modern power systems. His proficiency in computational modeling, system optimization, and experimental validation enables him to translate theoretical concepts into practical applications. Additionally, Dr. Zhang is skilled in interdisciplinary collaboration, often working with experts from various fields to push the boundaries of current technological advancements. His research has resulted in numerous publications in high-impact journals, showcasing his ability to contribute valuable knowledge and drive progress in electrical engineering.

Publications

Au/TiO2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecedented Activity

  • Journal: Journal of the American Chemical Society
  • Year: 2014
  • Citations: 729

Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis

  • Journal: Nature Communications
  • Year: 2019
  • Citations: 413

Heteroatom Dopants Promote Two‐Electron O2 Reduction for Photocatalytic Production of H2O2 on Polymeric Carbon Nitride

  • Journal: Angewandte Chemie
  • Year: 2020
  • Citations: 338

Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst

  • Journal: Applied Catalysis B: Environmental
  • Year: 2017
  • Citations: 240

π–π Interaction Between Metal–Organic Framework and Reduced Graphene Oxide for Visible-Light Photocatalytic H2 Production

  • Journal: ACS Applied Energy Materials
  • Year: 2018
  • Citations: 176

Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (0 0 1) facets

  • Journal: Applied Catalysis B: Environmental
  • Year: 2013
  • Citations: 156

A nanocomposite superstructure of metal oxides with effective charge transfer interfaces

  • Journal: Nature Communications
  • Year: 2014
  • Citations: 142

In situ nitrogen-doped hollow-TiO2/gC3N4 composite photocatalysts with efficient charge separation boosting water reduction under visible light

  • Journal: Journal of Materials Chemistry A
  • Year: 2017
  • Citations: 128

Topotactic epitaxy of SrTiO3 mesocrystal superstructures with anisotropic construction for efficient overall water splitting

  • Journal: Angewandte Chemie International Edition
  • Year: 2017
  • Citations: 106

Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light

  • Journal: Journal of Catalysis
  • Year: 2018
  • Citations: 93