Dr. Debjyoti Majumder | Environmental Chemistry | Best Researcher Award

Dr. Debjyoti Majumder | Environmental Chemistry | Best Researcher Award

Dr. Debjyoti Majumder , Environmental Chemistry , Clover Organic Pvt. Ltd, India

Dr. Debjyoti Majumder (Ph.D., NET-ICAR) is an agricultural scientist with a specialization in agrometeorology, climate-resilient agriculture, and crop modeling. He has built a distinguished career addressing climate change impacts on crop systems, particularly focusing on rice and maize in eastern India. With a robust academic background from Bidhan Chandra Krishi Viswavidyalaya (BCKV) and Punjab Agricultural University (PAU), he combines theoretical insights with practical field applications. Currently serving as Subject Matter Expert at Clover Organic Pvt. Ltd. in Shillong, Meghalaya, he actively contributes to organic agriculture initiatives, project management, FPO support, and climate adaptation strategies. Previously, he worked as a Scientist (Agrometeorology) at Malda Krishi Vigyan Kendra and as a Technical Officer under the Ministry of Earth Sciences. Dr. Majumder has earned national recognition for his research and has contributed to over 30 scholarly publications. He is passionate about sustainable development, weather-based agroadvisory systems, and integrating ICT tools for farmer-centric innovation.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Majumder has an impressive educational background with a Ph.D. in Agriculture, specializing in climate change impacts on crop productivity and resilience. He has received several prestigious scholarships, including a Junior Research Fellowship from the Indian Council of Agricultural Research (ICAR). His research focus on agrometeorology, weather-based advisory services, climate change impact, and sustainable agriculture is of significant importance in the current global context of climate change. His ability to integrate weather forecasting and crop management practices to help farmers is a testament to his impactful and practical research. His Google Scholar citations (266) and H-index (8) further emphasize the significance of his contributions. Dr. Debjyoti Majumder is a highly suitable candidate for the “Best Researcher Awards”. His academic achievements, innovative and impactful research in agrometeorology and sustainable agriculture, leadership roles, and widespread recognition by peers and academic institutions clearly demonstrate his excellence as a researcher. His work contributes significantly to climate change mitigation and agricultural sustainability, making him a key figure in his field.

🎓Education:

Dr. Majumder completed his B.Sc. in Agriculture from Bidhan Chandra Krishi Viswavidyalaya (BCKV), West Bengal, with specialization in natural resource management and rural work training. He pursued his M.Sc. in Agrometeorology from Punjab Agricultural University (PAU), where his research focused on assessing the impact of climate change on maize yield and water productivity through microclimate modification. He later earned his Ph.D. in Agrometeorology from BCKV, submitting a thesis on modeling rice productivity under future climate scenarios using the ORYZA2000 model. His academic excellence was consistently recognized through university merit scholarships, ICAR JRF (All India Rank 44), and department topper awards. In addition to formal degrees, he undertook short-term certifications in R programming, AI tools, and renewable energy in agriculture. He also participated in a summer training program at Tel Aviv University, Israel, adding international exposure to his academic journey. His education has provided a solid foundation in research, extension, and policy relevance.

🏢Work Experience:

Dr. Majumder is currently serving as a Subject Matter Expert at Clover Organic Pvt. Ltd., Shillong, where he is involved in implementing climate-resilient agricultural practices, promoting organic certification, and managing development projects for farmer producer organizations (FPOs). Prior to this, he worked as SMS (Agrometeorology) at Malda Krishi Vigyan Kendra under UBKV, West Bengal, where he was responsible for disseminating agromet advisories, conducting farmer trainings, preparing weather forecasts, and managing drought/pest alerts. He also served as a Technical Officer at Bihar Agricultural University under the Ministry of Earth Sciences, where he contributed to the Gramin Krishi Mausam Sewa project by working on weather forecasting and agro-climatic research. Across these roles, he has integrated decision support tools, crop models, and ICT platforms for data-driven agricultural planning. His work spans from field-level interventions to strategic planning for climate adaptation and digital agriculture, making him a versatile contributor to sustainable rural development.

🏅Awards: 

Dr. Majumder has received multiple accolades in recognition of his research and extension contributions. He was honored with the Young Scientist Award by the Institute of Scholars (INSc), Bengaluru, and the Best KVK Scientist Award by Vigyan Varta, Bhubaneswar. He also received the Young Scientist Award in Agrometeorology from UBKV and was recognized for Best Oral Presentations at national symposia hosted by TNAU and UBKV. His poster on climate-resilient agriculture earned the 2nd Best Poster Award at an international seminar hosted by the Society for Fertilizer and Environment. Additionally, he won the Paper of Excellence Award from ICAR-CRIDA and the Indian Society of Agrophysics. His academic achievements include being a university merit scholar, department topper, and ICAR JRF recipient. With over 260 citations and an H-index of 8, Dr. Majumder has demonstrated scholarly impact. He also received a DST-SERB travel grant to represent his work internationally, underlining the relevance of his research.

🔬Research Focus:

Dr. Majumder’s research centers on climate-resilient agriculture, crop modeling, and agrometeorological applications. His primary focus is on quantifying the impacts of climate variability on rice and maize productivity using advanced crop simulation models such as ORYZA2000, DSSAT, and INFOCROP. He explores climate risk management through microclimate modification, water-use efficiency, and sustainable input application. His research also integrates ICT tools, such as R, Weather Cock, Drinc, and QGIS, to develop decision support systems for farmers and policymakers. He is particularly interested in modeling future climate scenarios and designing location-specific adaptation strategies that are practical and scalable. In addition, he works on organic farming systems, watershed management, and participatory technology development. Dr. Majumder’s work bridges the gap between predictive modeling and grassroots implementation, enabling him to support climate-smart planning in vulnerable agro-ecological zones. His goal is to enhance agricultural resilience while promoting environmentally sustainable practices in India’s diverse farming landscapes.

Publication Top Notes:

1. Physiological and Molecular Mechanism of Insect Herbivory Tolerance in Plants: A Potential Tool for Resistance Breeding

2. Climate-Smart Technologies for Improving Sugarcane Sustainability in India – A Review

3. Mechanical Transplanting of Rice for Reducing Water, Energy, and Labor Footprints with Improved Rice Yields in the Tropics

 

Dr. Yan Xue | Environmental Chemistry | Sustainable Chemistry Award

Dr. Yan Xue | Environmental Chemistry | Sustainable Chemistry Award

Dr. Yan Xue , Nanjing Agricultural University , China

Dr. Yan Xue is a researcher at Nanjing Agricultural University, specializing in environmental nanomaterials. His research focuses on the high-value utilization of green composite nanomaterials derived from modified graphene/graphene-like biochar-based materials. Dr. Xue explores real-time environmental monitoring, remediation of complex environmental conditions, and the development of energy storage devices such as supercapacitors and ionic batteries. His work aligns with global sustainability goals, emphasizing waste-to-waste treatment strategies and eco-friendly material applications. He has contributed significantly to the fields of electrocatalysis, intelligent energy management, and lignocellulose conversion, publishing multiple high-impact research papers.

Professional Profile : 

Orcid

Summary of Suitability for Award:

Dr. Yan Xue is an exceptional candidate for the “Sustainable Chemistry Award” due to his pioneering research in environmental nanomaterials and green chemistry applications. His work focuses on the high-value utilization of biomass-derived functional materials, aligning perfectly with the principles of sustainability, circular economy, and green chemistry. He has contributed significantly to waste-to-waste treatment strategies, converting agricultural and industrial biomass into high-performance materials for environmental remediation, electrochemical sensing, and energy storage applications. His research also supports carbon neutrality and sustainable energy solutions, making a strong impact on global environmental goals. Dr. Yan Xue’s contributions to sustainable chemistry, nanotechnology, and green energy solutions demonstrate scientific excellence and real-world impact. His research addresses critical environmental challenges through eco-friendly material synthesis, pollutant remediation, and sustainable energy storage. Given his innovative approach, interdisciplinary expertise, and commitment to green chemistry, he is a highly suitable candidate for the “Sustainable Chemistry Award”.

🎓Education:

Dr. Yan Xue pursued his academic journey with a strong focus on environmental sciences and materials chemistry. He obtained his doctoral degree from Nanjing Agricultural University, where he specialized in graphene-based biochar nanomaterials. His education was rooted in green chemistry, electrochemical energy storage, and sustainable material applications. His thesis emphasized the modification of biochar-derived nanomaterials for enhanced environmental performance and energy conversion efficiency. With a deep interest in sustainable chemistry and intelligent energy systems, Dr. Xue’s academic training laid a solid foundation for his ongoing research in eco-friendly functional materials.

🏢Work Experience:

Dr. Yan Xue has extensive research experience in high-value biomass utilization, electrocatalysis, and green energy applications. His expertise includes preparing and functionalizing graphene-based nanomaterials for energy storage and environmental monitoring. He has worked on tunable biochar modifications for real-time sensing and remediation of pollutants. Additionally, Dr. Xue has contributed to the development of bio-based energy devices, including supercapacitors and ionic batteries. His interdisciplinary approach integrates materials chemistry, nanotechnology, and environmental sciences to develop innovative solutions for sustainable energy and pollution control.

🏅Awards: 

Dr. Yan Xue has been recognized for his contributions to green materials research and environmental nanotechnology. His work in waste-derived nanomaterials has received accolades in academic and industrial settings. He has been cited in high-impact journals, reflecting his significant contributions to sustainable chemistry and advanced materials. His research in biochar-based nanomaterials has positioned him among emerging leaders in eco-friendly energy storage solutions.

🔬Research Focus:

Dr. Yan Xue’s research primarily focuses on environmental nanomaterials, emphasizing the high-value utilization of biomass-derived functional materials for sustainable applications. His work explores the synthesis, modification, and application of graphene/graphene-like biochar-based nanomaterials to address critical environmental challenges. He specializes in the development of advanced electrochemical sensors, pollutant remediation systems, and green energy storage solutions, integrating principles of electrocatalysis, intelligent energy management, and nanotechnology. Dr. Xue is particularly interested in waste-to-waste treatment strategies, converting agricultural and industrial biomass into high-performance nanomaterials for supercapacitors, ionic batteries, and pollutant detection systems. His research also extends to functional nanocomposites, such as metallic-like boron-doped biochar, porphyrin-modified nanocatalysts, and hybrid carbon nanostructures, for enhanced electrocatalytic performance and environmental sensing. By merging materials chemistry, environmental science, and nanotechnology, Dr. Xue contributes to the development of eco-friendly, cost-effective, and scalable solutions for sustainable energy and pollution control.

Publication Top Notes:

Enhancing capacitive performance through solvent-coupled two-step carbonization of cotton stalk biochar with tunable melamine doping: Deciphering the redox activity of pyrrolic nitrogen

Authors: Yan Xue, [Additional authors not specified]

Journal: International Journal of Hydrogen Energy

Publication Date: March 2025

DOI: 10.1016/j.ijhydene.2025.02.057

New insights into temperature-induced mechanisms of copper adsorption enhancement on hydroxyapatite-in situ self-doped fluffy bread-like biochar

Authors: Yan Xue, [Additional authors not specified]

Journal: Chemical Engineering Journal

Publication Date: January 2024

DOI: 10.1016/j.cej.2023.147657

Efficiently catalytic degradation of tetracycline via persulfate activation with plant-based biochars: Insight into endogenous mineral self-template effect and pyrolysis catalysis

Authors: Yan Xue, [Additional authors not specified]

Journal: Chemosphere

Publication Date: October 2023

DOI: 10.1016/j.chemosphere.2023.139309

Metallic-like boron-modified bio-carbon electrodes for simultaneous electroanalysis for Cd²⁺, Pb²⁺ and Cu²⁺: Theoretical insight into the role of CxBOy(H)

Authors: Yan Xue, [Additional authors not specified]

Journal: Carbon

Publication Date: October 2023

DOI: 10.1016/j.carbon.2023.118350

Highly selective colorimetric platinum nanoparticle-modified core-shell molybdenum disulfide/silica platform for selectively detecting hydroquinone

Authors: Yan Xue, [Additional authors not specified]

Journal: Advanced Composites and Hybrid Materials

Publication Date: August 2023

DOI: 10.1007/s42114-023-00719-z

Pt deposited on sea urchin-like CuCo₂O₄ nanowires: Preparation, the excellent peroxidase-like activity and the colorimetric detection of sulfide ions

Authors: Yan Xue, [Additional authors not specified]

Journal: Journal of Environmental Chemical Engineering

Publication Date: April 2022

DOI: 10.1016/j.jece.2022.107228

Porphyrin-Modified NiS₂ Nanoparticles Anchored on Graphene for the Specific Determination of Cholesterol

Authors: Yan Xue, [Additional authors not specified]

Journal: ACS Applied Nano Materials

Publication Date: November 26, 2021

DOI: 10.1021/acsanm.1c02318

V₂O₅-montmorillonite nanocomposites of peroxidase-like activity and their application in the detection of H₂O₂ and glutathione

Authors: Yan Xue, [Additional authors not specified]

Journal: Applied Clay Science

Publication Date: September 2020

DOI: 10.1016/j.clay.2020.105718

 

 

 

 

Dr. Seyed Mohammad Amini | Green Chemistry Award | Best Researcher Award

Dr. Seyed Mohammad Amini | Green Chemistry Award | Best Researcher Award

Dr. Seyed Mohammad Amini | Iran University of Medical Sciences | Iran

Seyed Mohammad Amini, Ph.D., is a dedicated scientist and Assistant Professor at the Radiation Biology Research Center, Iran University of Medical Sciences, specializing in medical nanotechnology. Born on February 1, 1986, he has over a decade of experience in research and development, particularly in biopharmaceuticals, nanotechnology for drug delivery, and imaging. His work has led to innovations in nanoparticle-based formulations for cancer diagnostics and therapy, including pioneering techniques in hyperthermia and photodynamic therapy. Dr. Amini’s contributions extend to clinical radiology with hands-on expertise in CT and MRI systems. He is fluent in Persian, Kurdish, and English and actively contributes to interdisciplinary projects involving teams of scientists worldwide.

Professional Profile:

Google Scholar

Orcid

Scopus

Summary of Suitability for Award:

Dr. Seyed Mohammad Amini stands as a highly qualified candidate for the “Best Researcher Award” due to his extensive expertise and contributions across several interdisciplinary fields within nanomedicine and biomedical applications. With a Ph.D. and M.Sc. in Medical Nanotechnology from Tehran University of Medical Sciences, he has amassed over 12 years of research and development experience in biopharmaceutical drug development, drug delivery systems, and radiological technology. Dr. Amini’s unique cross-functional research has demonstrated excellence in both theoretical and applied sciences, especially in his innovative work on metal and metal oxide nanostructures, which are pivotal in radiation therapy, photodynamic therapy, and hyperthermia for cancer treatment.

🎓Education:

Dr. Amini completed his Ph.D. in Medical Nanotechnology from Tehran University of Medical Sciences (2012-2017), where he specialized in nanoliposomal formulations for controlled cancer drug delivery, supervised by distinguished professors such as Dr. Sharmin Kharrazi and Prof. Jaafari. His Master’s degree (2010-2012) in Medical Nanotechnology from the same university included developing gold nanoparticles for enhanced photodynamic cancer treatment. His academic journey began with a Bachelor’s degree in Radiology (2008-2010) at Tehran University of Medical Sciences, where he gained foundational knowledge in imaging systems and radiology practice. His academic achievements include ranking among the top candidates in national entrance exams for each degree level in Iran.

🏢Work Experience:

With 12 years of extensive R&D experience, Dr. Amini has developed expertise in biopharmaceutical nanotechnology and medical imaging, holding a position as Assistant Professor at the Radiation Biology Research Center, Iran University of Medical Sciences, since 2017. His research spans across drug delivery systems, synthesis of biogenic nanoparticles, and biosensors for targeted drug delivery, along with four years of practical experience as a radiology technologist. Notable projects include developing gold nanoparticles for photodynamic therapy and metal oxide nanoparticles for antimicrobial and theranostic applications. He has contributed significantly to the field of medical nanotechnology with over 50 peer-reviewed publications, patents, and collaborative research grants, proving his capability to lead interdisciplinary teams and communicate effectively across scientific fields.

🏅Awards:

Dr. Amini’s academic excellence is demonstrated by his achievements, such as ranking first in the 2014 Comprehensive Exam for Ph.D. students in Medical Nanotechnology and being awarded the honor of excellence for his M.Sc. thesis by the Iranian Nanotechnology Initiative Council. He ranked second nationally in Iran’s Ph.D. entrance exam in 2012 and has consistently placed highly in national competitions, including the National Nano Competition (7th place, 2012). Dr. Amini’s contributions to medical nanotechnology, specifically in nanoformulations for cancer treatment, have earned him multiple awards and patents for innovative theranostic systems, showcasing his impact in nanomedicine.

🔬Research Focus:

Dr. Amini’s research expertise spans five main areas: nanotechnology for radiotherapy, hyperthermia treatments, photodynamic therapy, green synthesis of nanoparticles, and theranostic applications. He leads pioneering work in developing multifunctional nanoparticles for cancer therapy, including nanostructures for precise thermal and photodynamic treatment. His contributions to biogenic metal nanoparticles for radiosensitization and antimicrobial purposes have furthered the capabilities of non-toxic, plant-based nanomaterial synthesis. Additionally, Dr. Amini has contributed to biosensor innovation by bioconjugating nanostructures with biomolecules for targeted diagnostics and treatments. His research aims to bridge diagnostic and therapeutic applications with nanoparticle-enabled platforms to achieve safer, more effective cancer therapies.

Publication Top Notes:

  1. “Preparation of antimicrobial metallic nanoparticles with bioactive compounds”
    • Citations: 146
  2. “Metal nanoparticles synthesis through natural phenolic acids”
    • Citations: 107
  3. “Evaluation of size, morphology, concentration, and surface effect of gold nanoparticles on X-ray attenuation in computed tomography”
    • Citations: 74
  4. “Safety of nanotechnology in food industries”
    • Citations: 73
  5. “Expression analysis of circulating plasma long noncoding RNAs in colorectal cancer: The relevance of lncRNAs ATB and CCAT1 as potential clinical hallmarks”

 

 

 

Mr. Anil kumar Gautam | Green Synthesis Award | Material Chemistry Award

Mr. Anil kumar Gautam | Green Synthesis Award | Material Chemistry Award

Mr. Anil kumar Gautam | Babasaheb Bhimrao Ambedkar University lucknow  |India

Dr. Anil K. Gautam, born in 1987, is a dynamic researcher specializing in nanochemistry, currently pursuing a Ph.D. at Babasaheb Bhimrao Ambedkar University, Lucknow. With a strong foundation in synthetic organic chemistry, he has pioneered innovative methodologies for green synthesis of nanoparticles. His research focuses on the anticancer and antibacterial properties of various nanocomposites derived from natural extracts. A committed lifelong learner, Dr. Gautam actively participates in national and international conferences, presenting his groundbreaking findings. Fluent in English and Hindi, he balances his professional endeavors with personal commitments, living in Lucknow with his family. His dedication to sustainable practices and innovative research reflects a deep commitment to advancing the field of chemistry.

Professional Profile:

Orcid 

Summary of Suitability for Award:

Mr. Anil kumar Gautam is highly suitable for the Material Chemistry Award due to their innovative approach to sustainable nanomaterial synthesis, strong technical expertise, and impactful research contributions. Their focus on environmentally friendly practices and their active engagement in the scientific community align well with the award’s objectives.

🎓Education:

Dr. Anil K. Gautam holds a Ph.D. in Chemistry from Babasaheb Bhimrao Ambedkar University, Lucknow, where he is focused on the “Green Synthesis of Nanomaterials and Evaluation of its Cytotoxicity.” His academic journey began with a Master’s in Chemistry from Dr. Shakuntala Misra National Rehabilitation University, Lucknow, where he honed his expertise in organic synthesis. Prior to that, he earned a Bachelor of Science degree from Christian P.G. College, Lucknow, solidifying his foundational knowledge in scientific principles. Dr. Gautam’s educational background reflects a strong commitment to understanding and innovating within the field of chemistry, particularly in nanotechnology. His ongoing research continues to contribute significantly to his academic institution and the broader scientific community.

🏢Work Experience:

Dr. Anil K. Gautam has extensive research experience during his Ph.D. at Babasaheb Bhimrao Ambedkar University, focusing on the development of new synthetic methodologies in nanochemistry. He has led several innovative projects, including the green synthesis of CeO2/CeCu/CuO nanocomposites and their evaluation for anticancer and antibacterial properties. Dr. Gautam’s experience encompasses the preparation of plant extracts and the characterization of synthesized nanomaterials through advanced techniques such as XRD, FTIR, SEM, and HPLC. He has also contributed to multiple oral presentations at prestigious conferences, showcasing his research findings on various nanomaterials. His collaborative approach and rigorous analytical skills have positioned him as a valuable asset in research settings, driving forward the exploration of sustainable chemistry and its applications.

🏅Awards:

Dr. Anil K. Gautam’s contributions to the field of chemistry have been recognized through various accolades throughout his academic career. His innovative research on green synthesis of nanomaterials has garnered him invitations to present at international conferences, emphasizing his status as an emerging expert in nanochemistry. Although specific awards have not been detailed, his work’s impact is evident in his published research and participation in prominent scientific forums. His commitment to sustainable practices in chemistry and the successful application of his research findings further highlight his dedication to advancing the field. Dr. Gautam’s continuous engagement in academia and research reflects a strong potential for future recognition as he continues to contribute meaningfully to scientific knowledge and practice.

🔬Research Focus:

Dr. Anil K. Gautam’s research focus lies in nanochemistry, particularly the green synthesis of nanoparticles and nanocomposites using natural extracts. His pioneering work involves developing eco-friendly methodologies to synthesize various metal oxides and their composites, emphasizing their potential applications in anticancer and antibacterial therapies. His studies on the structural properties of nanoparticles, coupled with their functional evaluations, contribute significantly to the understanding of nanomaterials in biomedical applications. Additionally, Dr. Gautam explores the synthesis of heterojunction nanocomposites for photocatalytic degradation of organic pollutants, aiming to enhance environmental sustainability. Through rigorous experimental design and literature analysis, he seeks to stay at the forefront of advancements in nanotechnology, bridging the gap between sustainable practices and innovative research in chemistry. His dedication to addressing complex challenges through his research positions him as a key contributor to the evolving landscape of nanoscience.

Publication Top Notes:

Green Synthesis of Pistia stratiotes Ag/AgCl Nanomaterials and Their Anti-Bacterial Activity

 

 

 

György Keglevich | Green Chemistry | Green Chemistry Award

Prof Dr. György Keglevich | Green Chemistry | Green Chemistry Award

 Professor at Dept of Organic Chemistry and Technology, Budapest University of Technology and Economics, Hungary

György Keglevich is a distinguished chemist specializing in organophosphorus chemistry. He is a Full Professor at the Department of Organic Chemistry and Technology at Budapest University of Technology and Economics. With a career spanning several decades, Keglevich has made significant contributions to the field through his research, publications, and mentoring of future scientists. His work encompasses a wide range of topics in chemical synthesis, green chemistry, and practical applications of his research.

Author Metrics

Scopus Profile

ORCID Profile

György Keglevich is a prominent researcher affiliated with the Budapest University of Technology and Economics in Budapest, Hungary. He has made significant contributions to the field, with a notable citation count of 9,463 across 590 documents. His h-index is 43, reflecting the impact and influence of his work in the academic community.

Education

Keglevich graduated from the Technical University of Budapest (TUB) in 1981 with a degree in chemical engineering. He obtained his PhD and Doctor of Chemical Science degrees in organophosphorus chemistry and earned his “Dr Habil.” degree in 1995. His early academic career included research at Duke University under the guidance of Professor Louis D. Quin.

Research Focus

Keglevich’s research primarily revolves around organophosphorus chemistry, including the development of P-heterocyclic compounds, ring enlargement of five-membered P-heterocycles, and the synthesis of bridged P-heterocycles. His work also explores the reactivity of aromatic phospholes, phosphine-transition metal complexes, and green chemistry practices such as microwave-assisted reactions and the use of ionic liquids.

Professional Journey

Keglevich began his career as a research employee at the Chinoin Pharmaceutical Factory before joining TUB’s Department of Organic Chemical Technology as an Assistant Professor in 1982. He was promoted to Associate Professor in 1993 and became a Full Professor in 1996. He has held leadership roles within his department, including serving as Head from 1999 to 2021. He has also been a Visiting Associate Professor at the University of Massachusetts on multiple occasions.

Honors & Awards

Keglevich has received several prestigious awards, including the Award of the Hungarian Academy of Sciences in 2004. In 2021, he was honored with the state decoration of Knight-Cross for Hungarian Order, and in 2022, he received the József Palatine Prize from Budapest University of Technology. These accolades recognize his significant contributions to the field of chemistry.

Publications Noted & Contributions

Keglevich has made substantial contributions through his publications, which include around 651 papers, 51 book chapters, and two books. His research is noted for advancements in the Hirao reaction, catalyst-free P–C coupling reactions, and microwave-assisted direct esterification. His contributions have been influential in developing new methods and applications in chemistry.

N-Functionalization of β-Aminophosphonates: Cytotoxic Effects of the New Derivatives

Journal: Organic & Biomolecular Chemistry

Year: 2024

DOI: 10.1039/D4OB00243A

Contributors: György Keglevich, Petra Regina Varga, Emőke Dinnyési, Zsuzsanna Szalai, Szilvia Bősze, Oláhné Szabó Rita, László Drahos, Konstantin Karaghiosoff

Synthesis of Mesylated and Tosylated α-Hydroxy-Benzylphosphonates; Their Reactivity and Cytostatic Activity

Journal: ACS Omega

Date: July 16, 2024

DOI: 10.1021/acsomega.4c04382

Contributors: Zsuzsanna Szalai, Márton Debrei, Péter Ábrányi-Balogh, Szilvia Bősze, Rita Oláhné Szabó, Konstantin Karaghiosoff, László Drahos, György Keglevich

Microwave-Assisted, Ionic Liquid-Catalyzed Aminolysis and Alcoholysis of Phosphinic Derivatives: The Interconversion of Phosphinates and Phosphinic Amides

Journal: Green Chemistry

Year: 2023

DOI: 10.1039/D3GC02711B

Contributors: György Keglevich, Nikoletta Harsági, Sarolta Szilágyi

New N-Acyl- as well as N-Phosphonoylmethyl- and N-Phosphinoylmethyl-α-Amino-Benzylphosphonates by Acylation and a Tandem Kabachnik–Fields Protocol

Journal: Organic & Biomolecular Chemistry

Year: 2023

DOI: 10.1039/D3OB00010A

Contributors: Petra Regina Varga, Konstantin Karaghiosoff, Éva Viktória Sári, András Simon, László Hegedűs, László Drahos, György Keglevich

Synthesis and Anticancer Activity of Phosphinoylated and Phosphonoylated N-Heterocycles Obtained by the Microwave-Assisted Palladium Acetate-Catalyzed Hirao Reaction

Journal: Chemistry – A European Journal

Date: December 6, 2023

DOI: 10.1002/chem.202302465

Contributors: Bianka Huszár, Renáta Szolga, Szilvia Bősze, Rita Oláhné Szabó, András Simon, Konstantin Karaghiosoff, Mátyás Czugler, László Drahos, György Keglevich

Research Timeline

Keglevich’s research career began in the early 1980s with a focus on chemical synthesis and organophosphorus chemistry. Over the decades, he has developed and refined methodologies in green chemistry and practical applications. His research timeline includes significant milestones such as his promotion to Full Professor in 1996 and his ongoing work in innovative chemistry practices.

Collaborations and Projects

Keglevich has collaborated on numerous projects related to organophosphorus chemistry and green chemistry. His industrial projects include the synthesis of pharmaceutical intermediates and products, which are reflected in his three patents. He has also engaged in various academic collaborations, contributing to advancements in both theoretical and practical aspects of chemistry.

György Keglevich has authored or co-authored approximately 651 papers, including 51 book chapters and two books. His research output has earned him an h-index of 48, reflecting his significant impact in the field of chemistry. His publications are highly regarded, indicating a strong influence in organophosphorus and green chemistry research.

Strengths of the Green Chemistry Award for Prof. Dr. György Keglevich

  1. Significant Contributions to Green Chemistry: Prof. Keglevich’s research emphasizes green chemistry practices, including microwave-assisted reactions and the use of ionic liquids. These contributions align well with the principles of green chemistry, aiming to make chemical processes more sustainable and environmentally friendly.
  2. Innovative Methodologies: His work on catalyst-free P–C coupling reactions, microwave-assisted esterification, and ionic liquid-catalyzed reactions demonstrates a commitment to developing new, more efficient, and eco-friendly chemical processes.
  3. Extensive Publication Record: With over 651 papers and numerous contributions to high-impact journals, Prof. Keglevich’s extensive publication record showcases his deep engagement with and impact on the field of green chemistry.
  4. High Citation Count: An h-index of 48 and a citation count of 9,463 indicate that his research is highly influential and well-regarded within the academic community. This metric underscores the relevance and importance of his work in advancing green chemistry.
  5. Recognition and Awards: The numerous awards and honors, including the Knight-Cross for Hungarian Order and the József Palatine Prize, affirm his significant impact and contributions to chemistry, reinforcing his candidacy for the Green Chemistry Award.

Areas for Improvement

  1. Broader Impact on Industry: While Prof. Keglevich’s research is highly influential academically, showcasing a broader impact on industrial applications could strengthen his case for the Green Chemistry Award. Highlighting how his methodologies have been adopted or commercialized would be beneficial.
  2. Integration with Emerging Green Technologies: There could be a more explicit connection to emerging green technologies such as renewable energy solutions or advanced recycling methods. Emphasizing how his work integrates with or contributes to these areas might enhance his profile.
  3. Interdisciplinary Collaborations: Expanding collaborations beyond organophosphorus chemistry to include other disciplines such as materials science or environmental engineering could demonstrate a more comprehensive approach to solving green chemistry challenges.
  4. Public Engagement and Outreach: Increasing efforts in public engagement, science communication, and education could further highlight the societal impact of his research. Showcasing initiatives that aim to educate and inspire the next generation of chemists could add value.
  5. Future Research Directions: Outlining specific future research directions and how they align with the evolving goals of green chemistry could provide a forward-looking perspective. This might include exploring new green solvents, reaction conditions, or sustainable practices.

Conclusion

Prof. Dr. György Keglevich is a leading figure in green chemistry with a distinguished record of innovative research, extensive publications, and significant contributions to sustainable chemical practices. His work on eco-friendly methodologies and high-impact research underscores his qualifications for the Green Chemistry Award. Addressing areas for improvement, such as demonstrating broader industrial impact and engaging with emerging green technologies, could further strengthen his candidacy. Overall, his accomplishments and recognition in the field make him a strong contender for the award, reflecting his dedication to advancing green chemistry and its practical applications.